JPH02310388A - Low hydrogen overvoltage cathode with high durability and its production - Google Patents

Low hydrogen overvoltage cathode with high durability and its production

Info

Publication number
JPH02310388A
JPH02310388A JP1130174A JP13017489A JPH02310388A JP H02310388 A JPH02310388 A JP H02310388A JP 1130174 A JP1130174 A JP 1130174A JP 13017489 A JP13017489 A JP 13017489A JP H02310388 A JPH02310388 A JP H02310388A
Authority
JP
Japan
Prior art keywords
electrode
metal
cathode
particles
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1130174A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Naoki Yoshida
直樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1130174A priority Critical patent/JPH02310388A/en
Publication of JPH02310388A publication Critical patent/JPH02310388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To obtain a low hydrogen overvoltage cathode minimal in deterioration in electrode activity even under an oxidizing environment by providing, as a cathode in an electrolytic cell for use in the electrolysis of salt solution, a metallic layer in which a part of hydrogen storage alloy with a specific composition is allowed to appear at the surface to the surface of an electrode core body. CONSTITUTION:As a cathode for use in an electrolytic cell for an aqueous solution of alkali halide, such as salt solution, electrode activation grains 3 of 0.1-100mum average grain size composed of a hydrogen storage alloy represented by LaNiXAlY or MmNiXAlY (where Mm means misch metal and the values of X and Y are 2-8 and >0-6, respectively) are formed by means of composite plating, etc., on the surface of an electrode core body 1 consisting of Fe, Fe-Ni alloy, Ni, Fe-Ni-Cr alloy, Cu, etc., so that part of the grains 3 are allowed to appear at the surface of a metallic layer 2 composed of Ni, etc., or further, Raney Ni and Raney Co are allowed to coexist with the hydrogen storage alloy, or, a metallic intermedi ate layer 4 composed of Ni, Co, Ag, Cu, etc., is provided between the electrode core body 1 and the metallic layer 2. By this method, the low hydrogen overvoltage cathode minimal in deterioration in electrode activity even if used in an oxidizing environment can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高耐久性低水素過電圧陰極、特には酸化住環境
下においても特性の劣化が極めて小さい低水素過電圧陰
極及びその製法に間する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a highly durable low hydrogen overvoltage cathode, particularly a low hydrogen overvoltage cathode whose properties are minimally deteriorated even in an oxidizing environment, and a method for producing the same.

(従来の技術) 低水素過電圧陰極、特にはハロゲン化アルカリ水溶液電
解用の陰極として各種のものが提案されている。これら
の中で、本出願人が既に提案した特開昭54−1127
85号公報で開示される電極は、それまでに知られた電
極に比べて低水素過電圧及びその耐久性に間し、大きな
効果を持つものであるが、本発明者等は、さらに検討を
加えた結果、上記公報で開示される電極もある場合には
、必ずしも耐久性が十分でない場合のあることを見いだ
し、この解決のため鋭意努力した結果本発明を見いだす
に至ったものである。
(Prior Art) Various types of low hydrogen overvoltage cathodes have been proposed, particularly as cathodes for aqueous halogenated alkali solution electrolysis. Among these, Japanese Patent Application Laid-Open No. 1127-1987, which the present applicant has already proposed,
Although the electrode disclosed in Publication No. 85 has a lower hydrogen overvoltage and greater durability than previously known electrodes, the present inventors have conducted further studies. As a result, the inventors discovered that some of the electrodes disclosed in the above-mentioned publications do not necessarily have sufficient durability, and as a result of their earnest efforts to solve this problem, they have arrived at the present invention.

ハロゲン化アルカリ水溶液電解槽で電解により陽極室か
らはハロゲンガス、陰極室からは苛性アルカリ水溶液と
水素ガスを製造することは既によく知られた工業的な塩
素及び苛性アルカリの製造方法である。この電解槽の陰
極としては低水素過電圧の上記の如き陰極が好ましく用
いられるが、上記電解槽は運転の途中、種々の理由によ
り運転を停止することがあり、この場合、運転を再開す
ると水素過電圧が上昇することが認められた。本発明者
等はこの現象について深く追求した結果、電解槽の停止
時に陽極と陰極をブスバーで短絡して停止する停止方法
の場合には、短絡時に発生する逆電流により陰極が酸化
され、ニッケルやコバルトを活性成分とした陰極の場合
はそれらが水酸化物に変質することにより電極活性が低
下し、運転再開後も元の活性状態に戻らない(すなわち
水素過電圧が上昇する)ことを見いだした。
It is already a well-known industrial method for producing chlorine and caustic alkali to produce halogen gas from the anode chamber and a caustic alkali aqueous solution and hydrogen gas from the cathode chamber by electrolysis in an alkali halide aqueous solution electrolytic cell. As the cathode of this electrolytic cell, a cathode as described above with a low hydrogen overvoltage is preferably used, but the electrolytic cell may be stopped for various reasons during operation, and in this case, when the operation is resumed, the hydrogen overvoltage will be low. was observed to increase. The present inventors investigated this phenomenon in depth, and found that when the electrolytic cell is stopped by short-circuiting the anode and cathode with a bus bar, the cathode is oxidized by the reverse current generated during the short circuit, and nickel and It was discovered that in the case of a cathode containing cobalt as an active ingredient, the electrode activity decreases due to the deterioration of cobalt into hydroxides, and the electrode activity does not return to its original active state even after restarting operation (that is, the hydrogen overvoltage increases).

また、陽極と陰極を短絡せずに通電を停止する停止方法
においても、高温NaOH高濃度中に陰極が長時間浸漬
されると、陰極活性成分がニッケルまたはコバルトの場
合にはそれらが腐食電位に突入して水酸化物に変質しく
この反応も一種の電気化学的酸化反応である)電極活性
が低下することを見いだした。
In addition, even in the stopping method of stopping current supply without shorting the anode and cathode, if the cathode is immersed in high-temperature, high-concentration NaOH for a long time, if the cathode active ingredients are nickel or cobalt, they will reach a corrosion potential. (This reaction is also a type of electrochemical oxidation reaction) and the electrode activity was found to decrease.

(本発明の解決しようとする問題点) 本発明は上記使用条件下でも電極活性の低下しない電極
及びその製法を提供するものである。
(Problems to be Solved by the Present Invention) The present invention provides an electrode in which the electrode activity does not decrease even under the above conditions of use, and a method for producing the same.

(問題点を解決するための手段) そこでこの現象を防止するため鋭意検討した結果、電気
化学的に水素の吸蔵、放出を行い、かつ水素過電圧の低
い水素吸蔵金属を電極活性成分の一部または全部に用い
れば、前期のような電槽の停止においては、水素吸蔵金
属中に吸蔵された多量の水素が電気化学的に酸化される
ことで電極活性成分の酸化を効果的に防止できること、
すなわち活性を長期に維持できることを見いだし、本発
明を完成したもので、本発明は電極活性金属粒子の一部
が電極芯体上に設けた層の表面に露出してなる電極にお
いて、該電極活性金属粒子の一部が電気化学的に水素の
吸蔵及び放出のできる水素吸蔵金属である高耐久性低水
素過電圧陰極及び後述する上記の高耐久性低水素過電圧
陰極の製造方法を要旨とするものである。
(Means for solving the problem) Therefore, as a result of intensive studies to prevent this phenomenon, we decided to use a hydrogen storage metal that electrochemically absorbs and releases hydrogen and has a low hydrogen overvoltage as part of the active component of the electrode. If used in all cases, when the battery case is stopped as in the previous stage, a large amount of hydrogen stored in the hydrogen storage metal will be electrochemically oxidized, thereby effectively preventing the oxidation of the electrode active component.
That is, the present invention was completed by discovering that the activity can be maintained for a long period of time, and the present invention provides an electrode in which a part of the electrode active metal particles is exposed on the surface of a layer provided on the electrode core. The gist is a highly durable low hydrogen overvoltage cathode in which some of the metal particles are hydrogen storage metals that can electrochemically absorb and release hydrogen, and a method for producing the above highly durable low hydrogen overvoltage cathode described below. be.

ここで電気化学的に水素の吸蔵及び放出のできる水素吸
蔵金属とはアルカリ性水溶液中で次のような電極反応を
行うものを言う。すなわち還元反応では水を還元して生
成した水素原子を金属中に吸蔵し、酸化反応では吸蔵水
素を金属表面で水酸イオンと反応させて水にする反応を
行うものを言う。反応式を以下に示す。
Here, the hydrogen storage metal that can electrochemically absorb and release hydrogen refers to a metal that undergoes the following electrode reaction in an alkaline aqueous solution. In other words, in a reduction reaction, hydrogen atoms generated by reducing water are occluded in a metal, and in an oxidation reaction, occluded hydrogen is reacted with hydroxide ions on the metal surface to form water. The reaction formula is shown below.

吸蔵 XH2O+xe+M  #  MHx4rxOH−(1
)放出 Mは水素吸蔵金属でありMHxはそれの水素化物を示す
。この水素吸蔵金属を電極活性金属の一部または全部と
した陰極を用いて、例えばイオン膜性による食塩電解を
行った場合、通電初期には反応式(1)の右向きの反応
により水素吸蔵金属中に水素が吸蔵され、やがて水素の
吸蔵が飽和に達すると以下に示す反応(2)により、水
素吸蔵金属の表面で水素が発生し、本来の陰極上におけ
る電極反応が進行する。
Storage XH2O+xe+M # MHx4rxOH-(1
) Release M is a hydrogen storage metal and MHx represents its hydride. When a cathode in which this hydrogen storage metal is used as part or all of the electrode active metal is used, for example, for salt electrolysis using an ionic membrane, the hydrogen storage metal is absorbed by the rightward reaction of reaction formula (1) at the initial stage of energization. When the hydrogen storage reaches saturation, hydrogen is generated on the surface of the hydrogen storage metal by reaction (2) shown below, and the original electrode reaction on the cathode proceeds.

H20+e++H2+OH−(2) 一方、電槽の短絡などによる停止時には、水素吸蔵金属
中に大量に吸蔵された水素が電気化学的に反応式(1)
の左向きの反応により水素を放出し、すなわち電気化学
的に水素を酸化して酸化電流を負担することにより電極
活性金属粒子自体の酸化を効果的に防止することができ
る。
H20+e++H2+OH- (2) On the other hand, when the battery is stopped due to a short circuit in the battery case, a large amount of hydrogen stored in the hydrogen storage metal electrochemically reacts with the reaction formula (1).
Oxidation of the electrode-active metal particles themselves can be effectively prevented by releasing hydrogen through a leftward reaction, that is, by electrochemically oxidizing hydrogen and bearing an oxidation current.

このように本発明に使用し得る水素吸蔵金属は上述のご
とく、電気化学的に水素な吸蔵及び放出できるものであ
り、具体的にはLaN1xAly  (ただし、2≦X
≦8.0くY≦6である。)で表されるランタン−ニッ
ケルーアルミニウム系合金及び/またはMmNixAl
v (ただし、Mmはミツシュメタルであり、2≦X≦
8、O<Y≦6である。)で表されるミツシュメタル−
ニッケルーアルミニウム系合金である。X<2では合金
中のニッケル含有率が低いために苛性アルカリ溶液中で
の耐食性に問題が生じて長期の使用に耐えず、また水素
過電圧もそれほど低くすることができない。X>8では
水素吸蔵金属の吸蔵水素量が少なくなり、また吸蔵及び
放出の平衡圧が高くなるため本発明の効果が不十分とな
ってしまう。Y=Oでは、X<5の場合には水素過電圧
が高くなり、X≧5では吸蔵及び放出の平衡圧が高くな
るため本発明の効果が不十分となる。V>6では苛性ア
ルカリ溶液中での耐食性に問題があり長期間の使用に耐
えることができない。以上のことから、水素吸蔵金属L
aN!xAIy及び/またはMmNiXAlYにおいて
2≦(X≦8、かつOくY≦6で有ることが必要であり
、好ましくは、4≦X≦6、かつ0<Y≦3である。
As described above, the hydrogen storage metal that can be used in the present invention is one that can electrochemically store and release hydrogen, and specifically, LaN1xAly (where 2≦X
≦8.0×Y≦6. ) and/or MmNixAl
v (However, Mm is Mitsushmetal, 2≦X≦
8, O<Y≦6. ) Mitsushmetal −
It is a nickel-aluminum alloy. When X<2, the nickel content in the alloy is low, causing problems in corrosion resistance in a caustic alkaline solution, making it difficult to withstand long-term use, and hydrogen overvoltage cannot be made so low. When X>8, the amount of hydrogen absorbed by the hydrogen storage metal decreases, and the equilibrium pressure of absorption and desorption increases, so that the effect of the present invention becomes insufficient. When Y=O, the hydrogen overvoltage becomes high when X<5, and the equilibrium pressure of occlusion and desorption becomes high when X≧5, making the effect of the present invention insufficient. When V>6, there is a problem in corrosion resistance in a caustic alkaline solution, and the material cannot withstand long-term use. From the above, hydrogen storage metal L
aN! In xAIy and/or MmNiXAlY, it is necessary that 2≦(X≦8 and O×Y≦6, preferably 4≦X≦6 and 0<Y≦3.

本発明において、電極活性金属粒子として上述のような
水素吸蔵金属を単独で用いることもてきるし、また、上
述のような水素吸蔵金属とラネーニッケル及び/または
ラネーコバルトを共存させて使用することもてきる。水
素吸蔵金属とラネーニッケル及び/またはラネーコバル
トを同時に電極活性金属として使用する場合には、該水
素吸蔵金属を電極活性金属中で5wt$以上、特には、
10wt2以上存在せしめることが好ましい。なぜなら
、水素吸蔵金属の割合が5wtχ未満ては短絡時に放出
される水素の量が少ないために短絡によって電極活性金
属が酸化されて電極活性が低下し、水素過電圧が高くな
るためである。
In the present invention, the above-mentioned hydrogen storage metal can be used alone as the electrode active metal particles, or the above-mentioned hydrogen storage metal and Raney nickel and/or Raney cobalt can be used together. I'll come. When a hydrogen storage metal and Raney nickel and/or Raney cobalt are simultaneously used as electrode active metals, the hydrogen storage metal is used in an amount of 5 wt$ or more in the electrode active metals, particularly,
It is preferable that 10wt2 or more be present. This is because if the proportion of hydrogen storage metal is less than 5 wtx, the amount of hydrogen released upon short circuit is small, and the short circuit oxidizes the electrode active metal, reducing electrode activity and increasing hydrogen overvoltage.

また、これらの水素吸蔵金属は水素の吸蔵、放出により
脆性破壊を起こし微粉化してゆくことが知られているた
め、この微粉化による脱藩等を防ぐために、あらかじめ
機械的な粉砕や気相中で水素ガスの吸蔵放出を繰り返す
ことにより微粉化した金属を用いたり、この脱落を防止
するためマトリックス材として前記ラネーニッケルやラ
ネーコバルトの他に、金属粒子、例えばニッケル粉末や
バインダーとしてポリマー粉末等を用いてもよい。
In addition, these hydrogen-absorbing metals are known to undergo brittle fracture and become pulverized due to absorption and release of hydrogen, so in order to prevent decomposition due to pulverization, they must be mechanically pulverized or placed in a gas phase in advance. Metals that have been pulverized by repeated occlusion and release of hydrogen gas are used, and in order to prevent this from falling off, metal particles such as nickel powder and polymer powders are used as binders in addition to the Raney nickel and Raney cobalt as matrix materials. Good too.

上述の水素吸蔵金属粒子の平均粒径は、電極表面の多孔
性度及び後述する電極製造の際の粒子の分散性にも関係
するが、0.1μm〜100μmであれば充分である。
The average particle diameter of the above-mentioned hydrogen storage metal particles is related to the porosity of the electrode surface and the dispersibility of the particles during electrode production, which will be described later, but a range of 0.1 μm to 100 μm is sufficient.

上記範囲中、電極表面の多孔性等の点から、好ましくは
、0.9μm〜50μm、更に好ましくは1μm〜30
μmである。
Within the above range, from the viewpoint of porosity of the electrode surface, preferably 0.9 μm to 50 μm, more preferably 1 μm to 30 μm.
It is μm.

更に本発明に用いる粒子は、電極のより低い水素過電圧
を達成するため、表面多孔性であることが好ましい。
Furthermore, the particles used in the present invention are preferably superficially porous in order to achieve a lower hydrogen overpotential of the electrode.

この表面多孔性は、粒子の全表面が多孔性であることの
みを意味するものでなく、前述した金属からなる層より
露出した部分のみが多孔性になっておれば充分である。
This surface porosity does not mean only that the entire surface of the particle is porous; it is sufficient that only the portion exposed from the metal layer described above is porous.

多孔性の程度は、その程度がかなり大きいほど好ましい
が、過度に多孔性にすると電極芯体上に設けられた層の
機械的強度が低下するため多孔度(poros i t
y)が20〜90χにすることが好ましい。上記範囲甲
斐に好ましくは30〜851、特に好ましくは50〜8
0%である。
The degree of porosity is preferably as large as possible; however, excessive porosity reduces the mechanical strength of the layer provided on the electrode core.
It is preferable that y) is 20 to 90χ. The above range Kai is preferably 30-851, particularly preferably 50-8
It is 0%.

なお、上記多孔度とは、公知の水銀圧入法或は水置換法
によって測定される値である。
Note that the above-mentioned porosity is a value measured by a known mercury intrusion method or water displacement method.

上述の電極活性金属粒子が金属基体上に強固に設けられ
るための層は、該粒子を構成する成分の一部と同じ金属
であることが好ましい。
The layer on which the electrode active metal particles are firmly provided on the metal substrate is preferably made of the same metal as part of the components constituting the particles.

かくして、本発明の陰極の電極表面には、多数の上述の
粒子が付着しており、巨視的にみると、陰極表面は微多
孔性になっている。
Thus, a large number of the above particles are attached to the electrode surface of the cathode of the present invention, and macroscopically, the cathode surface is microporous.

このように本発明の陰極は、それ自体低い水素過電圧を
有する粒子が電極表面に多数存在し、かつ前述した通り
、電極表面が微多孔性になっているため、それだけ電極
活性面が大きくなり、これらの相乗効果によって、効果
的に水素過電圧の低減を図ることができる。
In this way, in the cathode of the present invention, a large number of particles that themselves have a low hydrogen overvoltage are present on the electrode surface, and as mentioned above, the electrode surface is microporous, so the active surface of the electrode becomes larger. These synergistic effects can effectively reduce hydrogen overvoltage.

しかも本発明に用いられる粒子は、上記金属からなる層
によって、電極表面に強固に付着しているので、劣化し
にくく、上記低水素過電圧の持続性を飛躍的に延ばすこ
とができる。
Moreover, since the particles used in the present invention are firmly attached to the electrode surface by the layer made of the above-mentioned metal, they are difficult to deteriorate and can dramatically extend the sustainability of the above-mentioned low hydrogen overvoltage.

本発明の電極芯体はその材質として任意の適当な導電性
金属、例えば、Ti5Zr、Fe、Ni、V、Mo、C
u、Ag、曲、白金族金属、黒鉛、Crから選ばれた金
属またはこれらの金属から選ばれた合金が採用しうる。
The electrode core of the present invention may be made of any suitable conductive metal, such as Ti5Zr, Fe, Ni, V, Mo, C.
A metal selected from u, Ag, metal, platinum group metal, graphite, and Cr, or an alloy selected from these metals can be used.

このうちFe、Fe合金(Fe−N i合金、Fe−C
r合金Je−N+−Cr合金など) Ni、Ni合金(
Ni−Cu合金、Ni−Cr合金など) Cu、Cu合
金などを採用することが好ましい。特に好ましい電極芯
体の材質はFe、Cu、Ni、Fe−Ni合金、Fe−
Ni−Cr合金である。
Among these, Fe, Fe alloy (Fe-Ni alloy, Fe-C
r alloy Je-N+-Cr alloy, etc.) Ni, Ni alloy (
(Ni-Cu alloy, Ni-Cr alloy, etc.) It is preferable to employ Cu, Cu alloy, etc. Particularly preferable materials for the electrode core are Fe, Cu, Ni, Fe-Ni alloy, Fe-
It is a Ni-Cr alloy.

電極芯体の構造は、使用する電極の構造に合わせて任意
適宜な形状寸法にすることができる。その形状は、例え
ば板状、多孔状、網状(例えばエクスパンドメタルなど
)、すだれ状等が採用でき、これらを平板状、曲板状、
筒状にしてもよい。
The structure of the electrode core can be made into any suitable shape and size depending on the structure of the electrode used. Its shape can be, for example, plate-like, porous, net-like (for example, expanded metal), or blind-like.
It may be made into a cylindrical shape.

本発明の層の厚みは、採用する粒子の粒径にもよるが、
20μm〜2mmであれば充分で、更に好ましくは25
μm〜1mmである。これは本発明では、前述した粒子
の一部が電極芯体上の金属からなる層に埋没した状態で
、付着せしめるからである。かかる状態を理解し易いよ
うに、本発明の電極表面の断面図を第1図に示す。図示
されているように電極芯体1上に金属からなる層2が設
けられ、該層に電極活性金属粒子3の一部が、その層の
表面から露出するように含まれている。なお、層2中の
粒子の割合は5〜801であることが好ましく、更に好
ましくは10〜60%である。かかる状態の他、電極芯
体と本発明の粒子を含む層との間に、Ni、Co、Ag
、Cuから選ばれた金属からなる中間層を設けることに
よって、更に本発明の電極の耐久性を向上させることが
できる。かかる中間層は、上記層の金属と同種または異
種であっても差し支えないが、かかる中間層を前述した
層との付着性の点からこれらの中間層及び層の金属は同
種のものであることが好ましい。中間層の厚みは、機械
的強度等の点から5〜100μmであれば充分であり、
更に好ましくは20〜80μm1 特に好ましくは30
〜50μmである。
The thickness of the layer of the present invention depends on the particle size of the particles employed, but
A thickness of 20 μm to 2 mm is sufficient, and more preferably 25 μm to 2 mm.
It is μm to 1 mm. This is because, in the present invention, some of the particles described above are attached to the electrode core while being buried in the metal layer. In order to facilitate understanding of this state, a cross-sectional view of the electrode surface of the present invention is shown in FIG. As shown in the figure, a layer 2 made of metal is provided on an electrode core 1, and a portion of electrode active metal particles 3 are contained in this layer so as to be exposed from the surface of the layer. The proportion of particles in layer 2 is preferably 5 to 80%, more preferably 10 to 60%. In addition to this state, there are Ni, Co, Ag between the electrode core and the layer containing the particles of the present invention.
By providing an intermediate layer made of a metal selected from , Cu, the durability of the electrode of the present invention can be further improved. Such an intermediate layer may be of the same type or a different type from the metal of the above-mentioned layer, but from the viewpoint of adhesion between the intermediate layer and the above-mentioned layer, these intermediate layers and the metals of the layer must be of the same type. is preferred. It is sufficient that the thickness of the intermediate layer is 5 to 100 μm from the viewpoint of mechanical strength, etc.
More preferably 20 to 80 μm 1 Especially preferably 30
~50 μm.

このような中間層を設けた電極を理解しやすいように、
電極の断面図を第2図に示した。
To make it easier to understand electrodes with such an intermediate layer,
A cross-sectional view of the electrode is shown in FIG.

lは電極芯体、4は中間層、2は粒子を含む層、3は電
極活性粒子である。
1 is an electrode core, 4 is an intermediate layer, 2 is a layer containing particles, and 3 is an electrode active particle.

電極表面層の具体的な付着手段としては、種々の手法が
採用され、例えば複合メッキ法、溶融塗布法、焼付は法
、加圧成型焼結法などが採用される。このうち、特に複
合メッキ方が、良好に電極活性金属粒子を付着しうるの
で好ましい。
Various methods can be used to specifically attach the electrode surface layer, such as a composite plating method, a melt coating method, a baking method, a pressure molding sintering method, and the like. Among these, the composite plating method is particularly preferable because the electrode active metal particles can be attached well.

複合メッキ法とは、金属層を形成する金属イオンを含む
水溶液に、−例としてニッケルを該合金成分の一部とす
る粒子を分散せしめた浴で、電極芯体を陰極としてメッ
キを行い、電極芯体上に、上記金属と粒子を共電着せし
めるものである。なお、更に詳しく述べれば、浴中で粒
子は電場の影響によってバイポーラ−となり、陰極表面
近傍に近接したときメッキの局部的電流密度を増大させ
、陰極に接触したとき通常の金属イオンの還元による金
属メッキにより芯体に共電着するものと考えられる。
The composite plating method is a bath in which particles containing, for example, nickel as a part of the alloy component are dispersed in an aqueous solution containing metal ions forming a metal layer, and plating is performed using the electrode core as a cathode. The metal and particles are co-electrodeposited on the core. In more detail, the particles become bipolar in the bath due to the influence of the electric field, increasing the local current density of plating when they come close to the cathode surface, and when they come into contact with the cathode, the particles become bipolar due to the reduction of normal metal ions. It is thought that it is co-electrodeposited on the core by plating.

例えば、金属層としてニッケル層を採用する場合、全塩
化ニッケル浴、高塩化ニッケル浴、塩化ニッケルー酢酸
ニッケル浴、ワット浴、スルファミン酸ニッケル?谷、
など種々のニッケルメッキ浴が採用し得る。
For example, when using a nickel layer as a metal layer, do you choose a total nickel chloride bath, a high nickel chloride bath, a nickel chloride-nickel acetate bath, a Watts bath, or a nickel sulfamate bath? valley,
Various nickel plating baths such as nickel plating baths can be adopted.

このような粒子の浴中での割合は、1g/l〜2008
/1にしておくことが電極表面に粒子の付着状態を良好
にする意味から好ましい。また分散メッキ作業時の温度
条件は20〜80℃、電流密度はIA/dm2〜2OA
/dm2であることが好ましい。
The proportion of such particles in the bath ranges from 1 g/l to 2008
It is preferable to set the value to /1 from the viewpoint of improving the adhesion state of particles to the electrode surface. In addition, the temperature conditions during dispersion plating work are 20 to 80℃, and the current density is IA/dm2 to 2OA.
/dm2 is preferable.

なお、メッキ浴には、歪減少用の添加剤、共電着を助長
する添加剤等を適宜加えてもよいことはもちろんである
It goes without saying that additives for reducing strain, additives for promoting co-electrodeposition, etc. may be added to the plating bath as appropriate.

また粒子の密着強度を更に向上させるために、複合メッ
キ終了後に、粒子を完全には被覆しない程度に普通のメ
ッキまたは無電解メッキを行ったり、不活性または還元
性雰囲気中で加熱焼成等を適宜行ってもよい。
In addition, in order to further improve the adhesion strength of the particles, after completion of composite plating, ordinary plating or electroless plating may be performed to the extent that the particles are not completely covered, or heating and baking in an inert or reducing atmosphere may be carried out as appropriate. You may go.

この他前述したように、電極芯体と粒子を含む金属層と
の間に中間層を設ける場合は、電極芯体をまずニッケル
メッキ、コバルトメッキまたは銅メッキし、その後前述
した分散メッキ法、溶融噴霧力の手段でその上に粒子を
含む金属層を形成する。
In addition, as mentioned above, when providing an intermediate layer between the electrode core and the metal layer containing particles, the electrode core is first plated with nickel, cobalt, or copper, and then the dispersion plating method described above or melt plating is applied. A metal layer containing particles is formed thereon by means of atomizing force.

かかる場合のメッキ浴としては上述した種々のメッキ浴
が採用でき、銅メッキについても公知のメッキ浴が採用
できる。
As the plating bath in such a case, the various plating baths mentioned above can be used, and also for copper plating, a known plating bath can be used.

このようにして、電極芯体上に金属層を介して水素吸蔵
金属を含む電極活性金属粒子が付着した電極が得られる
In this way, an electrode is obtained in which electrode active metal particles containing a hydrogen storage metal are attached to the electrode core via a metal layer.

次に、本発明の陰極を製造する別の方法について説明す
る。
Next, another method for manufacturing the cathode of the present invention will be described.

本発明の陰極は溶融塗布法あるいは焼付は法によっても
製造されうる。すなわち、水素吸蔵金属粉末と他の低水
素過電圧金属粉末との混合粉末(例えば、溶融粉砕法に
よって得られる)を所定粒度に調整し、プラズマ、酸素
/アセチレン炎等により溶融吹き付けし、電極芯体上に
これら粒子の部分的に露出した被覆層を得たり、あるい
はこれら粒子の分散液ないしスラリーを電極芯体上に塗
布し、焼成により焼付け、所望の被覆層を得るものであ
る。
The cathode of the present invention can also be manufactured by a melt coating method or a baking method. That is, a mixed powder of a hydrogen-absorbing metal powder and another low hydrogen overvoltage metal powder (obtained, for example, by a melt-grinding method) is adjusted to a predetermined particle size, and melted and blown using plasma, oxygen/acetylene flame, etc., to form an electrode core. A partially exposed coating layer of these particles is obtained on the electrode core, or a dispersion or slurry of these particles is applied onto the electrode core and baked to obtain a desired coating layer.

また本発明の陰極は水素吸蔵金属を含む電極シートをあ
らかじめ製作しておき、これを電極芯体上に取り付ける
ことによっても得られる。この場合、該シートは、水素
吸蔵金属の粒子と他の金属粒子(例えば、低水素過電圧
特性を示すラネー合金等)を有機ポリマー粒子と混合し
て成型し、または成型後焼成してシートとなす方法が好
ましい。
The cathode of the present invention can also be obtained by preparing an electrode sheet containing a hydrogen storage metal in advance and attaching this to an electrode core. In this case, the sheet is formed by mixing hydrogen-absorbing metal particles and other metal particles (for example, Raney alloy showing low hydrogen overvoltage characteristics) with organic polymer particles, or by sintering the mixture after forming. The method is preferred.

もちろん、この場合該シートの表面から電極活性粒子が
露出している。かくして得られる該シートは電極芯体上
に圧着し、加熱して電極芯体上に固着される。
Of course, in this case, the electrode active particles are exposed from the surface of the sheet. The sheet thus obtained is pressed onto the electrode core and fixed onto the electrode core by heating.

本発明の電極はイオン交換膜性塩化アルカリ水溶液電解
用の電極、特に陰極として採用できることはもちろんで
あるが、この他、多孔性隔膜(例えばアスベスト隔膜)
を用いた塩化アルカリ水溶液電解用の電極としても採用
しうる。
The electrode of the present invention can of course be used as an electrode for ion-exchange membrane-based alkaline chloride aqueous solution electrolysis, especially as a cathode, but can also be used as a porous diaphragm (for example, an asbestos diaphragm).
It can also be used as an electrode for aqueous alkali chloride electrolysis using.

本発明において、水素吸蔵金属LaN1xAIv及び/
またはMmN!xAIy  (ただし、2≦X≦8.0
くY≦6である。)を使用することによって著しく電極
の特性が向上するのは、従来から知られている水素吸蔵
金属LaNi5あるいはMmN i sに比較して本発
明の水素吸蔵金属は、その平衡圧が低いことにより電気
化学的に水素を吸蔵しやすく、また電槽の短絡などによ
る停止時に水素吸蔵金属中に吸蔵されていた水素がより
有効に作用でき、さらにそれ自体の水素過電圧が低いこ
とに基づいていると考えられる。
In the present invention, hydrogen storage metal LaN1xAIv and/or
Or MmN! xAIy (however, 2≦X≦8.0
Y≦6. ) The reason why the characteristics of the electrode are significantly improved by using the hydrogen storage metal of the present invention is that compared to the conventionally known hydrogen storage metals LaNi5 or MmN i s, the hydrogen storage metal of the present invention has a lower equilibrium pressure, which makes it easier to conduct electricity. This is thought to be based on the fact that hydrogen is easily absorbed chemically, the hydrogen stored in the hydrogen storage metal can act more effectively when the battery is stopped due to a short circuit, and the hydrogen overvoltage itself is low. It will be done.

塩化アルカリ電解用陰極として用いる場合、電解槽材料
から陰極液中に溶出する鉄分が陰極上に電析し、電極活
性を低下せしめることがあり、これを防止するために、
本発明の陰極上に、特開昭57−143482号公報で
開示されるような非電子電導性物質を付着せしめること
は、有効な方法である。
When used as a cathode for alkali chloride electrolysis, iron dissolved from the electrolytic cell material into the catholyte may be deposited on the cathode, reducing electrode activity. To prevent this,
It is an effective method to deposit a non-electronically conductive material as disclosed in JP-A-57-143482 on the cathode of the present invention.

実施例1〜6及び比較例1〜5 表1に示したランタン−ニッケルーアルミニウム系水素
吸蔵合金(比較例1はランタン−ニッケル系水素吸蔵合
金)を25μm以下に粉砕し、この粉末を塩化ニッケル
浴(NiCI2*6)120300g/l、HaBOs
38g/ I )中に18/1の割合で投入し、これを
よく攪拌しながらニッケル製エキスバンドメタルを陰極
とし、ニッケル板を陽極として複合メッキを行った。
Examples 1 to 6 and Comparative Examples 1 to 5 The lanthanum-nickel-aluminum hydrogen storage alloy shown in Table 1 (Comparative Example 1 was a lanthanum-nickel hydrogen storage alloy) was ground to 25 μm or less, and this powder was mixed with nickel chloride. Bath (NiCI2*6) 120300g/l, HaBOs
38g/I) at a ratio of 18/1, and while stirring well, composite plating was performed using a nickel expanded metal as a cathode and a nickel plate as an anode.

温度は40℃、pHは2.5、電流密度は3A/di2
とした。
Temperature is 40℃, pH is 2.5, current density is 3A/di2
And so.

この結果いずれも、水素吸蔵合金の共析量が約38/d
m2である複合メッキ層が得られた。このメッキ層の厚
みは約120μm、多孔率は約651であった。
As a result, the amount of eutectoid hydrogen storage alloy is approximately 38/d.
A composite plating layer of m2 was obtained. The thickness of this plating layer was about 120 μm, and the porosity was about 651.

これらの電極を、陽極をRu0a−Ti02とし、含フ
ツ素系陽イオン交換膜(CFa=CF2とCF2:CF
O(CF2)3COOCH3との共重合体の加水分解物
、イオン交換容量1.45meq/g樹脂)をイオン交
換膜とする食塩電解用陰極として用い、以下の2種類の
試験を行った。
These electrodes have a Ru0a-Ti02 anode and a fluorine-containing cation exchange membrane (CFa=CF2 and CF2:CF
The following two types of tests were conducted using a hydrolyzate of a copolymer with O(CF2)3COOCH3 (resin with an ion exchange capacity of 1.45 meq/g) as an ion exchange membrane for salt electrolysis.

[試験■]短絡に対する抵抗性試験 陽極液は3NNaC1溶液、陰極液を35XNaOHと
し90℃で電流密度30A/dl112として電解開始
後200日目0次の短絡試験を実施した。
[Test ■] Resistance test against short circuit A zero-order short circuit test was carried out on the 200th day after the start of electrolysis using a 3N NaCl solution as the anolyte and 35X NaOH as the catholyte at 90° C. and a current density of 30 A/dl112.

まず電解中の陽極と陰極を銅線により短絡して電解を停
止し、そのまま約5時間放置した。この間陰極から陽極
へ流れる電流を観測した。なお陰極液の温度は90℃に
保持した。その後この銅線を取り外して1日間電解を行
フた。この操作を5回繰り返した。
First, the anode and cathode during electrolysis were short-circuited with a copper wire to stop electrolysis, and the electrolysis was left as it was for about 5 hours. During this time, the current flowing from the cathode to the anode was observed. Note that the temperature of the catholyte was maintained at 90°C. Thereafter, the copper wire was removed and electrolysis was carried out for one day. This operation was repeated 5 times.

試験終了後さらに30日間電解を続けたのち電極をとり
だして35INaOH,90℃、電流密度30A/dn
+2で各電極の水素過電圧を測定した。
After the test was completed, electrolysis was continued for another 30 days, and then the electrode was taken out and treated with 35INaOH, 90°C, and a current density of 30A/dn.
The hydrogen overvoltage of each electrode was measured at +2.

[試験■]微小逆電流に対する抵抗性試験試験■と同様
に電解を行い、電解開始後50日0に次の操作を行った
[Test ■] Resistance test against minute reverse current Electrolysis was performed in the same manner as Test ■, and the following operation was performed 50 days after the start of electrolysis.

まず電解中の陽極と陰極を、両端に生ずるオーム損が1
.2vの銅線により短絡して電解を停止し、そのまま4
8時間放置した。さらに、短絡している銅線を両端に生
ずるオーム損がO,SVの銅線に換えて短絡を続け12
0時間放置した。この間陰極から陽極へ流れる電流を観
測した。なお電解槽は、短絡操作開始と同時に自然放冷
させた。
First, the ohmic loss occurring at both ends of the anode and cathode during electrolysis is 1
.. Short-circuit with a 2V copper wire to stop electrolysis, and then continue with 4V.
It was left for 8 hours. Furthermore, the short-circuited copper wire was replaced with a copper wire with an ohmic loss of O, SV at both ends, and the short-circuit continued.
It was left for 0 hours. During this time, the current flowing from the cathode to the anode was observed. The electrolytic cell was allowed to cool naturally at the same time as the short-circuiting operation was started.

その後電解槽を90℃に昇温し、この銅線を取り外して
1週間電解を行った。この操作を4回繰り返した。
Thereafter, the temperature of the electrolytic cell was raised to 90° C., the copper wire was removed, and electrolysis was carried out for one week. This operation was repeated four times.

試験終了後さらに30日間電解を続けたのち電極をとり
だして35XNaOH190℃、電流密度30A/dm
”で各電極の水素過電圧を測定した。
After the test was completed, electrolysis was continued for another 30 days, and then the electrode was taken out and treated with 35X NaOH at 190°C and a current density of 30A/dm.
” was used to measure the hydrogen overvoltage of each electrode.

試験前の水素過電圧と共に結果を表1に示した。The results are shown in Table 1 along with the hydrogen overvoltage before the test.

表1 実施例6 ランタン−ニッケルーアルミニウム系水素吸蔵合金しa
NiaAI2.sを25μm以下に粉砕し、この粉末を
塩化ニッケルに0.63/lの割合で投入し、さらに市
販のラネーニッケル合金粉末(0興リカ製、Ni 50
wt$、  Al  50wt$、 500メツシユハ
’2)  を前記メッキ)夜に2.7g/lの割合で投
入し、実施例1と同様に複合メッキを行った結果、La
Ni5Al2.sの共析量が1.7g/di2、ラネー
ニッケル合金の共析量が1.7g/dm2、すなわちL
aNiaAIg、sの割合が50!、ラネーニッケル合
金の割合が501のLaN1eA12.sとラネーニッ
ケル合金が共存する複合メッキ層が得られた。このメッ
キ層の厚みは約150μm、多孔率は約7ozであった
Table 1 Example 6 Lanthanum-nickel-aluminum hydrogen storage alloy a
NiaAI2. This powder was added to nickel chloride at a ratio of 0.63/l, and then commercially available Raney nickel alloy powder (manufactured by Oko Rika, Ni 50
wt$, Al 50wt$, 500m2) was added at a rate of 2.7g/l at night, and composite plating was performed in the same manner as in Example 1. As a result, La
Ni5Al2. The eutectoid amount of s is 1.7 g/di2, the eutectoid amount of Raney nickel alloy is 1.7 g/dm2, that is, L
The ratio of aNiaAIg,s is 50! , LaN1eA12. with a Raney nickel alloy proportion of 501. A composite plating layer in which S and Raney nickel alloy coexisted was obtained. The thickness of this plating layer was about 150 μm, and the porosity was about 7 oz.

この試料を90℃の25χNaOH溶液に2時間浸漬し
てラネーニッケル合金のAIを展開した後、これを陰極
として実施例1と同様の試験を行フた。試験終了後水素
過電圧を測定した結果、試験■、試験■のいずれにおい
ても80mVでほとんど変化していなかった。
This sample was immersed in a 25.chi.NaOH solution at 90.degree. C. for 2 hours to develop AI of the Raney nickel alloy, and then the same test as in Example 1 was conducted using this sample as a cathode. As a result of measuring the hydrogen overvoltage after the test, it was 80 mV and hardly changed in both Test (■) and Test (■).

実施例7 実施例1のランタン−ニッケルーアルミニウム系水素吸
蔵合金LaNi5Alをミツシュメタル−ニッケルーア
ルミニウム系合金MmNi5Al+、sに代えた以外は
実施例1と同様にして複合メッキを行った結果、MmN
i5Al+;sの共析量が3.1g/drn2の複合メ
ッキ層が得られ、このメッキ層の厚みは約130μm、
多孔率は約7ozであった。
Example 7 Composite plating was performed in the same manner as in Example 1 except that the lanthanum-nickel-aluminum hydrogen storage alloy LaNi5Al in Example 1 was replaced with the Mitshu metal-nickel-aluminum alloy MmNi5Al+,s. As a result, MmN
A composite plating layer with an eutectoid amount of i5Al+;s of 3.1 g/drn2 was obtained, and the thickness of this plating layer was approximately 130 μm.
Porosity was approximately 7 oz.

この試料を陰極として実施例1と同様の試験を行った。A test similar to Example 1 was conducted using this sample as a cathode.

試験終了後水素過電圧を測定した結果、試験■、試験■
のいずれにおいても85mVでほとんど変化していなか
った。
After the test, the hydrogen overvoltage was measured and the results were Test ■, Test ■
There was almost no change at 85 mV in either case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電極の一例の表面部分断面図、第2
図は、本発明の電極の他の例の表面部分断面図をそれぞ
れ示す。 1:電極芯体 2:金属から成る層 3:電極活性金属粒子 第1図 第2図
FIG. 1 is a partial cross-sectional view of the surface of an example of the electrode of the present invention, and FIG.
The figures each show a partial cross-sectional view of the surface of another example of the electrode of the present invention. 1: Electrode core 2: Layer made of metal 3: Electrode active metal particles Figure 1 Figure 2

Claims (10)

【特許請求の範囲】[Claims] (1)電極活性金属粒子が電極芯体上に設けられてなる
電極において、該電極活性金属粒子の一部が電気化学的
に水素を吸蔵及び放出できる水素吸蔵金属であり、モの
水素吸蔵金属が次式LaNi_XAl_Y及び/または
MmNi_XAl_Y(ただし、Mmはミッシュメタル
であり、 2≦X≦8、0<Y≦6である。) で表される高耐久性低水素過電圧陰極。
(1) In an electrode in which electrode active metal particles are provided on an electrode core, a part of the electrode active metal particles is a hydrogen storage metal that can electrochemically absorb and release hydrogen; A highly durable and low hydrogen overvoltage cathode represented by the following formula: LaNi_XAl_Y and/or MmNi_XAl_Y (where Mm is a misch metal, and 2≦X≦8, 0<Y≦6).
(2)電極活性金属粒子の一部が、ラネーニッケル及び
/またはラネーコバルトからなる粒子である特許請求の
範囲第(1)項の高耐久性低水素過電圧陰極。
(2) The highly durable and low hydrogen overvoltage cathode according to claim (1), wherein some of the electrode active metal particles are particles made of Raney nickel and/or Raney cobalt.
(3)電極活性金属粒子中の水素吸蔵金属の割合が5%
以上である特許請求の範囲第(1)項の高耐久性低水素
過電圧陰極。
(3) The proportion of hydrogen storage metal in the electrode active metal particles is 5%
The highly durable low hydrogen overvoltage cathode according to claim (1) above.
(4)電極活性金属粒子がメッキ金属により電極芯体上
に付着されてなる特許請求の範囲第(1)項の高耐久性
低水素過電圧陰極。
(4) A highly durable and low hydrogen overvoltage cathode according to claim (1), wherein the electrode active metal particles are adhered to the electrode core by plating metal.
(5)メッキ金属が電極活性金属粒子を構成する成分の
一部と同じ金属である特許請求の範囲第(4)項の高耐
久性低水素過電圧陰極。
(5) The highly durable and low hydrogen overvoltage cathode according to claim (4), wherein the plating metal is the same metal as a part of the components constituting the electrode active metal particles.
(6)組成式が、 LaNi_XAl_Y及び/またはMmNi_XAl_
Y(ただし、Mmはミッシュメタルであり、 2≦X≦8、0<Y≦6である。) である電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属粒子を、電極活性金属粒子の少なくとも一部として
分散させたメッキ浴中に電極芯体を浸漬して複合メッキ
法により、該電極芯体上に該電極活性金属粒子をメッキ
金属と共に共電着せしめることを特徴とする高耐久性低
水素過電圧陰極の製造方法。
(6) The compositional formula is LaNi_XAl_Y and/or MmNi_XAl_
Y (where Mm is a misch metal and 2≦X≦8, 0<Y≦6). The electrode core is immersed in a partially dispersed plating bath, and the electrode active metal particles are co-electrodeposited with the plating metal onto the electrode core by a composite plating method. Method for manufacturing hydrogen overvoltage cathode.
(7)メッキ金属が電極芯体上に層状に形成せられ、電
極活性金属粒子の一部が該層の表面に露出してなる特許
請求の範囲第(6)項記載の高耐久性低水素過電圧陰極
の製造方法。
(7) High durability and low hydrogen according to claim (6), wherein the plated metal is formed in a layer on the electrode core, and a part of the electrode active metal particles are exposed on the surface of the layer. Method of manufacturing overvoltage cathode.
(8)電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属を、電極活性金属粒子の少なくとも一部として含有
する層を焼付け法あるいは溶融塗布法により、該電極活
性金属粒子の一部が該層の表面に露出するように電極芯
体上に設けることを特徴とする高耐久性低水素過電圧陰
極の製造方法。
(8) A layer containing a hydrogen storage metal capable of electrochemically absorbing and desorbing hydrogen as at least a part of the electrode active metal particles is formed by a baking method or a melt coating method so that a part of the electrode active metal particles becomes part of the layer. A method for producing a highly durable and low hydrogen overvoltage cathode, the cathode being provided on an electrode core so as to be exposed on the surface of the cathode.
(9)電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属または、該金属と他の低水素過電圧金属からなる電
極活性金属粒子をその一部が少なくとも一方の面の表面
より露出するように含有せしめられたシートを作成し、
該シートの該粒子露出面と反対側の面を電極芯体に固定
する高耐久性低水素過電圧陰極の製造方法。
(9) Contains electrode-active metal particles consisting of a hydrogen-absorbing metal that can electrochemically absorb and release hydrogen, or this metal and another low hydrogen overvoltage metal, so that a part of the particles is exposed from the surface of at least one side. Create a required sheet,
A method for producing a highly durable and low hydrogen overvoltage cathode, in which a surface of the sheet opposite to the exposed surface of the particles is fixed to an electrode core.
(10)該シートが糊剤として有機ポリマー粒子を含む
特許請求の範囲第(9)項の高耐久性低水素過電圧陰極
の製造方法。
(10) The method for producing a highly durable and low hydrogen overvoltage cathode according to claim (9), wherein the sheet contains organic polymer particles as a sizing agent.
JP1130174A 1989-05-25 1989-05-25 Low hydrogen overvoltage cathode with high durability and its production Pending JPH02310388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130174A JPH02310388A (en) 1989-05-25 1989-05-25 Low hydrogen overvoltage cathode with high durability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130174A JPH02310388A (en) 1989-05-25 1989-05-25 Low hydrogen overvoltage cathode with high durability and its production

Publications (1)

Publication Number Publication Date
JPH02310388A true JPH02310388A (en) 1990-12-26

Family

ID=15027809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130174A Pending JPH02310388A (en) 1989-05-25 1989-05-25 Low hydrogen overvoltage cathode with high durability and its production

Country Status (1)

Country Link
JP (1) JPH02310388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610445B1 (en) * 1999-04-14 2003-08-26 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode, battery including the same and method for producing the both

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610445B1 (en) * 1999-04-14 2003-08-26 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode, battery including the same and method for producing the both

Similar Documents

Publication Publication Date Title
Safizadeh et al. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review
Tilak et al. High performance electrode materials for the hydrogen evolution reaction from alkaline media
EP0851520B1 (en) Nickel-hydrogen secondary battery and process for producing electrode therefor
JPS6136591B2 (en)
JP2629963B2 (en) High durability low hydrogen overvoltage cathode
US5071720A (en) Electrochemical cell
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
JP2018081812A (en) Gas diffusion layer for air electrode
JP2005280164A (en) Composite sheet body and its manufacturing method
JP4437338B2 (en) Positive electrode for alkaline storage battery
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
US4877508A (en) Highly durable cathode of low hydrogen overvoltage and method for manufacturing the same
JPH02310388A (en) Low hydrogen overvoltage cathode with high durability and its production
JPS6145711B2 (en)
JPH0250992A (en) High-durability low hydrogen overvoltage cathode and manufacture thereof
JPH02258992A (en) Cathode having low hydrogen overvoltage and high durability and production thereof
JPS63145790A (en) Highly durable low-hydrogen overvoltage cathode and its production
Parimala et al. Effect of electroless coating of Cu, Ni and Pd on ZrMn0. 2V0. 2Fe0. 8Ni0. 8 alloy used as anodes in Ni-MH batteries
JPH09312157A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS6112032B2 (en)
JP3236682B2 (en) Electrolytic cathode and method for producing the same
JPH01275791A (en) Cathode having high durability and low hydrogen overvoltage and production thereof
JP3542501B2 (en) Hydrogen storage electrode
JPH1167194A (en) Hydrogen storage alloy electrode and manufacture thereof