JP2847750B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JP2847750B2
JP2847750B2 JP1127496A JP12749689A JP2847750B2 JP 2847750 B2 JP2847750 B2 JP 2847750B2 JP 1127496 A JP1127496 A JP 1127496A JP 12749689 A JP12749689 A JP 12749689A JP 2847750 B2 JP2847750 B2 JP 2847750B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage electrode
powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1127496A
Other languages
Japanese (ja)
Other versions
JPH02306539A (en
Inventor
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Original Assignee
NIPPON DENCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENCHI KK filed Critical NIPPON DENCHI KK
Priority to JP1127496A priority Critical patent/JP2847750B2/en
Publication of JPH02306539A publication Critical patent/JPH02306539A/en
Application granted granted Critical
Publication of JP2847750B2 publication Critical patent/JP2847750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池の負極に用いる水素吸蔵電極
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a hydrogen storage electrode used for a negative electrode of an alkaline battery.

従来の技術 水素吸蔵電極は、水素の可逆的な吸蔵および放出が可
能な水素吸蔵合金を電極に用いるもので、その水素の電
気化学的な酸化還元反応をアルカリ蓄電池の負極の起電
反応に利用する。水素吸蔵電極に用いられる水素吸蔵合
金には、TiNi,Ti2Ni,LaNi5およびTiMn2等の金属間化合
物や、これらの金属間化合物の構成元素を他の元素で置
換したものが用いられている。これらの水素吸蔵合金
は、その組成が異なると、水素吸蔵量,平衡水素圧力,
アルカリ電解液中で充放電を繰り返す場合の保持容量特
性等の性質が変化するので、合金の組成を変えて、水素
吸蔵電極の性能の改良が試みられている。
Conventional technology A hydrogen storage electrode uses a hydrogen storage alloy that can reversibly store and release hydrogen, and uses the electrochemical oxidation-reduction reaction of hydrogen for the electromotive reaction of the negative electrode of an alkaline storage battery. I do. The hydrogen storage alloy used in the hydrogen storage electrode, TiNi, Ti 2 Ni, and LaNi 5 and TiMn 2 such intermetallic compound, and is used obtained by replacing the constituent elements of these intermetallic compounds with other elements I have. If these hydrogen storage alloys have different compositions, the hydrogen storage amount, the equilibrium hydrogen pressure,
Since properties such as storage capacity characteristics when charge and discharge are repeated in an alkaline electrolyte change, attempts have been made to improve the performance of the hydrogen storage electrode by changing the composition of the alloy.

従来の電池用の水素吸蔵電極は、これらの水素吸蔵合
金の粉末を発泡メタルに充填したり、耐アルカリ性高分
子で結合したり、高温で焼結する方法等で製作してい
た。そして、これらの水素吸蔵電極では、特公昭57−30
273号のようにアセチレンブラックを添加したり、特公
昭58−468273号のように金属ニッケルを添加して焼結し
たり、特開昭63−110553号のように金属の短繊維を添加
したり、特開昭61−64069号および同61−101957号に記
載されているように、水素吸蔵合金の粉末の表面に金属
ニッケルや金属銅の自己触媒型の湿式無電解メッキを施
して、電極の導電性を高くしていた。
Conventional hydrogen-absorbing electrodes for batteries have been manufactured by filling a foamed metal with the powder of the hydrogen-absorbing alloy, bonding with an alkali-resistant polymer, or sintering at a high temperature. And, with these hydrogen storage electrodes,
No. 273, acetylene black is added, as disclosed in JP-B-58-468273, metal nickel is added and sintered, or as described in JP-A-63-110553, a metal short fiber is added. As described in JP-A-61-64069 and JP-A-61-101957, a self-catalytic wet electroless plating of metallic nickel or metallic copper is applied to the surface of a powder of a hydrogen storage alloy to form an electrode. The conductivity was high.

発明が解決しようとする課題 上述のように、従来の水素吸蔵電極には、アセチレン
ブラックや、金属ニッケル等の短繊維や、金属銅等のメ
ッキ層からなる導電助剤を添加していた。これらの導電
助剤は、電極の導電性を高くして、水素吸蔵合金の放電
反応を促進する作用を有するものの、それ自体は放電し
ない。したがって、水素吸蔵合金の放電容量を多くする
場合には、導電助剤の添加量を少なくし、水素吸蔵合金
の含有量を大きくして、しかも水素吸蔵電極の重量当り
の放電容量を大きくする必要がある。
Problems to be Solved by the Invention As described above, a conventional hydrogen storage electrode has been added with a conductive aid composed of a staple fiber such as acetylene black or metal nickel, or a plating layer of metal copper or the like. These conductive aids have the function of increasing the conductivity of the electrode and promoting the discharge reaction of the hydrogen storage alloy, but do not discharge themselves. Therefore, when increasing the discharge capacity of the hydrogen storage alloy, it is necessary to reduce the amount of the conductive additive, increase the content of the hydrogen storage alloy, and increase the discharge capacity per weight of the hydrogen storage electrode. There is.

そこで、発明者は、導電助剤として金属ニッケル粉末
を添加したり、水素吸蔵合金の粉末の表面に金属銅の自
己触媒型の無電解メッキを施して、水素吸蔵合金の粉末
を耐アルカリ性の高分子で結着する水素吸蔵電極を製作
し、これらの導電助剤の添加率を変化させて水素吸蔵電
極の放電性能を調べた。その結果、これらの導電助剤の
含有率が小さい場合に、水素吸蔵合金の重量当りの放電
容量が著しく減少するという問題点があることがわかっ
た。
Therefore, the inventor of the present invention added metal nickel powder as a conductive auxiliary agent, or performed autocatalytic electroless plating of metallic copper on the surface of the hydrogen storage alloy powder to make the hydrogen storage alloy powder highly alkaline resistant. Hydrogen storage electrodes bound by molecules were fabricated, and the discharge performance of the hydrogen storage electrodes was examined by changing the addition rate of these conductive assistants. As a result, it was found that when the content of these conductive additives was small, there was a problem that the discharge capacity per weight of the hydrogen storage alloy was significantly reduced.

本発明は、水素吸蔵合金の粉末と、耐アルカリ性高分
子ラテックスの結着剤とを備える水素吸蔵電極におい
て、導電助剤の添加率が小さい場合に水素吸蔵合金の重
量当りの放電容量が著しく減少するというも問題点を解
決しようとするものである。
The present invention provides a hydrogen storage electrode comprising a powder of a hydrogen storage alloy and a binder of an alkali-resistant polymer latex, in which the discharge capacity per weight of the hydrogen storage alloy is significantly reduced when the addition rate of a conductive additive is small. To do so is to solve the problem.

課題を解決するための手段 本発明は、酸化第1銅,酸化第2銅または酸化ビスマ
スのうち少なくとも1つの粉末と、水素吸蔵合金の粉末
と、耐アルカリ性高分子ラテックスの結着剤とを含有す
る混合物を導電性支持体に保持してなる水素吸蔵電極に
よって上述の問題点を解決しようとするものである。
Means for Solving the Problems The present invention contains at least one powder of cuprous oxide, cupric oxide or bismuth oxide, a powder of a hydrogen storage alloy, and a binder of an alkali-resistant polymer latex. It is an object of the present invention to solve the above-mentioned problem by using a hydrogen storage electrode in which the mixture is held on a conductive support.

作用 本発明の水素吸蔵電極は、酸化第1銅,酸化第2銅ま
たは酸化ビスマスのうち少なくとも1つの粉末と、水素
吸蔵合金の粉末と、耐アルカリ性高分子ラテックスの結
着剤とを備えている。そしてこの電極は、これらの混合
物を、パンチングメタルやエクスパンデッドメタル等の
導電性芯体に圧着したり、あるいはこれらの混合物を水
等に分散させて調整したペースト状混合物を、導電性芯
体に塗着したり、発泡メタルや金属繊維の焼結体に充填
し、乾燥してからプレスすることによって、導電性支持
体に保持させたものである。
The hydrogen storage electrode of the present invention includes at least one powder of cuprous oxide, cupric oxide, or bismuth oxide, a powder of a hydrogen storage alloy, and a binder of an alkali-resistant polymer latex. . This electrode is obtained by pressing these mixtures onto a conductive core such as punched metal or expanded metal, or dispersing these mixtures in water or the like, and adjusting the paste-like mixture to a conductive core. It is coated on a sintered body of foamed metal or metal fiber, dried, and pressed to be held on a conductive support.

本発明の水素吸蔵電極を充放電すると、その放電容量
は、酸化第1銅,酸化第2銅または酸化ビスマスの添加
量が少ないほど減少する。しかしながら、本発明の電極
では、このような放電容量の減少は、本発明の電極にお
いて用いたこれらの酸化物の代わりに、同一の添加率
で、金属ニッケル粉末やアセチレンブラック等の導電助
剤を添加した水素吸蔵電極や、水素吸蔵合金の粉末の表
面に金属銅や金属ニッケルの自己触媒型の無電解メッキ
を施した水素吸蔵電極と比較すると、特に添加率が小さ
い場合に効果的に抑制される。
When the hydrogen storage electrode of the present invention is charged and discharged, the discharge capacity decreases as the amount of cuprous oxide, cupric oxide or bismuth oxide added decreases. However, in the electrode of the present invention, such a decrease in the discharge capacity is due to the fact that instead of these oxides used in the electrode of the present invention, a conductive additive such as metallic nickel powder or acetylene black is used at the same addition rate. Compared with the added hydrogen storage electrode or the hydrogen storage electrode in which the surface of the powder of the hydrogen storage alloy is electrocatalytically plated with metallic copper or metallic nickel, especially when the addition rate is small, it is effectively suppressed. You.

本発明の水素吸蔵電極の放電容量が、従来の水素吸蔵
電極と比較して大きい現象の理由は、次に述べるよう
に、添加した酸化物が金属に還元されて、導電助剤とし
て有効に作用していることにあるものと推察される。
The reason for the phenomenon that the discharge capacity of the hydrogen storage electrode of the present invention is larger than that of the conventional hydrogen storage electrode is that, as described below, the added oxide is reduced to a metal and effectively acts as a conduction aid. It is presumed that it is in doing.

すなわち、本発明の水素吸蔵電極に用いる酸化第1
銅,酸化第2銅または酸化ビスマスは、金属に還元され
る反応の平衡電位が、水素吸蔵電極の充電反応が起こる
電位よりも貴である。そして、これらの酸化物はその一
部がアルカリ電解液に溶解する。
That is, the first oxidation used for the hydrogen storage electrode of the present invention.
Copper, cupric oxide, or bismuth oxide has an equilibrium potential for a reduction reaction to a metal that is more noble than a potential at which a charging reaction of a hydrogen storage electrode occurs. These oxides partially dissolve in the alkaline electrolyte.

したがって、酸化第1銅,酸化第2銅または酸化ビス
マスは、この水素吸蔵電極をアルカリ電解液に浸漬して
最初に充電する際に、電極の細孔中のアルカリ電解液に
溶出してから金属銅や金属ビスマスに還元されて水素吸
蔵合金の近傍に析出し、導電性の微細なネットワークを
形成する。そして、その後に水素吸蔵合金の充電反応が
進行する。これらの酸化物は、一旦溶解してから、金属
として析出するので、この導電性の微細なネットワーク
は、上記の酸化物の添加率が小さくても効果的に形成さ
れる。
Therefore, when the cuprous oxide, cupric oxide or bismuth oxide is first charged by immersing the hydrogen storage electrode in an alkaline electrolyte, the metal is eluted in the alkaline electrolyte in the pores of the electrode and then charged. It is reduced to copper or metallic bismuth and precipitates in the vicinity of the hydrogen storage alloy, forming a fine conductive network. Then, the charging reaction of the hydrogen storage alloy proceeds thereafter. Since these oxides are once dissolved and then precipitated as a metal, this conductive fine network can be effectively formed even if the addition ratio of the above oxides is small.

そして、金属銅や金属ビスマスが酸化される電位は、
水素吸蔵合金が放電する電位よりも貴であるから、これ
らの金属は、この電極を放電する際に、水素吸蔵合金の
放電反応が終わるまで、酸化されることはない。したが
って、これらの金属の微細な導電性のネットワークは、
水素吸蔵合金の放電が終わるまで、水素吸蔵合金の導電
助剤として効果的に作用して、水素吸蔵合金の放電容量
の減少が抑制される。
The potential at which metallic copper or metallic bismuth is oxidized is
Since the hydrogen storage alloy is more noble than the potential at which the hydrogen storage alloy discharges, these metals are not oxidized when the electrode is discharged until the discharge reaction of the hydrogen storage alloy ends. Therefore, the fine conductive network of these metals
Until the discharge of the hydrogen storage alloy is completed, the hydrogen storage alloy effectively acts as a conductive additive, and a decrease in the discharge capacity of the hydrogen storage alloy is suppressed.

一方、従来の水素吸蔵電極の場合には、金属やグラフ
ァイトの粉末や金属のメッキ層の状態で電極に添加して
いるので溶解反応が起こらない。したがって、導電性の
ネットワークが効果的に形成されにくくなり、導電助剤
の分布が必ずしも効率的ではなく、導電助剤の添加率が
小さい場合に水素吸蔵合金の放電が阻害されて、その放
電容量が減少する。
On the other hand, in the case of a conventional hydrogen storage electrode, a dissolution reaction does not occur because the metal or graphite powder or the metal plating layer is added to the electrode. Therefore, it is difficult to effectively form a conductive network, and the distribution of the conductive auxiliary is not always efficient. When the addition rate of the conductive auxiliary is small, the discharge of the hydrogen storage alloy is hindered, and the discharge capacity thereof is reduced. Decrease.

実施例 以下に、本発明を好適な実施例を用いて詳細に説明す
る。
Examples Hereinafter, the present invention will be described in detail using preferred examples.

[水素吸蔵電極a](本発明実施例) 市販の電解ニッケルとスポンジチタンとを等モルにな
るように秤取して配合し、酸化カルシウムで内張りして
アルゴン雰囲気に保った高周波誘導炉中で、この混合物
を融解させた。そして、この融解物を加圧してアルゴン
ガス中で噴霧し、TiNi合金の粉末を得た。そして、この
TiNi合金粉末をふるい分けて、粒径が300μm以下の粉
末を電極に用いることにした。
[Hydrogen storage electrode a] (Example of the present invention) A commercially available electrolytic nickel and sponge titanium were weighed and blended in an equimolar amount, were lined with calcium oxide, and kept in an argon atmosphere in a high-frequency induction furnace. This mixture was melted. The melt was pressurized and sprayed in argon gas to obtain a TiNi alloy powder. And this
The TiNi alloy powder was sieved, and a powder having a particle size of 300 μm or less was used for the electrode.

つぎにこのTiNi合金の粉末とナカライテスク(株)製
の特級試薬の酸化第1銅(化学式:Cu2O)の粉末とを混
合し、この混合物を水で湿潤させてから、耐アルカリ性
の高分子ラテックスの結着剤であるアクリル−スチレン
共重合体を分散させた高分子ラテックスを添加して、ペ
ースト状混合物を調整した。このペースト状混合物は、
固形分の配合比が、TiNi粉末100重量部に対して、酸化
第1銅の粉末を10重量部,20重量部,30重量部,40重量部
及び50重量部の5種類のものを調整した。そして、高分
子ラテックスは、その固形分がTiNi合金粉末及び酸化第
1銅粉末の合計100重量部に対して8重量部になるよう
に配合した。
Next, the powder of this TiNi alloy and the powder of cuprous oxide (chemical formula: Cu 2 O), a special-grade reagent manufactured by Nacalai Tesque, Inc., were mixed, and the mixture was wetted with water. A polymer latex in which an acryl-styrene copolymer as a binder for a molecular latex was dispersed was added to prepare a paste-like mixture. This pasty mixture is
The mixing ratio of solid content was adjusted to five types of 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, and 50 parts by weight of cuprous oxide powder with respect to 100 parts by weight of TiNi powder. . The polymer latex was blended so that its solid content was 8 parts by weight based on 100 parts by weight of the total of the TiNi alloy powder and the cuprous oxide powder.

そして、厚さ0.09mmの穿孔鋼板にニッケルメッキした
導電性芯体に、このペースト状混合物を塗着し、80℃の
熱風で乾燥し、高分子ラテックスの結着力を発現させて
から、室温のロールでプレスして本発明の水素吸蔵電極
aを製作した。この電極の寸法は、約40mm×20mm×1.4m
mであり、この電極1枚には、約3.4gの水素吸蔵合金が
含まれていた。
Then, the paste-like mixture was applied to a conductive core body plated with nickel on a perforated steel sheet having a thickness of 0.09 mm, and dried with hot air at 80 ° C. to express the binding force of the polymer latex. Pressing with a roll produced the hydrogen storage electrode a of the present invention. The dimensions of this electrode are about 40mm x 20mm x 1.4m
m, and one electrode contained about 3.4 g of the hydrogen storage alloy.

[水素吸蔵電極b](本発明実施例) 本発明の水素吸蔵電極aにおける酸化第1銅の代わり
に、ナカライテスク(株)製の特級試薬の酸化第2銅
(化学式:CuO)の粉末を用い、その他は電極aと同様に
して本発明の水素吸蔵電極bを製作した。
[Hydrogen storage electrode b] (Example of the present invention) Instead of cuprous oxide in the hydrogen storage electrode a of the present invention, powder of cupric oxide (chemical formula: CuO) of a special grade reagent manufactured by Nacalai Tesque, Inc. was used. The hydrogen storage electrode b of the present invention was manufactured in the same manner as the electrode a except that the hydrogen storage electrode b was used.

[水素吸蔵電極c](本発明実施例) 本発明の水素吸蔵電極aにおける酸化第1銅の代わり
に、ナカライテスク(株)製の特級試薬の酸化ビスマス
(化学式:Bi2O3)の粉末を用い、その他は電極aと同様
にして本発明の水素吸蔵電極cを製作した。
[Hydrogen storage electrode c] (Example of the present invention) Powder of bismuth oxide (chemical formula: Bi 2 O 3 ) of Nacalai Tesque Co., Ltd. instead of cuprous oxide in the hydrogen storage electrode a of the present invention. The hydrogen storage electrode c of the present invention was manufactured in the same manner as the electrode a except for the above.

[水素吸蔵電極d](従来例) 本発明の水素吸蔵電極aにおける酸化第1銅の代わり
にINCO社製のカーボニルニッケルtype255を用い、その
他は電極aと同様にして比較のための従来の水素吸蔵電
極dを製作した。
[Hydrogen storage electrode d] (conventional example) Carbonyl nickel type 255 manufactured by INCO was used in place of cuprous oxide in the hydrogen storage electrode a of the present invention, and the other hydrogen was used in the same manner as the electrode a. An occlusion electrode d was manufactured.

[水素吸蔵電極e](従来例) 本発明の水素吸蔵電極aにおいて酸化第1銅の粉末を
添加する代わりに、TiNi合金粉末に金属銅の無電解メッ
キを施し、その他は電極aと同様にして比較のための従
来の水素吸蔵電極eを製作した。金属銅の無電解メッキ
の重量は、TiNi合金粉末100重量部に対して5重量部,10
重量部,15重量部,20重量部及び25重量部の5種類のもの
を用いた。
[Hydrogen storage electrode e] (conventional example) In the hydrogen storage electrode a of the present invention, instead of adding the cuprous oxide powder, electroless plating of metallic copper is performed on TiNi alloy powder, and the other components are the same as those of the electrode a. Thus, a conventional hydrogen storage electrode e for comparison was manufactured. The weight of electroless plating of metallic copper is 5 parts by weight, 10 parts by weight for 100 parts by weight of TiNi alloy powder.
Five kinds, that is, 15 parts by weight, 20 parts by weight, and 25 parts by weight were used.

[水素吸蔵電極f](従来例) 本発明の水素吸蔵電極aにおける酸化第1銅を用いる
ことなく、その他は電極aと同様にして比較のための従
来の水素吸蔵電極fを製作した。
[Hydrogen Storage Electrode f] (Conventional Example) A conventional hydrogen storage electrode f for comparison was manufactured in the same manner as the electrode a without using cuprous oxide in the hydrogen storage electrode a of the present invention.

つぎに、これらの水素吸蔵電極a,b,c,d,eおよびfを
アルカリ電池に用いた場合の水素吸蔵合金の放電性能を
明らかにするために、これらの水素吸蔵電極を負極に用
いて、電池の放電が負極の放電容量で規制されるように
構成した試験用の開放形アルカリ電池A,B,C,D,Eおよび
Fを製作した。
Next, in order to clarify the discharge performance of the hydrogen storage alloy when these hydrogen storage electrodes a, b, c, d, e and f were used in an alkaline battery, these hydrogen storage electrodes were used as negative electrodes. Then, test open-type alkaline batteries A, B, C, D, E and F were constructed so that the discharge of the battery was regulated by the discharge capacity of the negative electrode.

これらの電池は次のようにして製作した。すなわち、
水素吸蔵電極1枚を中央に置いて負極とし、その両側に
ナイロン製の不織布からなるセパレータを介して、焼結
式の水酸化ニッケル電極2枚を置いて正極とした。
These batteries were manufactured as follows. That is,
One hydrogen-absorbing electrode was placed at the center to form a negative electrode, and two sintered nickel hydroxide electrodes were placed on both sides of a separator made of a nonwoven fabric made of nylon to form a positive electrode.

上記の正極として用いる水酸化ニッケル電極は、次の
ようにして製作した。すなわち、多孔度が約85%の焼結
ニッケル基板を用い、通常の減圧含浸法で減圧含浸を6
回繰り返して、水酸化ニッケルと水酸化コバルトとをこ
の焼結基板の細孔中に共沈させて、焼結式水酸化ニッケ
ル電極を製作した。この電極の大きさは、400mm×40mm
×0.85mmであり、この電極1枚に充填されている水酸化
ニッケルおよび水酸化コバルトの合計の量は、約2.4gで
あった。水酸化コバルトの含有量は、水酸化ニッケルと
水酸化コバルトとの合計の量に対するモル比で約95%で
あった。この電池に用いている正極の放電容量は、放電
が1電子反応に従う場合に、1.39Ahである。電解液は5.
8M KOH水溶液を用いた。電槽は、内寸が45mm×45mm×3m
mのアルカリ樹脂製のものを用いた。
The nickel hydroxide electrode used as the above positive electrode was manufactured as follows. That is, using a sintered nickel substrate having a porosity of about 85%, the vacuum impregnation is performed by the ordinary vacuum impregnation method.
By repeating this process, nickel hydroxide and cobalt hydroxide were co-precipitated in the pores of the sintered substrate to produce a sintered nickel hydroxide electrode. The size of this electrode is 400mm x 40mm
× 0.85 mm, and the total amount of nickel hydroxide and cobalt hydroxide filled in one electrode was about 2.4 g. The content of cobalt hydroxide was about 95% by molar ratio based on the total amount of nickel hydroxide and cobalt hydroxide. The discharge capacity of the positive electrode used in this battery is 1.39 Ah when the discharge follows a one-electron reaction. The electrolyte is 5.
An 8 M KOH aqueous solution was used. Battery case is 45mm x 45mm x 3m
m alkaline resin was used.

そしてこれらの電池を、25℃において、0.7Aの電流で
1.5時間充電し、0.2Aの電流で1.0Vまで放電するという
条件で充放電試験を行った。この場合の3サイクル目の
電池の放電容量を第1図に示す。
These batteries were then run at 25 ° C at 0.7A
A charge / discharge test was performed under the condition that the battery was charged for 1.5 hours and discharged at a current of 0.2 A to 1.0 V. FIG. 1 shows the discharge capacity of the battery in the third cycle in this case.

第1図において、横軸は水素吸蔵電極に含まれている
水素吸蔵合金100重量部に対する導電助剤の重量を表し
ており、この導電助剤は、水素吸蔵電極に添加した酸化
第1銅粉末,酸化第2銅粉末,酸化ビスマス粉末,金属
ニッケル粉末またはメッキを施した金属銅を意味してい
る。そして、縦軸は、それぞれの電池の水素吸蔵電極に
含まれている水素吸蔵合金1g当りの電池の放電容量を表
している。
In FIG. 1, the horizontal axis represents the weight of the conductive assistant with respect to 100 parts by weight of the hydrogen storage alloy contained in the hydrogen storage electrode. , Cupric oxide powder, bismuth oxide powder, metallic nickel powder or plated metallic copper. The vertical axis represents the discharge capacity of the battery per 1 g of the hydrogen storage alloy contained in the hydrogen storage electrode of each battery.

第1図から次のことが明らかである。すなわち、どの
水素吸蔵電極の場合にも、導電助剤の添加率が小さくな
ると、電池の放電容量が減少する傾向にあり、導電助剤
を添加しない従来の水素吸蔵電極fを用いる場合には、
放電容量がほとんど得られない。
The following is clear from FIG. That is, in any case of the hydrogen storage electrode, when the rate of addition of the conductive auxiliary decreases, the discharge capacity of the battery tends to decrease, and when using the conventional hydrogen storage electrode f to which the conductive auxiliary is not added,
Almost no discharge capacity is obtained.

そして、水素吸蔵合金100重量部に対する導電助剤の
量が10重量部以上50重量部以下の範囲では、水素吸蔵電
極が異なると、電池の放電容量が著しく異なっている。
すなわち、本発明の水素吸蔵電極を用いる電池A,Bおよ
びCの放電容量は、導電助剤の添加率がこの範囲では、
従来の水素吸蔵電極を用いる電池DおよびEと比較して
大きい。
When the amount of the conductive assistant per 100 parts by weight of the hydrogen storage alloy is in the range of 10 parts by weight or more and 50 parts by weight or less, the discharge capacity of the battery is significantly different if the hydrogen storage electrode is different.
That is, the discharge capacities of the batteries A, B and C using the hydrogen storage electrode of the present invention are as follows.
It is larger than batteries D and E using the conventional hydrogen storage electrode.

したがって、本発明の水素吸蔵電極は、導電助剤の添
加率が50重量部以下という小さい値の場合に、水素吸蔵
合金の放電容量の減少が効果的に抑制されているといえ
る。
Therefore, it can be said that the hydrogen storage electrode of the present invention effectively suppresses the decrease in the discharge capacity of the hydrogen storage alloy when the addition ratio of the conductive additive is as small as 50 parts by weight or less.

なお、上述の実施例では水素吸蔵合金粉末としてガス
アトマイズ法で製作したTiNi合金を用いる場合を説明し
たが、この合金粉末の代わりに、LaNi4CoやTi2Niの組成
の水素吸蔵合金を機械的に粉砕して調整した粉末を用い
る場合にも、上述の試験と同様の結果が得られた。
In the above-described embodiment, the case where a TiNi alloy manufactured by a gas atomization method is used as the hydrogen storage alloy powder has been described, but instead of this alloy powder, a hydrogen storage alloy having a composition of LaNi 4 Co or Ti 2 Ni is mechanically used. The same results as in the above-described test were obtained also when the powder prepared by pulverizing into a powder was used.

また、上述の実施例では、ペースト状混合物をパンチ
ングメタルに塗着して水素吸蔵合金を保持させる電極の
場合を説明したが、パンチングメタルに塗着する代わり
に、住友電工(株)製の発泡ニッケルにペースト状混合
物を充填して水素吸蔵合金を保持させる場合にも、上述
の試験と同様の結果が得られた。
Further, in the above-described embodiment, the case where the paste-like mixture is applied to the punching metal to hold the hydrogen-absorbing alloy is described. However, instead of applying the paste to the punching metal, a foam made by Sumitomo Electric The same results as in the above test were obtained when nickel was filled with the paste-like mixture to retain the hydrogen storage alloy.

さらに、上述の実施例では、耐アルカリ性の高分子ラ
テックスの結着剤として,アクリル−スチレン共重合体
からなる高分子ラテックスを用いたが,その代わりに,
ポリテトラフロロエチレン樹脂の微粒子からなる高分子
ラテックスを用いる場合にも、上述の試験と同様の結果
が得られた。
Further, in the above embodiment, a polymer latex made of an acryl-styrene copolymer was used as a binder for the alkali-resistant polymer latex.
When a polymer latex composed of fine particles of polytetrafluoroethylene resin was used, the same result as in the above test was obtained.

そして、酸化第1銅,酸化第2銅または酸化ビスマス
のうち、2種以上の酸化物を併せて用いた場合(どのよ
うな組合わせでもよい)や、3種の酸化物を併せて用い
た場合にも、これらの酸化物を単独で用いた場合とほぼ
同じ結果が得られた。
When two or more oxides of cuprous oxide, cupric oxide or bismuth oxide are used together (any combination may be used), or three kinds of oxides are used together. In this case, almost the same results were obtained as when these oxides were used alone.

発明の効果 本発明の水素吸蔵電極には、水素吸蔵電極に含まれる
導電錠剤の添加率が少ない場合に、水素吸蔵合金の放電
容量の減少を抑制する効果がある。
Effect of the Invention The hydrogen storage electrode of the present invention has the effect of suppressing a decrease in the discharge capacity of the hydrogen storage alloy when the conductive tablet contained in the hydrogen storage electrode has a low addition rate.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の水素吸蔵電極を用いた電池と、従来
の水素吸蔵電極を用いた電池について、水素吸蔵電極の
導電助剤の添加率と放電容量との関係を示した図であ
る。 A,B,C……本発明の水素吸蔵電極を用いた電池 D,E,F……従来の水素吸蔵電極を用いた電池
FIG. 1 is a diagram showing the relationship between the addition rate of a conductive auxiliary agent of a hydrogen storage electrode and the discharge capacity of a battery using the hydrogen storage electrode of the present invention and a battery using a conventional hydrogen storage electrode. . A, B, C: Batteries using the hydrogen storage electrode of the present invention D, E, F ... Batteries using the conventional hydrogen storage electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化第1銅,酸化第2銅または酸化ビスマ
スのうちの少なくとも1つの粉末と、水素吸蔵合金の粉
末と、耐アルカリ性高分子ラテックスの結着剤とを含有
する混合物を導電性支持体に保持してなることを特徴と
する水素吸蔵電極。
1. A mixture containing at least one powder of cuprous oxide, cupric oxide or bismuth oxide, a powder of a hydrogen storage alloy, and a binder of an alkali-resistant polymer latex, is electrically conductive. A hydrogen storage electrode which is held on a support.
JP1127496A 1989-05-19 1989-05-19 Hydrogen storage electrode Expired - Lifetime JP2847750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1127496A JP2847750B2 (en) 1989-05-19 1989-05-19 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1127496A JP2847750B2 (en) 1989-05-19 1989-05-19 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH02306539A JPH02306539A (en) 1990-12-19
JP2847750B2 true JP2847750B2 (en) 1999-01-20

Family

ID=14961409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127496A Expired - Lifetime JP2847750B2 (en) 1989-05-19 1989-05-19 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2847750B2 (en)

Also Published As

Publication number Publication date
JPH02306539A (en) 1990-12-19

Similar Documents

Publication Publication Date Title
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP4437338B2 (en) Positive electrode for alkaline storage battery
JP2847750B2 (en) Hydrogen storage electrode
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JP4423412B2 (en) Alkaline secondary battery negative electrode and alkaline secondary battery
JP2719542B2 (en) Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode
JP3573934B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP2958786B2 (en) Hydrogen storage electrode
Park et al. Effects of nickel coating on the properties of metal hydride electrodes
JPH03122969A (en) Hydrogen storage electrode
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JPH1186852A (en) Nickel electrode for alkaline secondary battery
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JPH0992271A (en) Hydrogen storage alloy electrode
JP2000090918A (en) Hydrogen storage electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPS622453A (en) Hydrogen-occlusion alloy electrode
JPH0834100B2 (en) Hydrogen storage alloy electrode
JPH10270040A (en) Non-sintered nickel electrode for alkaline storage battery
JP3542501B2 (en) Hydrogen storage electrode
JP2019133788A (en) Negative electrode for nickel metal hydride battery and nickel metal hydride battery
JP2001015107A (en) Hydrogen storage alloy electrode for alkaline storage battery