JPH02104686A - Cathode having low hydrogen overvoltage and high durability and production thereof - Google Patents

Cathode having low hydrogen overvoltage and high durability and production thereof

Info

Publication number
JPH02104686A
JPH02104686A JP63069775A JP6977588A JPH02104686A JP H02104686 A JPH02104686 A JP H02104686A JP 63069775 A JP63069775 A JP 63069775A JP 6977588 A JP6977588 A JP 6977588A JP H02104686 A JPH02104686 A JP H02104686A
Authority
JP
Japan
Prior art keywords
electrode
particles
cathode
metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63069775A
Other languages
Japanese (ja)
Other versions
JP2610937B2 (en
Inventor
Takeshi Morimoto
剛 森本
Naoki Yoshida
直樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63069775A priority Critical patent/JP2610937B2/en
Publication of JPH02104686A publication Critical patent/JPH02104686A/en
Application granted granted Critical
Publication of JP2610937B2 publication Critical patent/JP2610937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To obtain a cathode having low hydrogen overvoltage and high durability as a cathode for electrolyzing an aq. alkali halide soln. by coating an electrode core by plating with metal particles having activity as an electrode and contg. a hydrogen occluding metal having a specified compsn. CONSTITUTION:The surface of an expanded Ni core is electroplated in an Ni plating bath contg. fine powder of a misch metal-contg. hydrogen occluding alloy having a compsn. represented by formula I and Raney nickel or Raney cobalt to coat the core with Ni-based metal particles having activity as an electrode and contg. 5-90wt.% said hydrogen occluding alloy and Raney nickel or Raney cobalt. A cathode having low hydrogen overvoltage and hardly undergoing deterioration even in an oxidizing environment is obtd. This cathode is used in an electrolytic cell in which an aq. soln. of an alkali metal halide such as NaCl is electrolyzed to produce gaseous Cl and NaOH.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高耐久性低水素過電圧陰極、特には酸化性環境
下においても特性の劣化が極めて小さい低水素過電圧陰
極及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a highly durable low hydrogen overvoltage cathode, and particularly to a low hydrogen overvoltage cathode whose characteristics are extremely minimally deteriorated even in an oxidizing environment, and a method for producing the same.

(従来の技術) 低水素過電圧陰極、特にはハロゲン化アルカリ水溶液電
解用の陰極として各種のものが提案されている。これら
の中で、本出願人が既に提案した特開昭54−1127
85号公報で開示される電極は、それまでに知られた電
極に比べて低水素過電圧化及びその耐久性に関し、大き
な効果を持つものであるが、本発明者等は、更に検討を
加えた結果、上記公報で開示される電極もある場合には
、必ずしも耐久性が充分でない場合のあることを見出し
、この解決のため鋭意努力した結果本発明を見出すに至
ったものである。
(Prior Art) Various types of low hydrogen overvoltage cathodes have been proposed, particularly as cathodes for aqueous halogenated alkali solution electrolysis. Among these, Japanese Patent Application Laid-Open No. 1127-1987, which the present applicant has already proposed,
Although the electrode disclosed in Publication No. 85 has greater effects in terms of lower hydrogen overvoltage and durability than previously known electrodes, the present inventors have conducted further studies. As a result, we found that some of the electrodes disclosed in the above publications do not always have sufficient durability, and as a result of our earnest efforts to solve this problem, we have arrived at the present invention.

ハロゲン化アルカリ水溶液電解槽で電解により陽極室か
らはハロゲンガス、陰極室からは苛性アルカリ水溶液と
水素ガスを製造することは既によく知られた工業的な塩
素及び苛性アルカリの製造法である。この電解槽の陰極
としては低水素過電圧の上述の如き陰極が好ましく用い
られるが、上記電解槽は運転の途中1種々の理由により
運転を停止することがあり、この場合、運転を再開する
と水素過電圧の上昇することが認められた。本発明者等
はこの現象について深く追求した結果、電解槽の停止時
に陽極と陰極をブスバーで短絡して停止する停止方法の
場合には、短絡時に発生する逆電流により陰極が酸化さ
れ、ニッケルやコバルトを活性成分とした陰極の場合は
それらが水酸化物に変質することによ−り電極活性が低
下し、運転再開後も元の活性状態に戻らない(即ち水素
過電圧が上界する)ことをみいだした。
Producing halogen gas from the anode chamber and caustic alkali aqueous solution and hydrogen gas from the cathode chamber by electrolysis in an alkali halide aqueous solution electrolytic cell is already a well-known industrial method for producing chlorine and caustic alkali. As the cathode of this electrolytic cell, the above-mentioned cathode with a low hydrogen overvoltage is preferably used, but the electrolytic cell may be stopped for various reasons during operation, and in this case, when the operation is resumed, the hydrogen overvoltage will be low. was observed to increase. The present inventors investigated this phenomenon in depth, and found that when the electrolytic cell is stopped by short-circuiting the anode and cathode with a bus bar, the cathode is oxidized by the reverse current generated during the short circuit, and nickel and In the case of a cathode containing cobalt as an active ingredient, the electrode activity decreases due to the deterioration of cobalt into hydroxides, and the cathode does not return to its original active state even after restarting operation (that is, the hydrogen overvoltage reaches its upper limit). I found out.

また、陽極と陰極を短絡せずに通電を停止する停止方法
においても、高温高濃度N、011中に陰極が長時間浸
漬されると、陰極活性成分がニッケル又はコバルトの場
合にはそれらが腐食電位に突入して水酸化物に変質しく
この反応も一種の電気化学的酸化反応である)電極活性
が低下することをみいだした。
In addition, even in the stopping method of stopping current supply without shorting the anode and cathode, if the cathode is immersed in high-temperature, high-concentration N, 011 for a long time, if the cathode active component is nickel or cobalt, it will corrode. It was discovered that the electrode activity decreases when exposed to electric potential (this reaction is also a type of electrochemical oxidation reaction) and changes into hydroxide.

(発明の解決しようとする課題) 本発明は上記使用条件下でも電極活性の低下しない電極
及びその製法を提供するものである。
(Problems to be Solved by the Invention) The present invention provides an electrode whose electrode activity does not decrease even under the above conditions of use, and a method for manufacturing the same.

(課題を解決するための手段) そこでこの現象を防止するため鋭意検討した結果、電気
化学的に水素の吸蔵、放出を行い、かつ水素過電圧の低
い水素吸蔵金属を電極活性成分の一部又は全部に用いれ
ば、前記の様な電槽の停止においては、水素吸蔵金属中
に吸蔵された多量の水素が電気化学的に酸化されること
で電極活性成分の酸化を効果的に防止できること、即ち
活性を長期に維持できることを見出し、本発明を完成し
たもので、本発明は電極活性金属粒子の一部が電極芯体
上に設けた層の表面に露出してなる電極において、該電
極活性粒子の一部が電気化学的に水素の吸蔵及び放出の
できる水素吸蔵金属である高耐久性低水素過電圧陰極及
び後述する上記の高耐久性低水素過電圧陰極の製造方法
を要旨とするものである。
(Means for solving the problem) Therefore, as a result of intensive studies to prevent this phenomenon, we decided to use a hydrogen storage metal that electrochemically absorbs and releases hydrogen and has a low hydrogen overvoltage as part or all of the electrode active component. When the battery is stopped as described above, a large amount of hydrogen stored in the hydrogen storage metal is electrochemically oxidized, thereby effectively preventing the oxidation of the electrode active component. The present invention has been completed based on the discovery that the electrode active metal particles can be maintained for a long period of time. The gist of the present invention is to provide a highly durable low hydrogen overvoltage cathode, a part of which is a hydrogen storage metal that can electrochemically absorb and release hydrogen, and a method for producing the above highly durable low hydrogen overvoltage cathode described below.

ここで電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属とはアルカリ性水溶液中で次の様な電極反応を行う
ものを言う。即ち還元反応では水を還元して生成した水
素原子を金属中に吸蔵し、酸化反応では吸蔵水素を金属
表面で水酸イオンと反応させて水にする反応を行うもの
をいう。反応式を以下に示す。
Here, the hydrogen storage metal that can electrochemically store and release hydrogen refers to a metal that undergoes the following electrode reaction in an alkaline aqueous solution. That is, in the reduction reaction, hydrogen atoms generated by reducing water are occluded in the metal, and in the oxidation reaction, the occluded hydrogen is reacted with hydroxide ions on the metal surface to form water. The reaction formula is shown below.

Mは水素吸蔵金属でありMllxはそれの水素化物を示
す。この水素吸蔵金属を電極活性粒子の一部又は全部と
した陰極を用いて、例えばイオン脱法による食塩電解を
行った場合、通電初期には反応式(1)の右向き反応に
より水素吸蔵金属中に水素が吸蔵され、やがて水素の吸
蔵が飽和に達すると以下に示す反応(2)により、水素
吸蔵金属の表面で水素が発生し、本来の陰極上における
電極反応が進行する。
M is a hydrogen storage metal, and Mllx represents its hydride. For example, when salt electrolysis is carried out by ion removal using a cathode in which this hydrogen storage metal is used as part or all of the electrode active particles, hydrogen is present in the hydrogen storage metal due to the rightward reaction of reaction formula (1) at the initial stage of energization. When the hydrogen storage reaches saturation, hydrogen is generated on the surface of the hydrogen storage metal by reaction (2) shown below, and the original electrode reaction on the cathode proceeds.

1I20+e→域11□+O1+−(21一方、重積の
短絡などによる停止時には、水素吸蔵金属中に大量に吸
蔵された水素が電気化学的に反応式(1)の左向きの反
応より水素を放出し、即ち電気化学的に水素を酸化して
酸化電流を負担することにより電極活性粒子自体の酸化
を効果的に防止することができる。
1I20+e→Area 11□+O1+-(21On the other hand, when the hydrogen is stopped due to a short circuit in the stack, a large amount of hydrogen stored in the hydrogen storage metal electrochemically releases hydrogen through the leftward reaction of reaction formula (1). That is, by electrochemically oxidizing hydrogen and applying an oxidation current, oxidation of the electrode active particles themselves can be effectively prevented.

この様に本発明に使用しつる水素吸蔵金属は上述の如く
、電気化学的に水素を吸蔵及び放出できるものであり、
具体的にはMmzNia−+m□−^IxMy  (M
m:ミツシュメタル、MはMn、 Cu、 Cr。
As described above, the vine hydrogen storage metal used in the present invention is capable of electrochemically storing and releasing hydrogen,
Specifically, MmzNia-+m□-^IxMy (M
m: Mitsushi metal, M is Mn, Cu, Cr.

Co、Ti、Nb、Zr及びSiから選ばれる1種また
は2種以上の元素であり、かつ、0.7≦Z≦1゜0<
x<3.O<y<3.0<x+y≦3である。)で表わ
されるミツシュメタルニッケル多元系合金である。Z>
1では、水素吸蔵金属の苛性アルカリ溶液中での耐食性
に問題があり、長期間の使用に耐えない。x=y=oで
は水素吸蔵金属の平衡圧が高く、上述のような電極活性
粒子の酸化を防止する効果が小さく。
One or more elements selected from Co, Ti, Nb, Zr, and Si, and 0.7≦Z≦1゜0<
x<3. O<y<3.0<x+y≦3. ) is a Mitsushmetal nickel multi-component alloy. Z>
In No. 1, there is a problem in the corrosion resistance of the hydrogen storage metal in a caustic alkaline solution, and it cannot withstand long-term use. When x=y=o, the equilibrium pressure of the hydrogen storage metal is high, and the effect of preventing oxidation of the electrode active particles as described above is small.

またZ<0.7.x+y>3の場合は水素吸蔵金属に吸
蔵しつる水素量が減少し、本発明の効果が不十分となっ
てしまう。したがって、0.7≦Z≦1,0<x<3.
O<y<3.O<x+y≦3であることが必要であり、
好ましくは0.8≦Z≦0.95.0.25≦x+y≦
2.5である。
Also, Z<0.7. When x+y>3, the amount of hydrogen stored and stored in the hydrogen storage metal decreases, and the effect of the present invention becomes insufficient. Therefore, 0.7≦Z≦1, 0<x<3.
O<y<3. It is necessary that O<x+y≦3,
Preferably 0.8≦Z≦0.95.0.25≦x+y≦
It is 2.5.

本発明に用いられる電極活性金属粒子は、上述のような
水素吸蔵金属と、水素過電圧の低いラネーニッケル及び
/又はラネーコバルトからなる。所記の目的を達するた
めには、該水素吸蔵金属を電極活性金属中で5〜90w
L%、特には10〜80wt%存在せしめることが好ま
しい。なぜなら、水素吸蔵金属の割合が5wt%未満で
は短絡時に放出される水素の量が少ないために短絡によ
ってニッケルやコバルトの活性成分が酸化されて電極活
性が低下し、水素過電圧が大きくなってしまい、また9
0wt%を超えると水素過電圧の低いラネーニッケル及
び/又はラネーコバルトの割合が小さくなるので、水素
過電圧が高くなるためである。
The electrode active metal particles used in the present invention are made of the above-mentioned hydrogen storage metal and Raney nickel and/or Raney cobalt, which have a low hydrogen overvoltage. In order to achieve the stated purpose, the hydrogen storage metal should be used in an amount of 5 to 90 w in the electrode active metal.
Preferably, L% is present, particularly 10 to 80 wt%. This is because if the proportion of the hydrogen storage metal is less than 5 wt%, the amount of hydrogen released during a short circuit is small, and the short circuit oxidizes the active components of nickel and cobalt, reducing electrode activity and increasing the hydrogen overvoltage. Also 9
This is because when it exceeds 0 wt%, the proportion of Raney nickel and/or Raney cobalt, which have a low hydrogen overvoltage, becomes small, resulting in an increase in the hydrogen overvoltage.

またこれらの水素吸蔵金属は水素の吸蔵、放出により脆
性破壊をおこし微粉化していくことが知られているため
、この微粉化による脱落等を防ぐために、あらかじめ機
械的な粉砕や気相中で水素ガスの吸蔵放出をくり返すこ
とにより微粉化した金属を用いたり、この脱落を防止す
るためマトリックス材として前記ラネーニッケルやラネ
ーコバルトの外に、金属粒子1例えばニッケル粉末やバ
インダーとしてポリマー粉末等を用いてもよい。
In addition, these hydrogen storage metals are known to cause brittle fracture and become pulverized due to absorption and release of hydrogen, so in order to prevent them from falling off due to pulverization, it is necessary to crush them mechanically or to pulverize hydrogen in the gas phase in advance. A metal that has been pulverized by repeated occlusion and release of gas may be used, or in order to prevent this from falling off, in addition to the Raney nickel or Raney cobalt as the matrix material, metal particles 1 such as nickel powder or polymer powder as a binder may be used. Good too.

上述の水素吸蔵金属粒子の平均粒径は、電極表面の多孔
性度及び後述する電極製造の際の粒子の分散性にも関係
するが、0.1μ〜100μであれば充分である。
The average particle size of the above-mentioned hydrogen storage metal particles is related to the porosity of the electrode surface and the dispersibility of the particles during electrode production, which will be described later, but a range of 0.1 to 100 μ is sufficient.

上記範囲中、電極表面の多孔性等の点から、好ましくは
0.9μ〜50μ、更に好ましくは1μ〜30μである
Among the above ranges, from the viewpoint of porosity of the electrode surface, etc., it is preferably 0.9 μ to 50 μ, more preferably 1 μ to 30 μ.

更に本発明に用いる粒子は、電極のより低い水素過電圧
を達成するため、表面多孔性であることが好ましい。
Furthermore, the particles used in the present invention are preferably superficially porous in order to achieve a lower hydrogen overpotential of the electrode.

この表面多孔性は1粒子の全表面が多孔性であることの
みを意味するものでなく、前述した金属から成る層より
露出した部分のみが多孔性になってお、れば充分である
This surface porosity does not mean only that the entire surface of one particle is porous; it is sufficient that only the portion exposed from the layer made of the metal described above is porous.

多孔性の程度は、その程度がかなり大きい程好ましいが
、過度に多孔性にすると電極芯体上に設けられた層の機
械的強度が低下する為多孔度(porosity)が2
0〜90%にすることが好ましい。上記範囲中央に好ま
しくは35〜85%、特に好ましくは50〜80%であ
る。
The degree of porosity is preferably as large as possible; however, if the degree of porosity is excessively large, the mechanical strength of the layer provided on the electrode core will decrease.
It is preferable to set it to 0-90%. In the middle of the above range, preferably 35 to 85%, particularly preferably 50 to 80%.

尚、上記多孔度とは、公知の水銀圧入法或いは水置換法
によって測定される値である。
The above porosity is a value measured by a known mercury intrusion method or water displacement method.

上述の電極活性金属粒子が金属基体上に強固に設けられ
るための層は、該粒子を構成する成分の一部と同じ金属
であることが好ましい。
The layer on which the electrode active metal particles are firmly provided on the metal substrate is preferably made of the same metal as part of the components constituting the particles.

かくして、本発明の陰極の電極表面には、多数の上述の
粒子が付むしており、巨視的に見ると、陰極表面は微多
孔性になっている。
Thus, a large number of the above particles are attached to the electrode surface of the cathode of the present invention, and macroscopically, the cathode surface is microporous.

このように本発明の陰極は、それ自体低い水素過電圧を
有する粒子が電極表面に多数存在し、ITlつ前述した
通り、電極表面が微多孔性になっているため、それだけ
電極活性面が大きくなり、これらの相乗効果によって、
効果的に水素過電圧の低減を計ることができる。
In this way, in the cathode of the present invention, a large number of particles having a low hydrogen overvoltage are present on the electrode surface, and as mentioned above, the electrode surface is microporous, so the active surface of the electrode becomes larger. , due to these synergistic effects,
It is possible to effectively reduce hydrogen overvoltage.

しかも本発明に用いられる粒子は、上記金属からなる層
によって、電極表面に強固に付着しているので、劣化し
にくく、上記低水素過電圧の持続性を飛躍的に延ばすこ
とができる。
Moreover, since the particles used in the present invention are firmly attached to the electrode surface by the layer made of the above-mentioned metal, they are difficult to deteriorate and can dramatically extend the sustainability of the above-mentioned low hydrogen overvoltage.

本発明の電極芯体はその材質として任意の適当な導電性
金属、例えばTi、 Zr、 Fe、 Ni、 V、 
Mo。
The electrode core of the present invention is made of any suitable conductive metal such as Ti, Zr, Fe, Ni, V,
Mo.

Cu、 Ag、 Mn、白金族金属、黒鉛、 Crから
選ばれた金属又はこれらの金属から選ばれた合金が採用
し得る。この内Fe、 Fe合金(Fe−Ni合金。
A metal selected from Cu, Ag, Mn, platinum group metals, graphite, and Cr, or an alloy selected from these metals can be used. Among these, Fe, Fe alloy (Fe-Ni alloy).

Fe−Cr合金、 Fe−Ni−Cr合金など) 、 
Ni、Ni合金(Ni−Cu合金、 Ni−Cr合金な
ど) 、 Cu、Cu合金などを採用することが好まし
い。特に好ましい電極芯体の材質はFe、Cu、Ni、
Fe−Ni合金、 Fe−Ni−Cr合金である。
Fe-Cr alloy, Fe-Ni-Cr alloy, etc.),
It is preferable to use Ni, Ni alloy (Ni-Cu alloy, Ni-Cr alloy, etc.), Cu, Cu alloy, etc. Particularly preferable electrode core materials include Fe, Cu, Ni,
These are Fe-Ni alloy and Fe-Ni-Cr alloy.

電極芯体の構造は、使用する電極の構造に合わせて任意
適宜な形状寸法にすることができる。その形状は、例え
ば板状、多孔状、網状(例えばエクスパンドメタルなど
)、すだれ状等が採用でき、これらを平板状、曲板状、
筒状にしてもよい。
The structure of the electrode core can be made into any suitable shape and size depending on the structure of the electrode used. Its shape can be, for example, plate-like, porous, net-like (for example, expanded metal), or blind-like.
It may be made into a cylindrical shape.

本発明の層の厚みは、採用する粒子の粒径にもよるが、
20μ〜2mmであれば充分で、更に好ましくは25μ
〜1 mmである。これは本発明では、前述した粒子の
一部が電極芯体上の金属から成る層に埋没した状態で、
付着せしめるからである。かかる状態を理解しやすい様
に、本発明の電極表面の断面図を第1図に示す。図示さ
れている様に電極芯体l上に金属から成る層2が設けら
れ、該層に電極活性金属粒子3の一部が、その層の表面
から露出する様に含まれている。尚、層2中の粒子の割
合は5〜80wL%であることが好ましく、更に好まし
くは10〜60wt%である。かかる状態の外、電極芯
体と本発明の粒子を含む層との間に、Ni、Co、^g
、 Cuから選ばれた金属から成る中間層を設けること
によって、更に本発明の電極の耐久性を向上させること
ができる。かかる中間層は、上記層の金属と同種又は異
種であっても差しつかえないが、かかる中間層を前述し
た層との付着性の点からこれらの中間層及び層の金属は
同神のものであることが好ましい。中間層の厚みは1機
械的強度等の点から5〜100μであれば充分であり、
更に好ましくは20〜80μ、特に好ましくは30〜5
0μである。
The thickness of the layer of the present invention depends on the particle size of the particles employed, but
20μ to 2mm is sufficient, more preferably 25μ
~1 mm. This is because in the present invention, some of the particles described above are buried in a layer made of metal on the electrode core.
This is because it causes the particles to adhere. In order to facilitate understanding of this state, a cross-sectional view of the electrode surface of the present invention is shown in FIG. As shown in the figure, a layer 2 made of metal is provided on an electrode core 1, and a part of electrode active metal particles 3 are contained in this layer so as to be exposed from the surface of the layer. The proportion of particles in layer 2 is preferably 5 to 80 wt%, more preferably 10 to 60 wt%. In addition to this state, Ni, Co,
By providing an intermediate layer made of a metal selected from , Cu, the durability of the electrode of the present invention can be further improved. Such an intermediate layer may be of the same type or a different type from the metal of the above-mentioned layer, but from the viewpoint of adhesion between the intermediate layer and the above-mentioned layer, these intermediate layers and the metals of the layer should not be of the same type. It is preferable that there be. It is sufficient for the thickness of the intermediate layer to be 5 to 100μ from the viewpoint of mechanical strength, etc.
More preferably 20-80μ, particularly preferably 30-5
It is 0μ.

この様な中間層を設けた電極を理解しやすいように、電
極の断面図を第2図に示した。
To facilitate understanding of the electrode provided with such an intermediate layer, a cross-sectional view of the electrode is shown in FIG.

1は電極芯体、4は中間層、2は粒子を含む層、3は電
極活性粒子である。
1 is an electrode core, 4 is an intermediate layer, 2 is a layer containing particles, and 3 is electrode active particles.

電極表面層の具体的な付着手段としては、種種の手法が
採用され、例えば複合メッキ法、溶融塗付法、焼付法、
加圧形成焼結法などが採用される。この内、特に複合メ
ッキ法が、良好に電極活性金属粒子を付着し得るので好
ましい。
Various methods are used to specifically attach the electrode surface layer, such as composite plating, melt coating, baking,
Pressure forming and sintering methods are used. Among these, the composite plating method is particularly preferable because it allows the electrode active metal particles to be attached well.

複合メッキ法とは、金属層を形成する金属イオンを含む
水溶液に、−例としてニッケルを該合金成分の一部とす
る粒子を分散せしめた浴で、電極芯体な陰極としてメッ
キを行い、電極芯体上に、上記金属と粒子を共電着せし
めるものである。尚、更に詳しく述べれば、浴中で粒子
は電場の影響によってバイポーラ−となり、陰極表面近
傍に接近したときメッキの局部的電流密度を増大させ、
陰極に接触したとき通常の金属イオンの還元による金属
メッキにより芯体に共電着するものと考えられる。
The composite plating method is a bath in which particles containing, for example, nickel as a part of the alloy component are dispersed in an aqueous solution containing metal ions that form a metal layer, and plating is performed as a cathode as an electrode core. The metal and particles are co-electrodeposited on the core. In more detail, the particles become bipolar under the influence of the electric field in the bath, and when they approach the cathode surface, they increase the local current density of the plating.
It is thought that when it comes into contact with the cathode, it is co-electrodeposited onto the core by metal plating caused by reduction of ordinary metal ions.

例えば、金属層としてニッケル層を採用する場合、全塩
化ニッケル浴、高塩化ニッケル浴。
For example, if a nickel layer is used as the metal layer, a total nickel chloride bath or a high nickel chloride bath.

塩化ニッケルー酢酸ニッケル浴、ワット浴、スルファミ
ン酸Ni浴など種々のニッケルメッキ浴が採用しつる。
Various nickel plating baths are used, including nickel chloride-nickel acetate baths, Watt baths, and nickel sulfamate baths.

この様な粒子の浴中での割合は、1 g/β〜200g
、lにしておくことが電極表面に粒子の付着状態を良好
にする意味から好ましい。又分散メッキ作業時の温度条
件は20〜80℃、電流密度はl^/dm”〜20A/
dm″であることが好ましい。
The proportion of such particles in the bath is between 1 g/β and 200 g.
, l is preferable from the viewpoint of improving the adhesion state of particles to the electrode surface. In addition, the temperature conditions during dispersion plating work are 20 to 80℃, and the current density is l^/dm" to 20A/
dm'' is preferable.

尚、メッキ浴には、歪減少用の添加剤、共電着を助長す
る添加剤等を適宜加えてよいことはもちろんである。
It goes without saying that additives for reducing strain, additives for promoting co-electrodeposition, etc. may be added to the plating bath as appropriate.

また粒子の密着強度をさらに向上させるために、複合メ
ッキ終了後に、粒子を完全には被覆しない程度に普通の
メッキ又は無電解メッキを行ったり、不活性又は還元性
雰囲気中で加熱焼成等を適宜行ってもよい。
In addition, in order to further improve the adhesion strength of the particles, after completion of composite plating, ordinary plating or electroless plating may be performed to the extent that the particles are not completely covered, or heating and baking in an inert or reducing atmosphere may be carried out as appropriate. You may go.

この外前述した様に、電極芯体と粒子を含む金属層との
間に中間層を設ける場合は、電極芯体をまずNiメッキ
、Coメッキ又はCuメッキし、その後前述した分散メ
ッキ法、溶融噴霧法の手段でその上に粒子を含む金属層
を形成する。
In addition, as described above, when providing an intermediate layer between the electrode core and the metal layer containing particles, the electrode core is first plated with Ni, Co, or Cu, and then the dispersion plating method described above or the melt plating method is applied. A metal layer containing particles is formed thereon by means of a spraying method.

かかる場合のメッキ浴としては上述した種々のメッキ浴
が採用でき、Cuメッキについても公知のメッキ浴が採
用できる。
As the plating bath in such a case, the various plating baths mentioned above can be used, and also for Cu plating, a known plating bath can be used.

この様にして、電極芯体上に金属層を介して水素吸蔵金
属を含む電極活性金属粒子が付着した電極が得られる。
In this way, an electrode is obtained in which electrode active metal particles containing a hydrogen storage metal are attached to the electrode core via a metal layer.

次に、本発明の陰極を製造する別の方法について説明す
る。
Next, another method for manufacturing the cathode of the present invention will be described.

本発明の陰極は溶融塗布法あるいは焼付法によっても製
造されつる。即ち、水素吸蔵金属粉末と他の低水素過電
圧金属粉末との混合粉末(例えば、溶融粉砕法によって
得られる)を所定粒度に調整し、プラズマ、酸素/アセ
チレン炎等により溶融吹付けし、電極芯体上にこれら粒
子の部分的に露出した被覆層を得たり、あるいはこれら
粒子の分散液ないしスラリーを電極芯体上に塗布し、焼
成により焼付け、所望の被覆層を得るものである。
The cathode of the present invention can also be manufactured by a melt coating method or a baking method. That is, a mixed powder of a hydrogen-absorbing metal powder and another low hydrogen overvoltage metal powder (obtained, for example, by a melt-grinding method) is adjusted to a predetermined particle size, and melted and sprayed using plasma, oxygen/acetylene flame, etc., to form an electrode core. A partially exposed coating layer of these particles is obtained on the electrode core body, or a dispersion or slurry of these particles is applied onto the electrode core body and baked by baking to obtain a desired coating layer.

また1本発明の陰極は水素吸蔵金属を含む電極シートを
予め製作しておき、これを電極芯体上に取付けることに
よっても得られる。この場合、該シートは、水素吸蔵金
属の粒子と他の金属粒子(例えば低水素過電圧特性を示
すラネー合金等)を有機ポリマー粒子と混合して成形し
、又は成形後焼成してシートとなす方法が好ましい、勿
論、この場合該シートの表面から電極活性粒子が露出し
ている。かしくて得られる該シートは電極芯体上に圧着
し、加熱して電極芯体上に固着される。
The cathode of the present invention can also be obtained by preparing an electrode sheet containing a hydrogen storage metal in advance and attaching this to an electrode core. In this case, the sheet is formed by mixing particles of hydrogen storage metal and other metal particles (for example, Raney alloy showing low hydrogen overvoltage characteristics) with organic polymer particles, or by baking the mixture after forming to form a sheet. Of course, in this case the electrode active particles are exposed from the surface of the sheet. The sheet thus obtained is pressed onto the electrode core and fixed onto the electrode core by heating.

本発明の電極はイオン交換膜性塩化アルカリ水溶液電解
用の電極、特に陰極として採用できることはもちろんで
あるが、この外、多孔性隔膜(例えばアスベスト隔膜)
を用いた塩化アルカリ水溶液電解用の電極としても採用
し得る。
The electrode of the present invention can of course be used as an electrode for ion-exchange membrane-based alkaline chloride aqueous solution electrolysis, especially as a cathode, but it can also be used as a porous diaphragm (e.g. asbestos diaphragm).
It can also be used as an electrode for aqueous alkali chloride electrolysis using.

塩化アルカリ電解用陰極として用いる場合。When used as a cathode for alkali chloride electrolysis.

電解槽材料から陰極液中に溶出する鉄分が陰極上に電析
し、電極活性を低下せしめることがあり、これを防止す
るために1本発明の陰極上に、特開昭57−14348
2号公報で開示されるような非電子電導性物質を付着せ
しめることは、有効な方法である。
Iron content eluted from the electrolytic cell material into the catholyte may be deposited on the cathode, reducing the electrode activity.
It is an effective method to attach a non-electronically conductive substance as disclosed in Publication No. 2.

(発明を実施するための最良の形態) 実施例1〜13 表1に示したミツシュメタル多元系水素吸蔵合金を25
μm以下に粉砕し、この粉末を塩化ニッケル浴(旧CQ
8・611J 300g/12. HsBO−38g/
12)中に0.75g/Qの割合で投入し、さらに市販
のラネーニッケル合金粉末(日韓リカ製、旧50wt%
、AQ 50wt%、500メツシユバス)を前記メッ
キ液に4、5g/Qの割合で投入し、これをよく攪拌し
ながら1製エキスバンドメタルを陰極とし、Ni板を陽
極として複合メッキを行った。温度は40℃。
(BEST MODE FOR CARRYING OUT THE INVENTION) Examples 1 to 13 The Mitsushmetal multi-component hydrogen storage alloy shown in Table 1 was
The powder was ground in a nickel chloride bath (formerly CQ).
8・611J 300g/12. HsBO-38g/
12) at a rate of 0.75 g/Q, and commercially available Raney nickel alloy powder (manufactured by Japan-Korea Rica, formerly 50 wt%).
. The temperature was 40℃.

pl+は2.5、電流密度は3A/dm”とした。この
結果いずれも、ミツシュメタルニッケル多元系水素吸蔵
合金の共析量が0.7g/dm”、ラネーニッケル合金
の共析量が2−8g/dm”、すなわち、共析した電極
活性金属粒子中の水素吸蔵金属の割合が20wt%、ラ
ネーニッケル合金が80wt%のミツシュメタルニッケ
ル多元系水素吸蔵合金とラネーニッケル合金の共存する
複合メッキ層が得られた。このメッキ層の厚みは約15
0μ、多孔率は約70%であった。この試料を90℃の
25%Na叶溶液に2時間浸漬してラネーニッケル合金
のAQを展開した後、これらの電極を、陽極をRuO,
−TiO冨とし、含フツ素系陽イオン交換膜(旭硝子(
株)製 CFi−CF、とCF、−CFO(口F2)3
CD口C11,との共重合体、イオン交換容量1.45
meq/g樹脂)をイオン交換膜とする食塩電解槽用陰
極として用い、短絡に対する抵抗性試験を行った。陽極
液は3N NaCf1溶液、陰極液を35%Na叶とし
90℃で電流密度30^/dm”として電解開始後20
0日目につぎの短絡試験を実施した。
pl+ was 2.5, and the current density was 3A/dm''.In both cases, the eutectoid amount of the Mitshu metal nickel multi-component hydrogen storage alloy was 0.7 g/dm'', and the eutectoid amount of the Raney nickel alloy was 2. -8g/dm", that is, a composite plating layer in which Mitshu Metal Nickel multi-component hydrogen storage alloy and Raney nickel alloy coexist, where the proportion of hydrogen storage metal in the eutectoid electrode active metal particles is 20wt% and Raney nickel alloy is 80wt%. was obtained.The thickness of this plating layer was approximately 15
0μ, and the porosity was about 70%. After this sample was immersed in a 25% Na solution at 90°C for 2 hours to develop AQ of Raney nickel alloy, these electrodes were
- TiO-rich, fluorine-containing cation exchange membrane (Asahi Glass Co., Ltd.
Co., Ltd. CFi-CF, and CF, -CFO (mouth F2) 3
Copolymer with CD port C11, ion exchange capacity 1.45
A short-circuit resistance test was conducted using a cathode for a salt electrolytic cell using a ion exchange membrane (meq/g resin) as an ion exchange membrane. The anolyte was a 3N NaCf1 solution, the catholyte was a 35% Na solution, and the current density was 30^/dm at 90℃ for 20 minutes after the start of electrolysis.
The following short circuit test was conducted on day 0.

まず電解中の陽極と陰極を銅線により短絡して電解を停
止し、そのまま約5時間放置した。
First, the anode and cathode during electrolysis were short-circuited with a copper wire to stop electrolysis, and the electrolysis was left as it was for about 5 hours.

この間陰極から陽極へ流れる電流を観測した。During this time, the current flowing from the cathode to the anode was observed.

なお陰極液の温度は90℃に保持した。その後この銅線
をとりはずして1日間電解を行った。
Note that the temperature of the catholyte was maintained at 90°C. Thereafter, this copper wire was removed and electrolysis was performed for one day.

この操作を5回くり返した。This operation was repeated 5 times.

試験終了後さらに30日間電解を続けた後、電極を取り
出して35%NaOH,90℃、電流密度30A/dm
”で各電極の水素過電圧を測定し、試験前の値とともに
表1に示した。いずれも試験n1とほとんど変わらなか
った。
After continuing electrolysis for another 30 days after the end of the test, the electrode was taken out and treated with 35% NaOH, 90°C, current density 30A/dm.
The hydrogen overvoltage of each electrode was measured at `` and is shown in Table 1 along with the values before the test. All were almost the same as in test n1.

比較例1〜3 実施例1のMmNi4. yAlo、 aMno、 l
をMmNi5゜Mm+、 +Nim、 aAlo、5c
O1、。またはMmo、 aNi*、 s^I021C
ow、。に変えた以外は実施例1と同様に電極を製造し
、同様に試験した結果を表1に示した。
Comparative Examples 1 to 3 MmNi4. of Example 1. yAlo, aMno, l
MmNi5゜Mm+, +Nim, aAlo, 5c
O1. Or Mmo, aNi*, s^I021C
ow,. An electrode was manufactured in the same manner as in Example 1 except that the electrode was changed to , and the results of the same tests are shown in Table 1.

試験後に30〜100mVの水素過電圧の上昇が認めら
れた。
After the test, an increase in hydrogen overvoltage of 30 to 100 mV was observed.

実施例+4 実施例4の塩化ニッケル浴への金属粉末の投入量をMm
Nix、 sAl。、 5cOxは5g/Q、ラネーニ
ッケル合金粉末も5g/Qの割合に変えた以外は実施例
4と同様にして複合メッキを行った。この結果MmN+
s aAlo、co=の共析量が5g/dm”ラネーニ
ッケル合金の共析量が2g/dm″すなわちMm旧28
.八!。、@COzの割合が71%、ラネーニッケル合
金の割合が29%のMmNim、s^Ia、 5can
とラネーニッケル合金が共存する複合メッキ層が得られ
た。このメッキ層の厚みは約280μm、多孔率は約6
5%であった。
Example + 4 The amount of metal powder added to the nickel chloride bath in Example 4 is Mm.
Nix, sAl. Composite plating was performed in the same manner as in Example 4, except that the ratio of 5cOx was changed to 5g/Q and the ratio of Raney nickel alloy powder was also changed to 5g/Q. As a result, MmN+
The eutectoid amount of s aAlo, co = 5 g/dm" The eutectoid amount of Raney nickel alloy is 2 g/dm", that is, Mm old 28
.. Eight! . , MmNim, s^Ia, 5can with a proportion of @COz of 71% and a proportion of Raney nickel alloy of 29%
A composite plating layer in which Raney nickel alloy and Raney nickel alloy coexist was obtained. The thickness of this plating layer is approximately 280 μm, and the porosity is approximately 6.
It was 5%.

この電極を用いて実施例4と同じ短絡試験な行った。試
験終了後水素過電圧を測定した結果75mVでまったく
変化していなかった。
The same short circuit test as in Example 4 was conducted using this electrode. After the test was completed, the hydrogen overvoltage was measured and found to be 75 mV, with no change at all.

実施例15 1mN1n、aAlo、 IT+o、 I粉末(30μ
以下)と市販の安定化ラネーニッケル粉末(川明ファイ
ンケミカル製、商品名“ドライラネー二9ケル”とを高
塩化ニッケル浴(NiSO4・611J 200g/Q
Example 15 1mN1n, aAlo, IT+o, I powder (30μ
(below) and commercially available stabilized Raney nickel powder (manufactured by Kawamei Fine Chemicals, trade name "Dry Raney 9 Kel") in a high nickel chloride bath (NiSO4.611J 200g/Q).
.

NiC1□・6HJ 175g/12. IIJ口2 
40g/Q)中にそれぞれlOg/2ずつ投入し、これ
をよく攪拌しながらNi製パンチングメタルを陰極とし
、Ni板を陽極として複合メッキを行った。温度は50
℃、pHは3.0、電流密度は4 A/dm”とした。
NiC1□・6HJ 175g/12. IIJ mouth 2
40g/Q) of 10g/2 each, and while stirring well, composite plating was performed using a Ni punching metal as a cathode and a Ni plate as an anode. The temperature is 50
℃, pH was 3.0, and current density was 4 A/dm''.

この結果、MmNi4. aAlo、 +Tio、 +
 と安定化ラネーニッケルを含む複合メッキ層が得られ
、この中のMmNin、a^1゜、+Ti’o、+の共
析量は5 g/dが、安定化ラネーニッケルの共析量は
2 g/dm″、すなわち、共析した電極活性金属粒子
中のMmNin、 aAlo、 +Tio、 Iの割合
が71%、ラネーニッケル合金の割合が29%のLaN
i5とラネーニッケル合金の共存する複合メッキ層が得
られた。また、このメッキ層の厚みは約250μ、多孔
率は約60%であった。
As a result, MmNi4. aAlo, +Tio, +
A composite plating layer containing stabilized Raney nickel was obtained, in which the eutectoid amount of MmNin, a^1゜, +Ti'o, + was 5 g/d, and the eutectoid amount of stabilized Raney nickel was 2 g/d. dm'', that is, LaN with a proportion of MmNin, aAlo, +Tio, I in the eutectoid electrode active metal particles of 71% and a proportion of Raney nickel alloy of 29%.
A composite plating layer in which i5 and Raney nickel alloy coexisted was obtained. Further, the thickness of this plating layer was about 250 μm, and the porosity was about 60%.

これを用いて実施例1と同じ短絡試験を行った。試験終
了後水素過電圧を測定した結果70mVであり試験前と
ほとんど変らなかった。
Using this, the same short circuit test as in Example 1 was conducted. After the test, the hydrogen overvoltage was measured and found to be 70 mV, which was almost the same as before the test.

実施例16 実施例4のラネーニッケル合金粉末を展開済ラネーニッ
ケルに変えた以外は同じ条件で複合メッキを行った。そ
の結果、MmNia、s^Io、 5co2.。
Example 16 Composite plating was performed under the same conditions as in Example 4 except that the Raney nickel alloy powder was replaced with expanded Raney nickel. As a result, MmNia, s^Io, 5co2. .

と展開ラネーニッケルを含む複合メッキ層が得られ、M
mNii、 5Alo、 5cOx、 oの共析量は5
 g/dm富。
A composite plating layer containing expanded Raney nickel is obtained, and M
The eutectoid amount of mNii, 5Alo, 5cOx, o is 5
g/dm wealth.

展開ラネーニッケルの共析量は3 g/dm”であった
6すなわち、共析した電極活性金属粒子中のMmNia
、 aAia、 tc(la、 aの割合が63%、ラ
ネーニッケル合金の割合が37%のMmNix、 5A
Io、 5cOa、 oとラネーニッケル合金の共存す
る複合メッキ層が得られた。このメッキ層の厚みは約4
00μ、多孔率は約70%であった。これを実施例1と
同様に短絡試験を行った。試験終了後の水素過電圧は8
0mVであり試験前と変らなかった。
The eutectoid amount of developed Raney nickel was 3 g/dm''6, that is, MmNia in the eutectoid electrode active metal particles.
, aAia, tc(la, MmNix with a proportion of 63% and a proportion of Raney nickel alloy of 37%, 5A
A composite plating layer in which Io, 5cOa, O and Raney nickel alloy coexisted was obtained. The thickness of this plating layer is approximately 4
00μ, and the porosity was about 70%. A short circuit test was conducted on this in the same manner as in Example 1. The hydrogen overvoltage after the test was 8
It was 0 mV, unchanged from before the test.

表  1Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の電極の一例の表面部分断面図、第2
図は、本発明の電極の他の例の表面部分断面図を夫々示
す。 手続ネ甫正書(方式) %式% 1、事件の表示 昭和63年特許願第69775号 2、発明の名称 高耐久性低水素過電圧陰極及びその製造方法3、補正を
する者 事件との関係  特許出願人 住 所  東京都千代田区丸の内二丁目1番2号名称 
(004)旭硝子株式会社 平成1年10月17日(発送臼)付手続補正指令書に基
づ(補正 6、補正により増加する発明の数   なし7、補正の
対象 明細書の図面の簡単な説明の欄 8、補正の内容
FIG. 1 is a partial cross-sectional view of the surface of an example of the electrode of the present invention, and FIG.
The figures each show a partial cross-sectional view of the surface of another example of the electrode of the present invention. 1. Indication of the case Patent Application No. 69775 of 1988 2. Name of the invention High durability low hydrogen overvoltage cathode and its manufacturing method 3. Person making the amendment Relationship with the case Patent applicant address: 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Name
(004) Asahi Glass Co., Ltd. Based on the procedural amendment order dated October 17, 1999 (dispatch) (Amendment 6, number of inventions increased by the amendment None 7, brief explanation of the drawings of the specification subject to the amendment) Column 8, Contents of amendment

Claims (1)

【特許請求の範囲】 (1)電極活性金属粒子が電極芯体上に設けられてなる
電極において、該電極活性金属粒子の一部が電気化学的
に水素を吸蔵及び放出できる水素吸蔵金属であり、その
水素吸蔵金属が次式 MmzNi_5_−_(_X_+_Y_)AlxMy (ただし、MはMn、Cu、Cr、Co、Ti、Nb、
Zr及びSiから選ばれる1種または2種以上の元素で
あり、かつ、 0.7≦Z≦1.0<x<3、 0<y<3、0<x+y≦3である。) で表わされる高耐久性低水素過電圧陰極。 (2)電極活性金属粒子の一部が、ラネーニッケル及び
/又はラネーコバルトからなる粒子である請求項(1)
の高耐久性低水素過電圧陰極。 (3)電極活性金属粒子中の水素吸蔵金属の割合が5〜
90wt%である請求項(1)の高耐久性低水素過電圧
陰極。 (4)電極活性金属粒子がメッキ金属により電極芯体上
に付着されてなる請求項(1)の高耐久性低水素過電圧
陰極。 (5)メッキ金属が電極活性金属粒子を構成する成分の
一部と同じ金属である請求項(4)の高耐久性低水素過
電圧陰極。 (6)組成式が、 MmzNi_5_−_(_X_+_Y_)AlxMy (ただし、MはMn、Cu、Cr、Co、Ti、Nb、
Zr及びSiから選ばれる1種または2種以上の元素で
あり、かつ、 0.7≦Z≦1、0<x<3、 0<y<3、0<x+y≦3である。) である電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属粒子を、電極活性金属粒子の少くとも一部として分
散させたメッキ浴中に電極芯体を浸漬して複合メッキ法
により、該電極芯体上に該電極活性金属粒子をメッキ金
属と共に共電着せしめることを特徴とする高耐久性低水
素過電圧陰極の製造方法。 (7)メッキ金属が電極芯体上に層状に形成せられ、電
極活性金属粒子の一部が該層の表面に露出してなる請求
項(6)記載の高耐久性低水素過電圧陰極の製造方法。 (8)電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属粒子を、電極活性金属粒子の少くとも一部として含
有する層を焼付法あるいは溶融塗布法により、該電極活
性金属粒子の一部が該層の表面に露出するように電極芯
体上に設けることを特徴とする高耐久性低水素過電圧陰
極の製造方法。 (9)電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属または、該金属と他の低水素過電圧金属からなる電
極活性金属粒子をその一部が少くとも一方の面の表面よ
り露出するように含有せしめられたシートを作製し、該
シートの該粒子露出面と反対側の面を電極芯体に固定す
る高耐久性低水素過電圧陰極の製造方法。 (10)該シートが糊剤として有機ポリマー粒子を含む
請求項(9)の高耐久性低水素過電圧陰極の製造方法。
[Claims] (1) In an electrode in which electrode active metal particles are provided on an electrode core, a portion of the electrode active metal particles are a hydrogen storage metal that can electrochemically absorb and release hydrogen. , the hydrogen storage metal has the following formula: MmzNi_5_-_(_X_+_Y_)AlxMy (where M is Mn, Cu, Cr, Co, Ti, Nb,
It is one or more elements selected from Zr and Si, and 0.7≦Z≦1.0<x<3, 0<y<3, 0<x+y≦3. ) High durability low hydrogen overvoltage cathode. (2) Claim (1) wherein some of the electrode active metal particles are particles made of Raney nickel and/or Raney cobalt.
Highly durable low hydrogen overvoltage cathode. (3) The proportion of hydrogen storage metal in the electrode active metal particles is 5 or more
The highly durable and low hydrogen overvoltage cathode according to claim 1, wherein the hydrogen overvoltage cathode is 90 wt%. (4) The highly durable and low hydrogen overvoltage cathode of claim (1), wherein the electrode active metal particles are adhered to the electrode core by plating metal. (5) The highly durable and low hydrogen overvoltage cathode of claim (4), wherein the plating metal is the same metal as a part of the components constituting the electrode active metal particles. (6) The compositional formula is MmzNi_5_-_(_X_+_Y_)AlxMy (where M is Mn, Cu, Cr, Co, Ti, Nb,
One or more elements selected from Zr and Si, and 0.7≦Z≦1, 0<x<3, 0<y<3, 0<x+y≦3. ) The electrode core body is immersed in a plating bath in which hydrogen-absorbing metal particles capable of electrochemically absorbing and desorbing hydrogen are dispersed as at least a part of the electrode-active metal particles, and the electrode is formed by a composite plating method. A method for producing a highly durable and low hydrogen overvoltage cathode, which comprises co-electrodepositing the electrode active metal particles together with a plating metal on a core. (7) Production of a highly durable, low hydrogen overvoltage cathode according to claim (6), wherein the plated metal is formed in a layer on the electrode core, and a portion of the electrode active metal particles are exposed on the surface of the layer. Method. (8) A layer containing hydrogen storage metal particles capable of electrochemically absorbing and desorbing hydrogen as at least a part of the electrode active metal particles is formed by a baking method or a melt coating method, so that some of the electrode active metal particles are A method for producing a highly durable and low hydrogen overvoltage cathode, which comprises providing a cathode on an electrode core so as to be exposed on the surface of the layer. (9) Electrode active metal particles consisting of a hydrogen storage metal that can electrochemically absorb and release hydrogen, or this metal and another low hydrogen overvoltage metal, so that a part of the particles are exposed from the surface of at least one side. A method for producing a highly durable and low hydrogen overvoltage cathode, which comprises preparing a sheet containing the particles and fixing the surface of the sheet opposite to the exposed surface of the particles to an electrode core. (10) The method for producing a highly durable and low hydrogen overvoltage cathode according to claim (9), wherein the sheet contains organic polymer particles as a sizing agent.
JP63069775A 1988-02-12 1988-03-25 High durability low hydrogen overvoltage cathode Expired - Lifetime JP2610937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069775A JP2610937B2 (en) 1988-02-12 1988-03-25 High durability low hydrogen overvoltage cathode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-28946 1988-02-12
JP2894688 1988-02-12
JP63069775A JP2610937B2 (en) 1988-02-12 1988-03-25 High durability low hydrogen overvoltage cathode

Publications (2)

Publication Number Publication Date
JPH02104686A true JPH02104686A (en) 1990-04-17
JP2610937B2 JP2610937B2 (en) 1997-05-14

Family

ID=26367101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069775A Expired - Lifetime JP2610937B2 (en) 1988-02-12 1988-03-25 High durability low hydrogen overvoltage cathode

Country Status (1)

Country Link
JP (1) JP2610937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336287A (en) * 1989-06-30 1991-02-15 Asahi Glass Co Ltd Low hydrogen overvoltage cathode with high durability and its production
US5284619A (en) * 1990-03-24 1994-02-08 Japan Storage Battery Company, Limited Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211543A (en) * 1983-05-16 1984-11-30 Kubota Ltd Hydrogen absorbing mixed material
JPS6112032A (en) * 1984-06-27 1986-01-20 Sharp Corp Manufacture of semiconductor device
JPH0250992A (en) * 1987-12-18 1990-02-20 Asahi Glass Co Ltd High-durability low hydrogen overvoltage cathode and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211543A (en) * 1983-05-16 1984-11-30 Kubota Ltd Hydrogen absorbing mixed material
JPS6112032A (en) * 1984-06-27 1986-01-20 Sharp Corp Manufacture of semiconductor device
JPH0250992A (en) * 1987-12-18 1990-02-20 Asahi Glass Co Ltd High-durability low hydrogen overvoltage cathode and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336287A (en) * 1989-06-30 1991-02-15 Asahi Glass Co Ltd Low hydrogen overvoltage cathode with high durability and its production
US5284619A (en) * 1990-03-24 1994-02-08 Japan Storage Battery Company, Limited Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries

Also Published As

Publication number Publication date
JP2610937B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
TWI353394B (en) Hydrogen evolving cathode
Tilak et al. High performance electrode materials for the hydrogen evolution reaction from alkaline media
US4498962A (en) Anode for the electrolysis of water
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
KR890000179B1 (en) Cathode having high durability and iow hydrogen overvoltage and process for the production thereof
JP2629963B2 (en) High durability low hydrogen overvoltage cathode
Schiller et al. Vacuum plasma sprayed electrodes for advanced alkaline water electrolysis
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
EP0226291B1 (en) Method for extending service life of a hydrogen-evolution electrode
JPH02104686A (en) Cathode having low hydrogen overvoltage and high durability and production thereof
US4877508A (en) Highly durable cathode of low hydrogen overvoltage and method for manufacturing the same
JP3676554B2 (en) Activated cathode
JPS6145711B2 (en)
JPH0250992A (en) High-durability low hydrogen overvoltage cathode and manufacture thereof
JPH02310388A (en) Low hydrogen overvoltage cathode with high durability and its production
JP3236682B2 (en) Electrolytic cathode and method for producing the same
JPH01275791A (en) Cathode having high durability and low hydrogen overvoltage and production thereof
JPH09312157A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH02258992A (en) Cathode having low hydrogen overvoltage and high durability and production thereof
JPS6112032B2 (en)
JPS63145790A (en) Highly durable low-hydrogen overvoltage cathode and its production
JP3941898B2 (en) Activated cathode and method for producing the same
JPH0681182A (en) Production of alkali hydroxide
JP3542501B2 (en) Hydrogen storage electrode
JPS602686A (en) Active electrode