JP3542501B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode Download PDF

Info

Publication number
JP3542501B2
JP3542501B2 JP17403798A JP17403798A JP3542501B2 JP 3542501 B2 JP3542501 B2 JP 3542501B2 JP 17403798 A JP17403798 A JP 17403798A JP 17403798 A JP17403798 A JP 17403798A JP 3542501 B2 JP3542501 B2 JP 3542501B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage electrode
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17403798A
Other languages
Japanese (ja)
Other versions
JPH10326615A (en
Inventor
利雄 村田
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP17403798A priority Critical patent/JP3542501B2/en
Publication of JPH10326615A publication Critical patent/JPH10326615A/en
Application granted granted Critical
Publication of JP3542501B2 publication Critical patent/JP3542501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池の負極に用いる水素吸蔵電極に関するものである。
【0002】
【従来の技術】
水素吸蔵電極は、水素吸蔵合金を主体とし、その水素吸蔵合金への水素の電気化学的な吸蔵・放出過程を電池の負極の起電反応に利用するものである。
【0003】
この水素吸蔵電極には、種々の目的で、水素吸蔵合金の表面を異種金属で被覆する手段が行われている。
【0004】
たとえば、米国特許4,107,405 号には、CuやCdによって水素吸蔵合金の表面を被覆することが開示されている。その目的は、水素過電圧が高いこれらの金属で被覆することによって、水素吸蔵合金に吸蔵された水素が高温下で放出されることを防ぐことにある。そして、この先行技術の実施例では、電解や蒸着によって水素吸蔵合金粉末の表面にカドミウムの薄層を析出させている。
【0005】
また、英国特許1,209,083 号には、Fe、Mo、Ni、Pt、Ir、Rh、Pd、Os、Ruなどの金属を水素吸蔵電極の表面に設けることが開示されている。その目的は、表面にβ相のチタン合金を有する水素吸蔵電極の水素の出入りを促進することにある。この先行技術では、これらの金属を、真空分解法や塗布法によって設けることが記載されている。
【0006】
さらに、特開昭61− 64069号および特開昭61−101957号には、それぞれNiおよびCuによって水素吸蔵合金を被覆することが開示されている。その目的は、水素吸蔵の活性化を容易にし、高温で焼結することなく圧縮成型によって電極を製作することができるようにし、水素吸蔵合金を電解液に対して化学的に安定にし(具体的には、充放電サイクルの進行にともなう電解液による水素吸蔵合金の腐食を抑制し)、水素吸蔵合金粒子を強固に接着して充放電の際の合金の剥離や脱落を防止することにある。その具体的な手段として、自己触媒型の湿式無電解メッキ法が開示されている。
【0007】
【発明が解決しようとする課題】
上記の先行技術で開示された具体的な手段には、それぞれ次のような不都合がある。
【0008】
まず、電気メッキ法の場合には、多孔質の水素吸蔵電極では、電極の内部の細孔への電流の回り込みが充分でないので、多孔質電極の内部まで金属を均一に析出させることが困難である。さらに、水素吸蔵合金が粉末の状態の場合には、水素吸蔵合金粉末を集電することが困難であるから、電気メッキ法を適用し難い。
【0009】
蒸着法の場合も、金属は1方向からしか析出しないので、多孔質電極の内部や、水素吸蔵合金粉末の粒子の全ての表面に金属を均一に析出させることが困難である。
【0010】
また、真空分解法は、その内容が定かでないが、真空下で分解して金属を析出する金属化合物の種類は極めて限定されているので実用的に広く適用できる方法ではない。また、塗布法は、水素吸蔵合金粉末には適用が困難であり、水素吸蔵電極の場合には、多孔質電極の内部まで均一に塗布することが困難である。
【0011】
自己触媒式の無電解メッキ法は、水素吸蔵合金粉末の場合にも、多孔質の吸蔵電極の場合にも均一に金属を析出させることができる点で、上記のいずれの方法よりも有利である。しかし、この方法では、次のような不都合がある。
【0012】
すなわち、自己触媒式の無電解メッキ法では、次亜リン酸塩、ジメチルアミンボラン、ホルムアルデヒド、ナトリウムボロンハイドライドなどの還元剤を用いる。従って、大量の水素吸蔵合金に、この方法を適用すると、還元剤からの水素ガスの発生が起こって、メッキ液が溢れたり、メッキ液のヒュームが発生したり、着火源がある場合には爆発の危険があるので、格別の排気設備が必要である。
【0013】
さらに、自己触媒式の無電解メッキでは、金属を析出させるための還元剤がメッキ浴に含有されているので、水素吸蔵合金だけではなく、メッキ浴の容器の内壁や撹拌器具などの接液部にもメッキが施される。それゆえ、この方法では、水素吸蔵合金へのメッキ量の管理が不安定になったり、容器や器具からのメッキ層の除去という煩雑な作業が必要であった。
【0014】
従って、充放電サイクル中の電池の電解液による水素吸蔵合金の腐食を抑制する金属を水素吸蔵合金の表面に析出させる方法で、水素ガスの発生がなく、その金属を水素吸蔵合金にのみ析出させる水素吸蔵電極の製造方法が望まれるとともに、密閉形アルカリ電池の充放電サイクル中の放電容量の低下を有効に抑制する水素吸蔵電極が望まれていた。
【0015】
【課題を解決するための手段】
本発明は上述の問題点を解決するために、平衡電位がメッキ浴液および電池の電解液におけるニッケルの平衡電位よりも卑な金属Yをニッケルと共に含有する水素吸蔵合金において、その金属元素Yが還元剤となって、表面が置換メッキされた水素吸蔵合金を水素吸蔵電極材料として用いることを特徴とする。
【0016】
【発明の実施の形態】
本発明において、水素吸蔵合金に含有されるニッケルは、この合金が電極として作動するための電極触媒能を有する必須成分であるから、メッキの過程や電極として作動させる際に酸化されることは好ましくない。そこで、メッキ浴液および電池の電解液の両方で、ニッケルがカソード防食されるように、平衡電位がメッキ浴液および電池の電解液におけるニッケルの平衡電位よりも卑な金属Yをニッケルと共に含有する水素吸蔵合金を用いる。この金属Yは、具体的には、水素吸蔵合金の必須成分たる稀土類金属、ジルコニウム、チタンなど、IIIa族、IVa 族、Va 族などの金属元素や、水素吸蔵合金の種種の性能を向上するための置換元素であるアルミニウム、マンガンなどである。これらの金属元素Yは、水素吸蔵合金の結晶粒の構成成分として存在していても、また、粒界の析出物として存在していても有効である。
【0017】
そして、本発明にかかる手段では、メッキ浴中の金属が、水素吸蔵合金の表面を置換メッキにより被覆し、水素吸蔵合金が電解液と直接接触する面積を減少させる。これにより、水素吸蔵合金の劣化を防止し、水素吸蔵電極の充放電サイクル寿命を長くするとともに、水素吸蔵合金の表面に絶縁性の腐食生成物が形成されても、被覆金属が金属状態で存在するので、水素吸蔵合金粒子間の電気的な接続を確保する。
【0018】
本発明にかかる置換メッキ法は、無電解メッキ法の1つに挙げられることもあるものの、無電解メッキ法の典型であって還元剤を必須構成要件とする自己触媒型の方法とは、次に述べる点で手段が異なり、その結果、水素吸蔵電極を製造する際の作用効果にも顕著な差異が生ずる。
【0019】
すなわち、本発明にかかる置換メッキでは、次のような反応が起こる。
【0020】
例えば、メッキ浴中の金属がビスマスであり、金属Yがランタンである場合には、次のような反応になる。
ランタンの酸化部位:
La alloy+3/2HO → 1/2La+3H+3e
ビスマスの析出部位 :
Bi3++3e → Bi
ここにLa alloy は、水素吸蔵合金の粒界などに存する単体の金属ランタンだけではなく、水素吸蔵合金中のランタンも表す。
【0021】
また、例えば、メッキ浴中の金属が銅であり、金属Yがアルミニウムである場合には、次のような反応になる。
アルミニウムの酸化部位:
Al alloy →Al3++3e
銅の析出部位:
3/2Cu2++3e → 3/2Cu
ここにAl alloy は、水素吸蔵合金の粒界などに存する単体の金属アルミニウムだけではなく、水素吸蔵合金中のアルミニウムも表す。
【0022】
すなわち、この置換メッキでは、メッキ浴中の金属は、金属Yが酸化される部位と電子伝導および電解液中のイオン伝導が共に存在する部位においてのみ析出する。すなわち、前記金属は、水素吸蔵合金と同じメッキ浴に浸漬されていて、しかもその水素吸蔵合金と電気的に接続されている部位にのみ析出する。
【0023】
従って、メッキ浴の容器の接液部が電気的な絶縁体である場合には、その接液部が水素吸蔵合金と直接接触していても、前記金属がその接液部に析出することがない。また、メッキ浴の容器の接液部が貴な金属からなるものであっても、その接液部が水素吸蔵合金と電気的に絶縁されていれば、この接液部の電位が卑にならないから、この場合にも、前記金属は、接液部に析出しない。
【0024】
結局、このような手段によって、メッキ浴中の金属が、水素吸蔵合金の表面に選択的に析出して、メッキ浴の接液部に析出しないようにすることが極めて簡単に実現できる。
【0025】
しかも、還元剤をメッキ浴に含有させなくても、金属元素Yが還元剤となって、その酸化にともなってメッキ浴中の金属の析出が起こるので、自己触媒型の無電解メッキのような還元剤の分解による水素ガスの発生が極めて起こりにくい。特に、前記金属の水素過電圧が高い場合には、電位が卑になる水素吸蔵合金の表面が水素過電圧の高い金属で被覆されるので、水素ガスの発生を一層効果的に抑制できる。
【0026】
なお、本発明にかかる置換メッキは、外部から通電することなく、メッキ浴に含まれている金属が析出するのであるから、電気メッキや、蒸着法とは異なって、堆積した水素吸蔵合金粉末の内部表面や、水素吸蔵合金の多孔体の内部表面などであっても、メッキ浴に接している水素吸蔵合金の表面には前記金属が析出する。
【0027】
従って、水素吸蔵合金が粉末そのものや、あるいは、水素吸蔵合金粉末を結着剤で結合したり焼結して得た多孔体のいずれに適用しても、電気メッキや蒸着法によるよりも、前記金属の析出量が均一になる。水素吸蔵合金の粉末の表面に前記金属を析出させた場合には、その粉末を結着剤によって結合することによって、水素吸蔵合金を製造できる。
【0028】
このように、本発明によれば、電解液と接触する水素吸蔵合金の耐食性を増加させ、水素吸蔵合金間の電子伝導性の向上に寄与する金属を、水素ガスの発生がなく、しかも水素吸蔵合金の表面にのみ均一に析出させた水素吸蔵合金を水素吸蔵電極の材料とすることにより、充放電サイクルの進行に伴う、水素吸蔵合金の腐食による放電容量の低下を有効に抑制することができる。したがって、充放電サイクル特性に優れた水素吸蔵電極を提供することができる。
【0029】
メッキ浴中の金属としては、具体的には、銅、ビスマス、鉛、銀、タリウム、金、水銀、白金、パラジウムなどを用いることができる。
【0030】
なお、本発明にかかる置換メッキでは、水素吸蔵合金に含まれている金属Yが置換メッキによって失われるので、その量だけ水素吸蔵合金の容量が小さくなる。しかし、このようなメッキの過程で失われる金属Yは、従来のように置換メッキを施さない場合や、自己触媒式の無電解メッキを施す場合にも、その水素吸蔵合金を電池の電解液に浸漬した状態で腐食されて失われるものである。従って、この部分の水素吸蔵合金は、本発明の方法においても、従来の方法においても、電池の容量に寄与しないものである。本発明では、このように従来は利用されずに放置されていた腐食されやすい合金の部分を、置換メッキの還元剤として利用して、水素吸蔵合金の特性の向上に役立てているのである。
【0031】
【実施例】
本発明を好適な実施例によって説明する。
[本発明の製造方法による水素吸蔵電極(ア)およびそれを用いる密閉形アルカリ蓄電池(A)]
水素吸蔵電極(ア)および密閉形アルカリ蓄電池(A)は次のようにして製作した。
【0032】
水素吸蔵合金は、その組成が原子比でLmNi3.8Co0.7Al0.5になるように、その構成元素を金属の状態で真空にした高周波誘導炉中で溶解し、鋳造してから粉砕した。ここでLmは、Laを約90重量%含有する稀土類金属の混合物であるランタンリッチミッシュメタルである。
【0033】
次に、温度が25℃で0.1Mの濃度の硫酸銅水溶液からなるメッキ液7.87lに、この合金粉末(平均粒径約30μm )1kgを投入して撹拌した。すなわち、メッキ液に含まれる銅の重量は、水素吸蔵合金の重量100重量部に対して5重量部である。メッキ浴の容器には、ポリプロピレン製のものを用いた。撹拌の進行にともなって、硫酸銅水溶液の青色が希薄になるとともに、水素吸蔵合金の表面に金属銅が析出した。メッキ液の着色が消失してから、その上澄みを排出して、精製水で水素吸蔵合金粉末を洗浄し、最後にエタノールで洗浄してから、乾燥して、金属銅で表面が被覆された水素吸蔵合金粉末を得た。なお、以下に記載する本発明実施例では、水素吸蔵合金の金属Yと置換される金属の着色がメッキ液に認められないものは、予備実験によって、メッキの終点を決定してからメッキを施した。
【0034】
次に、この水素吸蔵合金粉末を、ペーストの増粘剤の機能と水素吸蔵合金粉末の親水性結着剤の機能とを果たすポリビニルアルコールの水溶液に分散してペースト状にした。そして、ニッケルメッキを施した鉄製のパンチングメタルの両面に、このペーストを塗着し、乾燥し、プレスし、矩形状に切断して、水素吸蔵電極(ア)を製作した。
【0035】
密閉形アルカリ蓄電池(A)1個には、負極としてこの水素吸蔵電極(ア)5枚を用いており、この電池1個の負極に含まれる水素吸蔵合金の量は、約5.3gである。また、この電池1個の正極には、矩形状の焼結式の水酸化ニッケル電極を4枚用いており、その正極に含まれる水酸化ニッケルの合計の重量は約3.9gである。従って、水酸化ニッケルが1電子反応に従うことを仮定すると、電池1個の正極の理論容量は約1.1Ahである。この電極には、水酸化ニッケル1グラム当たり水酸化コバルト0.04グラムを添加してある。
【0036】
この密閉形アルカリ蓄電池では、これらの正極板と負極板とを、ポリプロピレンとスルフォン化したポリスチレンとの混合物の不織布からなるセパレータを介して交互に積層してから、ニッケルメッキした鉄製の密閉式の電池ケースに収納した。この電池容器には、内圧が約15kg/cmになると、内部ガスを放出する安全弁が取り付けてある。また、電解液には、0.4MのZnO と10g/lのLiOHとを溶解した6Mの濃度のKOH水溶液を注入してある。
[本発明の製造方法による水素吸蔵電極(イ)およびそれを用いる密閉形アルカリ蓄電池(B)]
水素吸蔵電極(イ)は、水素吸蔵電極(ア)における硫酸銅の代わりに硝酸ビスマスを用い、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(B)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(イ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[本発明の製造方法による水素吸蔵電極(ウ)およびそれを用いる密閉形アルカリ蓄電池(C)]
水素吸蔵電極(ウ)は、水素吸蔵電極(ア)における硫酸銅の代わりにホウフッ化鉛を用い、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(C)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(ウ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[本発明の製造方法による水素吸蔵電極(エ)およびそれを用いる密閉形アルカリ蓄電池(D)]
水素吸蔵電極(エ)は、水素吸蔵電極(ア)における硫酸銅の代わりに硝酸銀を用い、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(D)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(エ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[本発明の製造方法による水素吸蔵電極(オ)およびそれを用いる密閉形アルカリ蓄電池(E)]
水素吸蔵電極(オ)は、水素吸蔵電極(ア)における硫酸銅の代わりに硫酸タリウムを用い、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(E)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(オ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[本発明の製造方法による水素吸蔵電極(カ)およびそれを用いる密閉形アルカリ蓄電池(F)]
水素吸蔵電極(カ)は、水素吸蔵電極(ア)における硫酸銅の代わりに塩化金を用い、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(F)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(カ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[本発明の製造方法による水素吸蔵電極(キ)およびそれを用いる密閉形アルカリ蓄電池(G)]
水素吸蔵電極(キ)は、水素吸蔵電極(ア)における硫酸銅の代わりに硝酸水銀を用い、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(G)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(キ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[本発明の製造方法による水素吸蔵電極(ク)およびそれを用いる密閉形アルカリ蓄電池(H)]
水素吸蔵電極(ク)は、水素吸蔵電極(ア)における硫酸銅の代わりに塩化白金を用い、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(H)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(ク)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[本発明の製造方法による水素吸蔵電極(ケ)およびそれを用いる密閉形アルカリ蓄電池(I)]
水素吸蔵電極(ケ)は、水素吸蔵電極(ア)における硫酸銅の代わりに塩化パラジウムを用い、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(I)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(ケ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[本発明の製造方法による水素吸蔵電極(コ)およびそれを用いる密閉形アルカリ蓄電池(J)]
水素吸蔵電極(コ)は、水素吸蔵電極(ア)に用いたものと同じ水素吸蔵合金粉末に、金属銅を析出させることなく、水素吸蔵電極(ア)におけると同様のペーストを調製した。そして、このペーストをニッケル網に塗着してから乾燥し、真空下で950℃にて5時間加熱して、ポリビニルアルコールを分解してから焼結し、水素吸蔵合金の板状の多孔体を得た。次に、温度が25℃で0.1Mの濃度の硫酸銅水溶液からなるメッキ液15.7lに、この多孔体1kgを浸漬して撹拌した。そして、このメッキ液の青色が消失してから、この焼結体を精製水で洗浄し、最後にエタノールで洗浄してから乾燥し、水素吸蔵電極(ア)と同じ面積に切断して、水素吸蔵合金の表面に金属銅が析出した焼結式の水素吸蔵電極(コ)を得た。
【0037】
また、密閉形アルカリ蓄電池(J)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(コ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[従来の製造方法による水素吸蔵電極(サ)およびそれを用いる密閉形アルカリ蓄電池(K)]
水素吸蔵電極(サ)は、水素吸蔵電極(ア)における硫酸銅による置換メッキを行うことなく、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(K)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(サ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
[従来の製造方法による水素吸蔵電極(シ)およびそれを用いる密閉形アルカリ蓄電池(L)]
水素吸蔵電極(シ)は、水素吸蔵電極(ア)における硫酸銅による置換メッキの代わりに、特開昭61−101957号に開示された方法に準拠して、自己触媒型の銅の無電解メッキをおこない、そのほかは水素吸蔵電極(ア)と同じ構成にして製作した。また、密閉形アルカリ蓄電池(L)は、密閉形アルカリ蓄電池(A)における水素吸蔵電極(ア)の代わりに水素吸蔵電極(シ)を用い、そのほかは密閉形アルカリ蓄電池(A)と同じ構成にして製作した。
【0038】
水素吸蔵電極(シ)を製作する際の水素吸蔵合金に施した銅の自己触媒型無電解メッキの手法を次に示す。
【0039】
まず、水素吸蔵電極(ア)に用いた水素吸蔵合金粉末と同じで、置換メッキを施す前のもの1kgをエチルアルコール5l中に25℃において10分間浸漬して脱脂してから、塩化第1錫20g/l、塩酸1.5l、水4lを混合した溶液中に25℃にて5分間浸漬し、水洗した。次に、塩化パラジウム20g、塩酸0.5l、水2.5lを混合した溶液に、25℃にてこの粉末を3分間浸漬したあと水洗した。次に、ホルムアルデヒドを還元剤とする無電解メッキ液(商標”MAC化学銅”:奥野製薬工業(株)製)を、その中に含有される銅の重量が水素吸蔵合金の100重量部に対して5重量部になるように採取し、その中へ水素吸蔵合金粉末を投入して撹拌しながら、30℃で40分間メッキし、水洗し、アセトンで洗浄したあとに乾燥した。
【0040】
このようにして銅メッキを施した水素吸蔵合金粉末を用いるほかは、水素吸蔵電極(ア)と同じようにして、水素吸蔵電極(シ)を製作した。
【0041】
なお、本発明の方法で水素吸蔵合金に置換メッキを施した水素吸蔵電極(ア)−(コ)の場合には、メッキを施す際に気泡が発生しなかった。また、メッキ槽の接液部には、金属の析出が認められなかった。
【0042】
一方、従来の方法で水素吸蔵合金に無電解メッキを施した水素吸蔵電極(シ)の場合には、無電解メッキの過程で、著しいガス発生とメッキ浴の飛沫の飛散とが認められた。また、メッキ槽の接液部にも銅が析出した。
【0043】
このように、水素吸蔵電極を製作する際に水素吸蔵電極(シ)ではメッキ浴の槽の接液部にメッキが施され、水素吸蔵合金へのメッキ量に不足が生じているものと考えられたので、メッキを施していない水素吸蔵電極(サ)以外のものについて水素吸蔵合金を化学分析して、水素吸蔵合金にメッキされた金属の量とメッキ浴に投入した金属の量との比を調べた。その結果を、表1に示す。
【0044】
【表1】

Figure 0003542501
表1から、本発明の方法で製作した電極(ア)−(コ)の水素吸蔵合金には、メッキ浴の金属の98%以上が析出しているが、従来の方法で製作した電極(シ)の水素吸蔵合金には、メッキ浴の金属の約85%しか付着していないことがわかる。
[実験]
以上の密閉形アルカリ蓄電池(A)−(L)を、正極の理論容量を基準として10時間率の電流で20時間充電したあと、5時間率の電流で放電するという化成を2回おこなった。そして、その後に1時間率の電流で1.5時間充電し、1時間率の電流で端子電圧が1.0Vになるまで放電するという条件で充放電サイクル試験をおこなった。この充放電は、25℃の雰囲気でおこなった。
【0045】
図1に、充放電サイクルの進行にともなうこれらの電池の放電容量の推移を示す。
【0046】
図1から、本発明の方法で製作した水素吸蔵電極を用いる密閉形アルカリ蓄電池(A)−(J)は、水素吸蔵合金にメッキを施さない従来の方法で製作した水素吸蔵電極を用いる密閉形アルカリ蓄電池(K)と比較して、充放電サイクルの進行にともなう放電容量の低下が効果的に抑制されている。これは、本発明の方法で製作した水素吸蔵電極では、水素吸蔵合金とアルカリ電解液とが直接接触する面積が、水素吸蔵合金の表面に施された金属の皮膜の存在によって、小さくなって、充放電サイクルの進行にともなう水素吸蔵合金の腐食が抑制されたことに起因するものと推察される。
【0047】
また、密閉形アルカリ蓄電池(A)−(J)は、従来の方法で水素吸蔵合金にメッキを施した密閉形アルカリ蓄電池(L)と比較しても、充放電サイクルの進行にともなう放電容量の低下が抑制されている。これは、本発明の方法で水素吸蔵電極(ア)−(コ)を製造する場合には、従来の方法で水素吸蔵電極(シ)を製作する場合と比較して、メッキ液中の金属がメッキ槽に析出することがなく、その結果、水素吸蔵合金の表面に存在する金属の量が多くなって、充放電サイクルの進行にともなう水素吸蔵合金の腐食が効果的に防止されたことに起因するものと推察される。
【0048】
また、表1における水素吸蔵電極(ア)および(コ)との比較、および図1における密閉形アルカリ蓄電池(A)と(J)との比較から明らかなように、水素吸蔵合金が、粉末の状態もしくは孔体のいずれの状態であっても、本発明の手段を採用することによって、同様のすぐれた作用効果が得られることがわかる。
【0049】
なお、上述の実施例では、水素吸蔵合金に置換メッキを施す金属は1種類であったが、複数のものを混合して用いても、上記の実施例と同様の作用効果が得られる。
【0050】
また、上述した本発明の作用効果は、上述の実施例の構成のほかに、正極板として発泡ニッケルやニッケル繊維の焼結体に水酸化ニッケルを主体とする活物質粉末を充填したものを用いる場合、負極として水素吸蔵合金を発泡ニッケル等に充填したものを用いる場合、セパレータとしてスルフォン化処理や酸素成分を含むフッ素ガス処理を施して親水性を賦与したポリオレフィン性の不織布を用いる場合、水素吸蔵合金として稀土類の成分や、ニッケル・コバルト・アルミニウムの含有率を変えたり、そのほかの置換元素を用いる場合、水素吸蔵合金として稀土類系合金の組成を変えたものや、稀土類系合金に替えてチタンやジルコニウムを含有するLaves 相合金を用いる場合のいずれにおいても、上述の実施例と同様の効果が得られる。
【0051】
従って、本発明の構成は、上記の実施例に記載された特定の構成だけに限定されるものではない。
【0052】
【発明の効果】
本発明によれば、充放電サイクル中に、電池の電解液による水素吸蔵合金の腐食を抑制する金属を水素吸蔵合金の表面に析出させるので、水素ガスの発生がなく、その金属をメッキ槽に析出させることなく、しかも水素吸蔵合金にのみ析出させることができるとともに、充放電サイクル中の放電容量の低下が従来に比べて少ない密閉形アルカリ電池を提供することができる。
【図面の簡単な説明】
【図1】水素吸蔵電極を負極に用いる密閉形アルカリ蓄電池の充放電サイクルの進行にともなう放電容量の推移を表す図。
【符号の説明】
A,B,C,D,E,F,G,H,I,J 本発明の製造方法による水素吸蔵電極を用いる電池。
K,L 従来の製造方法による水素吸蔵電極を負極に用いる電池。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage electrode used for a negative electrode of a battery.
[0002]
[Prior art]
The hydrogen storage electrode is mainly composed of a hydrogen storage alloy, and utilizes the process of electrochemically storing and releasing hydrogen into the hydrogen storage alloy for the electromotive reaction of the negative electrode of the battery.
[0003]
The hydrogen storage electrode is provided with means for coating the surface of the hydrogen storage alloy with a dissimilar metal for various purposes.
[0004]
For example, U.S. Pat. No. 4,107,405 discloses coating the surface of a hydrogen storage alloy with Cu or Cd. The purpose is to prevent the hydrogen stored in the hydrogen storage alloy from being released at a high temperature by coating with these metals having a high hydrogen overvoltage. In this prior art example, a thin layer of cadmium is deposited on the surface of the hydrogen storage alloy powder by electrolysis or vapor deposition.
[0005]
British Patent No. 1,209,083 discloses that a metal such as Fe, Mo, Ni, Pt, Ir, Rh, Pd, Os, and Ru is provided on the surface of a hydrogen storage electrode. The purpose is to promote the ingress and egress of hydrogen of a hydrogen storage electrode having a β-phase titanium alloy on the surface. This prior art describes that these metals are provided by a vacuum decomposition method or a coating method.
[0006]
Further, JP-A-61-64069 and JP-A-61-101957 disclose that a hydrogen storage alloy is coated with Ni and Cu, respectively. Its purpose is to facilitate the activation of hydrogen storage, to enable the production of electrodes by compression molding without sintering at high temperatures, and to make the hydrogen storage alloy chemically stable to the electrolyte (specifically Another object of the present invention is to suppress the corrosion of the hydrogen storage alloy due to the electrolytic solution accompanying the progress of the charge / discharge cycle) and to firmly adhere the hydrogen storage alloy particles to prevent the alloy from peeling or falling off during charge / discharge. As a specific means, a self-catalytic wet electroless plating method is disclosed.
[0007]
[Problems to be solved by the invention]
Each of the specific means disclosed in the above prior arts has the following disadvantages.
[0008]
First, in the case of the electroplating method, it is difficult for the porous hydrogen storage electrode to uniformly deposit metal even inside the porous electrode because current does not sufficiently flow into the pores inside the electrode. is there. Furthermore, when the hydrogen storage alloy is in a powder state, it is difficult to collect the hydrogen storage alloy powder, and thus it is difficult to apply the electroplating method.
[0009]
Also in the case of the vapor deposition method, since the metal is precipitated only from one direction, it is difficult to uniformly deposit the metal on the inside of the porous electrode and on all surfaces of the particles of the hydrogen storage alloy powder.
[0010]
Although the content of the vacuum decomposition method is not clear, the types of metal compounds that decompose under vacuum to deposit a metal are extremely limited, and are not practically and widely applicable. In addition, it is difficult to apply the coating method to the hydrogen storage alloy powder, and in the case of the hydrogen storage electrode, it is difficult to uniformly apply the inside of the porous electrode.
[0011]
The self-catalytic electroless plating method is more advantageous than any of the above methods in that the metal can be uniformly deposited both in the case of the hydrogen storage alloy powder and in the case of the porous storage electrode. . However, this method has the following disadvantages.
[0012]
That is, in the self-catalytic electroless plating method, a reducing agent such as hypophosphite, dimethylamine borane, formaldehyde, and sodium boron hydride is used. Therefore, when this method is applied to a large amount of hydrogen storage alloy, generation of hydrogen gas from the reducing agent occurs, and the plating solution overflows, fume of the plating solution is generated, or when there is an ignition source, Due to the danger of explosion, special exhaust equipment is required.
[0013]
Furthermore, in autocatalytic electroless plating, a reducing agent for precipitating metal is contained in the plating bath, so not only the hydrogen-absorbing alloy but also liquid contact parts such as the inner wall of the plating bath container and stirring equipment. Is also plated. Therefore, in this method, the management of the amount of plating on the hydrogen storage alloy becomes unstable, and a complicated operation of removing the plating layer from the container or the tool is required.
[0014]
Therefore, in a method of depositing a metal on the surface of the hydrogen storage alloy that suppresses corrosion of the hydrogen storage alloy by the electrolyte of the battery during the charge / discharge cycle, no hydrogen gas is generated, and the metal is deposited only on the hydrogen storage alloy. In addition to a demand for a method of manufacturing a hydrogen storage electrode, a hydrogen storage electrode that effectively suppresses a decrease in discharge capacity during a charge / discharge cycle of a sealed alkaline battery has been desired.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is to adjust the equilibrium potential of the plating bath solution.And battery electrolyteIn a hydrogen storage alloy containing a metal Y lower than the equilibrium potential of nickel together with nickel, the metal element Y serves as a reducing agent, and the hydrogen storage alloy whose surface is substitution-plated is used as a hydrogen storage electrode material. Features.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, nickel contained in the hydrogen storage alloy is an essential component having an electrode catalytic function for the alloy to operate as an electrode. Absent. Therefore, in both the plating bath solution and the battery electrolyte, nickel contains a metal Y having a lower equilibrium potential than the nickel equilibrium potential in the plating bath solution and the battery electrolyte so that nickel is cathodic protected. A hydrogen storage alloy is used. Specifically, the metal Y improves the performance of various metal elements such as IIIa group, IVa group, and Va group, such as rare earth metals, zirconium, and titanium, which are essential components of the hydrogen storage alloy, and various kinds of hydrogen storage alloys. , Manganese, etc., which are the substitution elements for GaN. These metal elements Y are effective whether they exist as constituents of the crystal grains of the hydrogen storage alloy or as precipitates at the grain boundaries.
[0017]
In the means according to the present invention, the metal in the plating bath coats the surface of the hydrogen storage alloy by displacement plating, and reduces the area of the hydrogen storage alloy in direct contact with the electrolyte. This prevents the hydrogen storage alloy from deteriorating, prolongs the charge / discharge cycle life of the hydrogen storage electrode, and keeps the coated metal in a metallic state even if insulating corrosion products are formed on the surface of the hydrogen storage alloy. Therefore, electrical connection between the hydrogen storage alloy particles is ensured.
[0018]
Although the displacement plating method according to the present invention may be mentioned as one of the electroless plating methods, a typical example of the electroless plating method and a self-catalytic type method in which a reducing agent is an essential component is as follows. As described above, the means are different, and as a result, there is a marked difference in the operation and effect when manufacturing the hydrogen storage electrode.
[0019]
That is, in the displacement plating according to the present invention, the following reaction occurs.
[0020]
For example, when the metal in the plating bath is bismuth and the metal Y is lanthanum, the following reaction occurs.
Lanthanum oxidation sites:
La alloy + 3 / 2H2O → 1 / 2La2O3+ 3H++ 3e
Bismuth deposition site:
Bi3++ 3e  → Bi
Here, La alloy represents not only a single metal lanthanum present at a grain boundary of the hydrogen storage alloy but also lanthanum in the hydrogen storage alloy.
[0021]
Further, for example, when the metal in the plating bath is copper and the metal Y is aluminum, the following reaction occurs.
Aluminum oxidation sites:
Al alloy → Al3++ 3e
Copper deposition site:
3 / 2Cu2++ 3e  → 3 / 2Cu
Here, Al alloy represents not only simple metallic aluminum existing at the grain boundaries of the hydrogen storage alloy, but also aluminum in the hydrogen storage alloy.
[0022]
That is, in this displacement plating, the metal in the plating bath is precipitated only at the site where the metal Y is oxidized and at the site where both electron conduction and ion conduction in the electrolytic solution are present. That is, the metal is immersed in the same plating bath as the hydrogen-absorbing alloy, and precipitates only at a portion electrically connected to the hydrogen-absorbing alloy.
[0023]
Therefore, when the liquid contact portion of the plating bath container is an electrical insulator, even if the liquid contact portion is in direct contact with the hydrogen storage alloy, the metal may precipitate in the liquid contact portion. Absent. In addition, even if the liquid contact part of the plating bath container is made of a noble metal, if the liquid contact part is electrically insulated from the hydrogen storage alloy, the potential of the liquid contact part does not become low. Therefore, also in this case, the metal does not precipitate at the liquid contact part.
[0024]
As a result, by such means, it is very easily realized that the metal in the plating bath selectively precipitates on the surface of the hydrogen storage alloy and does not deposit on the liquid contact portion of the plating bath.
[0025]
Moreover, even if a reducing agent is not contained in the plating bath, the metal element Y becomes a reducing agent and the metal in the plating bath precipitates as the metal element Y is oxidized. Generation of hydrogen gas due to decomposition of the reducing agent is extremely unlikely. In particular, when the hydrogen overvoltage of the metal is high, the surface of the hydrogen storage alloy having a low potential is coated with the metal having a high hydrogen overvoltage, so that the generation of hydrogen gas can be more effectively suppressed.
[0026]
In the displacement plating according to the present invention, since the metal contained in the plating bath is deposited without applying an electric current from the outside, unlike the electroplating and the vapor deposition method, the deposited hydrogen storage alloy powder The metal is deposited on the surface of the hydrogen storage alloy in contact with the plating bath even on the inner surface or the inner surface of the porous body of the hydrogen storage alloy.
[0027]
Therefore, regardless of whether the hydrogen storage alloy is applied to the powder itself, or to a porous body obtained by bonding or sintering the hydrogen storage alloy powder with a binder, the above-described method is more effective than electroplating or vapor deposition. The deposition amount of metal becomes uniform. When the metal is deposited on the surface of the powder of the hydrogen storage alloy, the powder can be bound with a binder to produce the hydrogen storage alloy.
[0028]
As described above, according to the present invention, a metal that increases the corrosion resistance of the hydrogen storage alloy in contact with the electrolytic solution and contributes to the improvement of the electron conductivity between the hydrogen storage alloys is produced without generating hydrogen gas, and By using the hydrogen storage alloy deposited uniformly only on the surface of the alloy as the material of the hydrogen storage electrode, it is possible to effectively suppress a decrease in the discharge capacity due to the corrosion of the hydrogen storage alloy due to the progress of the charge / discharge cycle. . Therefore, a hydrogen storage electrode having excellent charge / discharge cycle characteristics can be provided.
[0029]
As the metal in the plating bath, specifically, copper, bismuth, lead, silver, thallium, gold, mercury, platinum, palladium and the like can be used.
[0030]
In the displacement plating according to the present invention, since the metal Y contained in the hydrogen storage alloy is lost by the displacement plating, the capacity of the hydrogen storage alloy is reduced by that amount. However, the metal Y lost in such a plating process, the hydrogen storage alloy is used in the battery electrolyte even when the displacement plating is not performed as in the related art or when the self-catalytic electroless plating is performed. It is corroded and lost when immersed. Therefore, the hydrogen storage alloy in this portion does not contribute to the capacity of the battery in the method of the present invention or in the conventional method. In the present invention, the portion of the alloy which has been conventionally unused and is easily corroded is utilized as a reducing agent for displacement plating, thereby helping to improve the properties of the hydrogen storage alloy.
[0031]
【Example】
The present invention will be described by way of preferred embodiments.
[Hydrogen Storage Electrode (A) and Sealed Alkaline Battery (A) Using the Same]
The hydrogen storage electrode (A) and the sealed alkaline storage battery (A) were manufactured as follows.
[0032]
Hydrogen storage alloy has a composition whose atomic ratio is LmNi3.8Co0.7Al0.5In a high-frequency induction furnace in which the constituent elements were evacuated in a metal state, they were melted, cast, and ground. Here, Lm is a lanthanum-rich misch metal which is a mixture of rare earth metals containing about 90% by weight of La.
[0033]
Next, 1 kg of this alloy powder (average particle size of about 30 μm) was charged into 7.87 l of a plating solution consisting of an aqueous solution of copper sulfate having a concentration of 0.1 M at a temperature of 25 ° C. and stirred. That is, the weight of copper contained in the plating solution is 5 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy. A container made of polypropylene was used for the container of the plating bath. As the stirring progressed, the blue color of the aqueous copper sulfate solution became diluted, and metallic copper was deposited on the surface of the hydrogen storage alloy. After the coloring of the plating solution has disappeared, the supernatant is drained, and the hydrogen-absorbing alloy powder is washed with purified water, and finally washed with ethanol, and then dried. An occlusion alloy powder was obtained. In the examples of the present invention described below, in the case where no coloring of the metal to be substituted for the metal Y of the hydrogen storage alloy is observed in the plating solution, the plating end point is determined by a preliminary experiment before plating is performed. did.
[0034]
Next, this hydrogen storage alloy powder was dispersed in an aqueous solution of polyvinyl alcohol that functions as a thickener for the paste and a hydrophilic binder for the hydrogen storage alloy powder to form a paste. Then, this paste was applied to both surfaces of a nickel-plated iron punching metal, dried, pressed, and cut into a rectangular shape to produce a hydrogen storage electrode (A).
[0035]
One sealed alkaline storage battery (A) uses five hydrogen storage electrodes (A) as a negative electrode, and the amount of the hydrogen storage alloy contained in the negative electrode of one battery is about 5.3 g. . The positive electrode of one battery uses four rectangular sintered nickel hydroxide electrodes, and the total weight of nickel hydroxide contained in the positive electrode is about 3.9 g. Therefore, assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of the positive electrode of one battery is about 1.1 Ah. To this electrode was added 0.04 grams of cobalt hydroxide per gram of nickel hydroxide.
[0036]
In this sealed alkaline storage battery, the positive electrode plate and the negative electrode plate are alternately laminated via a separator made of a nonwoven fabric of a mixture of polypropylene and sulfonated polystyrene, and then a nickel-plated iron sealed battery is formed. Stored in the case. The internal pressure of this battery container is about 15 kg / cm2, A safety valve that releases internal gas is installed. Further, a 6 M KOH aqueous solution in which 0.4 M ZnO and 10 g / L LiOH are dissolved is injected into the electrolyte.
[Hydrogen storage electrode (a) and sealed alkaline storage battery (B) using the same according to the production method of the present invention]
The hydrogen storage electrode (a) was manufactured in the same configuration as the hydrogen storage electrode (a) except that bismuth nitrate was used instead of the copper sulfate in the hydrogen storage electrode (a). The sealed alkaline storage battery (B) has the same configuration as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (a) is used instead of the hydrogen storage electrode (a) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (c) and sealed alkaline storage battery (C) using the same according to the production method of the present invention]
The hydrogen storage electrode (c) was manufactured in the same configuration as the hydrogen storage electrode (a) except that lead borofluoride was used instead of copper sulfate in the hydrogen storage electrode (a). The sealed alkaline storage battery (C) has the same structure as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (A) is used instead of the hydrogen storage electrode (A) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (D) and sealed alkaline storage battery (D) using the same by the production method of the present invention]
The hydrogen storage electrode (d) was produced in the same configuration as the hydrogen storage electrode (a) except that silver nitrate was used instead of copper sulfate in the hydrogen storage electrode (a). The sealed alkaline storage battery (D) has the same structure as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (d) is used instead of the hydrogen storage electrode (a) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (E) and sealed alkaline storage battery (E) using the same according to the production method of the present invention]
The hydrogen storage electrode (e) was manufactured by using thallium sulfate instead of copper sulfate in the hydrogen storage electrode (a), and the other configuration was the same as that of the hydrogen storage electrode (a). The sealed alkaline storage battery (E) has the same structure as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (e) is used instead of the hydrogen storage electrode (a) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (f) according to the production method of the present invention and sealed alkaline storage battery (F) using the same]
The hydrogen storage electrode (f) was manufactured in the same configuration as the hydrogen storage electrode (a) except that gold chloride was used instead of copper sulfate in the hydrogen storage electrode (a). The sealed alkaline storage battery (F) has the same structure as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (f) is used instead of the hydrogen storage electrode (a) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (g) and sealed alkaline storage battery (G) using the same by the production method of the present invention]
The hydrogen storage electrode (g) was manufactured in the same configuration as the hydrogen storage electrode (a) except that mercury nitrate was used instead of the copper sulfate in the hydrogen storage electrode (a). The sealed alkaline storage battery (G) has the same configuration as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (A) is used instead of the hydrogen storage electrode (A) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (h) by production method of the present invention and sealed alkaline storage battery (H) using the same]
The hydrogen storage electrode (h) was manufactured in the same configuration as the hydrogen storage electrode (a) except that platinum chloride was used instead of the copper sulfate in the hydrogen storage electrode (a). The sealed alkaline storage battery (H) has the same structure as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (h) is used instead of the hydrogen storage electrode (a) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (q) by method of production of the present invention and sealed alkaline storage battery (I) using the same]
The hydrogen storage electrode (g) was manufactured in the same configuration as the hydrogen storage electrode (a) except that palladium chloride was used instead of copper sulfate in the hydrogen storage electrode (a). The sealed alkaline storage battery (I) has the same configuration as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (A) is used instead of the hydrogen storage electrode (A) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (co) and sealed alkaline storage battery (J) using the same according to the production method of the present invention]
For the hydrogen storage electrode (A), the same paste as that for the hydrogen storage electrode (A) was prepared on the same hydrogen storage alloy powder as that used for the hydrogen storage electrode (A) without depositing metallic copper. Then, this paste is applied to a nickel mesh, dried, and heated at 950 ° C. for 5 hours under vacuum to decompose polyvinyl alcohol and then sinter, thereby forming a plate-shaped porous body of a hydrogen storage alloy. Obtained. Next, 1 kg of this porous body was immersed in 15.7 L of a plating solution comprising a 0.1 M aqueous solution of copper sulfate at a temperature of 25 ° C. and stirred. Then, after the blue color of the plating solution has disappeared, the sintered body is washed with purified water, finally washed with ethanol and dried, cut into the same area as the hydrogen storage electrode (A), A sintered hydrogen storage electrode (K) in which metallic copper was deposited on the surface of the storage alloy was obtained.
[0037]
The sealed alkaline storage battery (J) has the same configuration as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (A) is used instead of the hydrogen storage electrode (A) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (sa) by conventional manufacturing method and sealed alkaline storage battery (K) using the same]
The hydrogen storage electrode (a) was manufactured in the same configuration as the hydrogen storage electrode (a) except that the replacement plating with copper sulfate was not performed on the hydrogen storage electrode (a). The sealed alkaline storage battery (K) has the same structure as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (A) is used instead of the hydrogen storage electrode (A) in the sealed alkaline storage battery (A). Produced.
[Hydrogen storage electrode (S) by conventional manufacturing method and sealed alkaline storage battery (L) using the same]
The hydrogen-absorbing electrode (A) is replaced with copper sulfate in the hydrogen-absorbing electrode (A), and an electroless plating of autocatalytic copper is performed in accordance with the method disclosed in JP-A-61-101957. The other components were manufactured in the same configuration as the hydrogen storage electrode (A). The sealed alkaline storage battery (L) has the same configuration as the sealed alkaline storage battery (A) except that the hydrogen storage electrode (A) is used instead of the hydrogen storage electrode (A) in the sealed alkaline storage battery (A). Produced.
[0038]
The method of autocatalytic electroless plating of copper applied to a hydrogen storage alloy when manufacturing a hydrogen storage electrode (S) is described below.
[0039]
First, 1 kg of the same hydrogen storage alloy powder as that used for the hydrogen storage electrode (a), which had not been subjected to displacement plating, was immersed in 5 l of ethyl alcohol at 25 ° C. for 10 minutes to degrease, and then stannous chloride was used. It was immersed in a mixed solution of 20 g / l, 1.5 l of hydrochloric acid and 4 l of water at 25 ° C. for 5 minutes and washed with water. Next, this powder was immersed in a mixed solution of 20 g of palladium chloride, 0.5 liter of hydrochloric acid and 2.5 liters of water at 25 ° C. for 3 minutes, and then washed with water. Next, an electroless plating solution (trade name "MAC Chemical Copper": manufactured by Okuno Pharmaceutical Co., Ltd.) using formaldehyde as a reducing agent was added to the hydrogen-absorbing alloy in an amount of 100 parts by weight of copper contained therein. The hydrogen storage alloy powder was poured into the mixture, plated with stirring at 30 ° C. for 40 minutes, washed with water, washed with acetone, and dried.
[0040]
A hydrogen storage electrode (a) was manufactured in the same manner as the hydrogen storage electrode (a) except that the copper-plated hydrogen storage alloy powder was used.
[0041]
In the case of the hydrogen storage electrodes (A) to (K) in which the replacement plating was performed on the hydrogen storage alloy by the method of the present invention, no bubbles were generated during the plating. No metal deposition was observed in the liquid contact part of the plating tank.
[0042]
On the other hand, in the case of the hydrogen storage electrode (b) in which electroless plating was performed on the hydrogen storage alloy by the conventional method, significant gas generation and splashing of the plating bath were observed in the process of electroless plating. Further, copper was also deposited on the wetted portion of the plating tank.
[0043]
As described above, it is considered that when the hydrogen storage electrode is manufactured, plating is applied to the liquid contact portion of the plating bath in the hydrogen storage electrode (S), and the amount of plating on the hydrogen storage alloy is insufficient. Therefore, the hydrogen storage alloy other than the unplated hydrogen storage electrode was chemically analyzed to determine the ratio of the amount of metal plated on the hydrogen storage alloy to the amount of metal charged into the plating bath. Examined. Table 1 shows the results.
[0044]
[Table 1]
Figure 0003542501
From Table 1, it can be seen that 98% or more of the metal in the plating bath is precipitated in the hydrogen storage alloys of the electrodes (a) to (co) manufactured by the method of the present invention. It can be seen that only about 85% of the metal in the plating bath adheres to the hydrogen storage alloy of (1).
[Experiment]
The above-mentioned sealed alkaline storage batteries (A) to (L) were charged twice at a 10-hour rate current based on the theoretical capacity of the positive electrode for 20 hours, and then discharged at a 5-hour rate current twice. Thereafter, a charge / discharge cycle test was performed under the condition that the battery was charged at a current of 1 hour rate for 1.5 hours and discharged at a current of 1 hour rate until the terminal voltage became 1.0 V. This charge / discharge was performed in an atmosphere at 25 ° C.
[0045]
FIG. 1 shows changes in the discharge capacity of these batteries as the charge / discharge cycle progresses.
[0046]
From FIG. 1, the sealed alkaline storage battery (A)-(J) using the hydrogen storage electrode manufactured by the method of the present invention is a sealed type using the hydrogen storage electrode manufactured by the conventional method without plating the hydrogen storage alloy. As compared with the alkaline storage battery (K), a decrease in the discharge capacity due to the progress of the charge / discharge cycle is effectively suppressed. This is because, in the hydrogen storage electrode manufactured by the method of the present invention, the area of direct contact between the hydrogen storage alloy and the alkaline electrolyte is reduced due to the presence of the metal coating applied to the surface of the hydrogen storage alloy. It is presumed that this was caused by the suppression of the corrosion of the hydrogen storage alloy due to the progress of the charge / discharge cycle.
[0047]
Moreover, the sealed alkaline storage batteries (A)-(J) have a discharge capacity with the progress of the charge / discharge cycle, as compared with the sealed alkaline storage battery (L) in which the hydrogen storage alloy is plated by the conventional method. The decline is suppressed. This is because when the hydrogen storage electrodes (A) to (K) are manufactured by the method of the present invention, the metal in the plating solution is less than when the hydrogen storage electrodes (A) are manufactured by the conventional method. It does not precipitate in the plating tank, resulting in an increase in the amount of metal present on the surface of the hydrogen storage alloy, which effectively prevented the corrosion of the hydrogen storage alloy during the progress of the charge / discharge cycle. It is presumed to do.
[0048]
Further, as is clear from the comparison between the hydrogen storage electrodes (A) and (K) in Table 1 and the comparison between the sealed alkaline storage batteries (A) and (J) in FIG. It can be seen that the same excellent operation and effect can be obtained by adopting the means of the present invention regardless of the state of the hole or the hole.
[0049]
In the above-described embodiment, one metal is subjected to displacement plating on the hydrogen-absorbing alloy. However, the same operation and effect as in the above-described embodiment can be obtained by mixing and using a plurality of metals.
[0050]
In addition to the above-described functions and effects of the present invention, in addition to the configuration of the above-described embodiment, a positive electrode plate in which an active material powder mainly containing nickel hydroxide is filled in a sintered body of nickel foam or nickel fiber is used. In the case of using a hydrogen storage alloy filled with foamed nickel or the like as the negative electrode, or using a polyolefin nonwoven fabric which has been subjected to sulfonation treatment or fluorine gas treatment containing an oxygen component to impart hydrophilicity as the separator, When changing the content of rare earth elements, nickel, cobalt, or aluminum as an alloy, or when using other substitution elements, change the composition of the rare earth alloy as a hydrogen storage alloy or replace it with a rare earth alloy. In any case where the Laves phase alloy containing titanium or zirconium is used, the same effect as in the above-described embodiment can be obtained. .
[0051]
Therefore, the configuration of the present invention is not limited to the specific configuration described in the above embodiment.
[0052]
【The invention's effect】
According to the present invention, during the charge / discharge cycle, a metal that suppresses corrosion of the hydrogen storage alloy by the battery electrolyte is deposited on the surface of the hydrogen storage alloy, so that no hydrogen gas is generated, and the metal is deposited in the plating tank. It is possible to provide a sealed alkaline battery which can be deposited only on the hydrogen-absorbing alloy without precipitation, and in which the discharge capacity during the charge / discharge cycle is less reduced than in the conventional case.
[Brief description of the drawings]
FIG. 1 is a diagram showing a change in discharge capacity as a charge / discharge cycle of a sealed alkaline storage battery using a hydrogen storage electrode as a negative electrode progresses.
[Explanation of symbols]
A, B, C, D, E, F, G, H, I, J A battery using a hydrogen storage electrode according to the production method of the present invention.
K, L A battery using a hydrogen storage electrode according to a conventional manufacturing method as a negative electrode.

Claims (1)

平衡電位がメッキ浴液および電池の電解液におけるニッケルの平衡電位よりも卑な金属Yをニッケルと共に含有する水素吸蔵合金において、その金属元素Yが還元剤となって、表面が置換メッキされた水素吸蔵合金を有することを特徴とする水素吸蔵電極。In a hydrogen storage alloy containing a metal Y together with nickel, the equilibrium potential of which is lower than the equilibrium potential of nickel in the plating bath solution and the battery electrolyte , the metal element Y serves as a reducing agent, and the surface of the hydrogen storage alloy is replaced. A hydrogen storage electrode comprising a storage alloy.
JP17403798A 1998-06-05 1998-06-05 Hydrogen storage electrode Expired - Lifetime JP3542501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17403798A JP3542501B2 (en) 1998-06-05 1998-06-05 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17403798A JP3542501B2 (en) 1998-06-05 1998-06-05 Hydrogen storage electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24673691A Division JP3261410B2 (en) 1991-08-30 1991-08-30 Method for producing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH10326615A JPH10326615A (en) 1998-12-08
JP3542501B2 true JP3542501B2 (en) 2004-07-14

Family

ID=15971532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17403798A Expired - Lifetime JP3542501B2 (en) 1998-06-05 1998-06-05 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3542501B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190570A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Production of hydrogen occluding alloy material
JPH0797497B2 (en) * 1988-09-29 1995-10-18 工業技術院長 Hydrogen storage electrode
JPH02159382A (en) * 1988-12-13 1990-06-19 Nec Corp Copper plating solution for substitution plating
JP2564394B2 (en) * 1989-04-29 1996-12-18 株式会社神戸製鋼所 Replacement plating method
JP2735909B2 (en) * 1989-11-30 1998-04-02 住友金属鉱山株式会社 Method for producing hydrogen storage alloy powder for secondary battery

Also Published As

Publication number Publication date
JPH10326615A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
WO1992008251A1 (en) Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
JP4678130B2 (en) Sealed nickel metal hydride storage battery and its manufacturing method
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
US5630933A (en) Processes involving metal hydrides
JP3261410B2 (en) Method for producing hydrogen storage electrode
JP3542501B2 (en) Hydrogen storage electrode
WO1986006107A1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
JPH09312157A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3825619B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, nickel-hydrogen storage battery, and method of manufacturing hydrogen storage alloy
JP3456092B2 (en) Hydrogen storage alloy and method for producing the same
JPH1186852A (en) Nickel electrode for alkaline secondary battery
JPH11154511A (en) Surface treatment hydrogen storage alloy, surface treatment method, hydride electrode using surface treatment hydrogen storage alloy
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3379539B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP3825612B2 (en) Hydrogen storage alloy powder for hydrogen storage alloy electrode, hydrogen storage alloy electrode, and alkaline storage battery
JP3796093B2 (en) Nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPH0745282A (en) Nickel electrode for alkaline storage battery
JPH1167194A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2000090918A (en) Hydrogen storage electrode
JPH10255779A (en) Manufacture for nickel hydrogen storage battery
JP2000106177A (en) Manufacture of negative electrode material for alkaline secondary battery
JP2847750B2 (en) Hydrogen storage electrode
JPH02104686A (en) Cathode having low hydrogen overvoltage and high durability and production thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8