JPS63145790A - Highly durable low-hydrogen overvoltage cathode and its production - Google Patents

Highly durable low-hydrogen overvoltage cathode and its production

Info

Publication number
JPS63145790A
JPS63145790A JP61068503A JP6850386A JPS63145790A JP S63145790 A JPS63145790 A JP S63145790A JP 61068503 A JP61068503 A JP 61068503A JP 6850386 A JP6850386 A JP 6850386A JP S63145790 A JPS63145790 A JP S63145790A
Authority
JP
Japan
Prior art keywords
metal
electrode
hydrogen
particles
highly durable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61068503A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Eiji Endo
栄治 遠藤
Masaru Yoshitake
優 吉武
Naoki Yoshida
直樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPS63145790A publication Critical patent/JPS63145790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To effectively prevent the oxidation of the activated component of an electrode, by using a hydrogen storage metal capable of electrochemically occluding and discharging hydrogen for the activated metal particles in the electrode obtained by providing the electrode activated metal particles on an electrode core. CONSTITUTION:A layer 2 on which the electrode activated metal particles 3 are exposed is formed on the electrode core 1. The metal layer 2 and the activated metal particles 3 are bound with a binder (PTFE, etc.), Raney nickel, etc., are used for the activated metal particles 3, and about 5-90wt% of the particles is made of a hydrogen occluding metal. A lanthanum-nickel based alloy exemplified by LaNi5-xXxYy, etc., (0<=x<=5, 0<=y5, and X and Y are other meals) is used as the hydrogen occluding metal, and the mean particle diameter is controlled to about 0.1-100mum. The electrode is used as the cathode in the electrolysis of an aq. halogen-alkali soln., hence large amt. of hydrogen occluded in the hydrogen occluding metal is electrochemically oxidized, and the oxidation of the active component of the electrode is prevented.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は高耐久性低水素過電圧陰極、#には酸化性項境
下においても特性の劣化が極めて小さい低水素過電圧陰
極及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a highly durable low hydrogen overvoltage cathode, particularly to a low hydrogen overvoltage cathode which exhibits extremely little deterioration in characteristics even under oxidizing conditions, and a method for producing the same.

〔背景技術〕[Background technology]

低水素過電圧陰極、特にはハロゲン化アルカリ水溶液電
解用の陰極として各種のものが提案されている。これら
の中で1本出願人が既に提案した特開昭54−1127
85号公報で開示される電極は、それまでに知られた電
極に比べて低水素過電圧化及びその耐久性に関し、大き
な効果を持つものであるが、本発明者等は、更に検討を
加えた結果、上記公報で開示される電極もある場合には
、必ずしも耐久性が充分でない場合のあることを見出し
、この解決のため鋭意努力した結果本発明を見出すに至
ったものである。
Various types of low hydrogen overvoltage cathodes have been proposed, particularly as cathodes for aqueous halide electrolysis. Among these, one of the applicants has already proposed Japanese Patent Application Laid-Open No. 54-1127.
Although the electrode disclosed in Publication No. 85 has greater effects in terms of lower hydrogen overvoltage and durability than previously known electrodes, the present inventors have conducted further studies. As a result, we found that some of the electrodes disclosed in the above publications do not always have sufficient durability, and as a result of our earnest efforts to solve this problem, we have arrived at the present invention.

ハロゲン化アルカリ水溶液電解槽で電解により陽極室か
らはハロゲンガス、陰極室からは苛性アルカリ水溶液と
水素ガスを製造することは既によく知られた工業的な塩
素及び苛性アルカリの製造法である。この電解槽の陰極
としては低水素過電圧の上術の如S陰極が好ましく用い
られるが、上記電解槽は運転の途中、種々の理由により
運転を停止することがあり、この場合、N転を再開する
と水素過電圧の上昇することが認められた0本発明者等
はこの現象について深く追求した結果、電解槽の停止時
に陽極と陰極をブスバーで短絡して停止する停止方法の
場合には、短絡時に発生する逆電流により陰極が酸化さ
、れ、ニッケルやコバルトを活性成分とした陰極の場合
はそれらが水酸化物に変質することにより電極活性が低
下し、N転再開後も元の活性状態に戻らない(即ち水素
過電−圧が上昇する)ことをみいだした。
Producing halogen gas from the anode chamber and caustic alkali aqueous solution and hydrogen gas from the cathode chamber by electrolysis in an alkali halide aqueous solution electrolytic cell is already a well-known industrial method for producing chlorine and caustic alkali. As the cathode of this electrolytic cell, an S cathode with a low hydrogen overvoltage as mentioned above is preferably used, but the above electrolytic cell may be stopped for various reasons during operation, and in this case, the N rotation must be restarted. The inventors of the present invention have investigated this phenomenon in depth, and found that when stopping the electrolytic cell, the anode and cathode are short-circuited with a bus bar. The generated reverse current oxidizes the cathode, and in the case of cathodes containing nickel or cobalt as active ingredients, they transform into hydroxides, reducing electrode activity and returning to the original active state even after N conversion is resumed. It was found that the hydrogen overvoltage did not return (that is, the hydrogen overvoltage increased).

また、陽極と陰極を短絡せずに通電を停止する停止方法
においても、高温高濃度NaOH中に陰極が長時間浸漬
されると、陰極活性成分がニッケル又はコバルトの場合
にはそれらが腐食電位に突入して水酸化物に変質しくこ
の反応も一種の電気化学的酸化反応である)電極活性が
低下することをみいだした。
In addition, even in the stopping method of stopping current supply without shorting the anode and cathode, if the cathode is immersed in high-temperature, high-concentration NaOH for a long time, if the cathode active ingredients are nickel or cobalt, they will reach a corrosion potential. (This reaction is also a type of electrochemical oxidation reaction) and the electrode activity was found to decrease.

〔発明の開示〕[Disclosure of the invention]

そこでこの現象を防止するため鋭意検討した結果、電気
化学的に水素の吸蔵、放出を行い、かつ水素過電圧の低
い水素吸蔵金属を電極活性成分の一部又は全部に用いれ
ば、前記の様な電気槽の停止においては、水素吸蔵金属
中に吸蔵された多量の水素が電気化学的に酸化されるこ
とで電極活性成分の酸化を効果的に防止できること、即
ち活性を長期に維持できることを見出し、本発明を完成
したもので、本発明は電極活性金属粒子が電極芯体上に
設けられてなる電極において、該電極活性粒子の一部又
は全部が電気化学的に水素の吸蔵及び放出のできる水素
吸蔵金属である高耐久性低水素過電圧陰極及び後述する
上記の高耐久性低水素過電圧陰極の製造方法を要旨とす
るものである。
Therefore, as a result of intensive studies to prevent this phenomenon, we found that if a hydrogen storage metal that electrochemically absorbs and releases hydrogen and has a low hydrogen overvoltage is used as part or all of the electrode active component, the above-mentioned electrical We discovered that when the tank is stopped, the large amount of hydrogen stored in the hydrogen storage metal is electrochemically oxidized, which effectively prevents the oxidation of the electrode active component, that is, the activity can be maintained for a long period of time. The invention has been completed, and the present invention provides an electrode in which electrode-active metal particles are provided on an electrode core, in which some or all of the electrode-active particles can absorb and release hydrogen electrochemically. The gist of the present invention is a highly durable low hydrogen overvoltage cathode made of metal and a method for manufacturing the above-mentioned highly durable low hydrogen overvoltage cathode described below.

ここで電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属とはアルカリ性水溶液中で次の様な電極反応を行う
ものを言う、即ち還元反応では水を還元して生成した水
素原子を金属中に吸蔵し。
Here, hydrogen storage metals that can absorb and release hydrogen electrochemically refer to metals that undergo the following electrode reaction in an alkaline aqueous solution. In other words, in the reduction reaction, hydrogen atoms generated by reducing water are transferred into the metal. It absorbs.

酸化反応では吸蔵水素を金属表面で水酸イオンと反応さ
せて水にする反応を行うものをいう0反応式を以下に示
す。
In the oxidation reaction, the zero reaction formula is shown below, which is a reaction in which occluded hydrogen is reacted with hydroxide ions on the metal surface to form water.

吸蔵 放出 Mは水素吸蔵金属であり、 MHはそれの水素化物を示
す、この水素吸蔵金属を電極活性粒子の一部又は全部と
した陰極を用いて1例えばイオン膜性による食塩電解を
行った場合、通電初期には反応式(1)の右向き反応に
より水素吸蔵金属中に水素が吸蔵され、やがて水素の吸
蔵が飽和に達すると以下に示す反応(2)により、水素
吸蔵金属の表面で水素が発生し、本来の陰極上における
電極反応が進行する。
Storage-release M is a hydrogen-absorbing metal, and MH represents its hydride. For example, when salt electrolysis using an ionic membrane is performed using a cathode in which this hydrogen-absorbing metal is part or all of the electrode active particles. At the initial stage of energization, hydrogen is stored in the hydrogen-absorbing metal due to the rightward reaction of reaction formula (1), and when hydrogen storage eventually reaches saturation, hydrogen is absorbed on the surface of the hydrogen-absorbing metal by reaction (2) shown below. occurs, and the electrode reaction on the original cathode proceeds.

HO+ e  54 H2+ OH(2)一方、電槽の
短絡などによる停と時には、水素吸蔵金属中に大量に吸
蔵された水素が電気化学的に反応式(1)の左向きの反
応により水素を放出し、即ち電気化学的に水素を酸化し
て酸化電流を負担することにより電極活性粒子自体の酸
化を効果的に防止することができる。
HO+ e 54 H2+ OH (2) On the other hand, in the event of a power outage due to a short circuit in the battery case, a large amount of hydrogen stored in the hydrogen storage metal electrochemically releases hydrogen through a leftward reaction in equation (1). That is, by electrochemically oxidizing hydrogen and applying an oxidation current, oxidation of the electrode active particles themselves can be effectively prevented.

この様に本発明に使用しうる水素吸蔵金属は上述の如く
、電気化学的に水素を吸蔵及び放出できるものであり、
具体的には LaN15−XxXY9等で代表されるランタンニッケ
ル系合金(ここでXは0≦X≦5.0≦y≦5.X、Y
は他の金属)や M NiN15−xxxYy(:ミッシュメタル、x、
y、X、Yは同上)で代表されるミツシュメタルΦニッ
ケル系合金、及びT i N i x (0くx≦2)
等で代表されるチタンニッケル系合金等があるが、本発
明に用いられる水素吸蔵合金はこれらに限定されるもの
ではない。
As described above, the hydrogen storage metal that can be used in the present invention is one that can electrochemically store and release hydrogen,
Specifically, lanthanum nickel alloys such as LaN15-XxXY9 (where X is 0≦X≦5.0≦y≦5.
is another metal) or M NiN15-xxxYy (: misch metal, x,
y, X, Y are the same as above), and T i N i x (0x≦2).
There are titanium-nickel alloys represented by the above, but the hydrogen storage alloys used in the present invention are not limited to these.

これらの金属の水素過電圧は一般的に低いため、これら
の微粒子を電極活性物質として用いれば効果的に水素過
電圧を低減できるが、ざらに過電圧を低減するために水
素過電圧のより低いラネーニッケルやラネーコバルト等
の粒子と水素吸蔵金属とを共存させても良いことはもち
ろんである。
Since the hydrogen overvoltage of these metals is generally low, hydrogen overvoltage can be effectively reduced by using these fine particles as an electrode active material. However, to roughly reduce the overvoltage, Raney nickel and Raney cobalt, which have lower hydrogen overvoltage, are used. It goes without saying that particles such as the above and the hydrogen storage metal may coexist.

上述のラネーニッケルやラネーコバルト等の粒子を併用
する場合、特に製法として、後述の複合メッキ法を採用
する時には、これらの粒子と水素吸蔵金属とが予めバイ
ンダーで結合されている事が好ましい。
When using the above-mentioned Raney nickel, Raney cobalt, etc. particles together, especially when the below-mentioned composite plating method is adopted as a manufacturing method, it is preferable that these particles and the hydrogen storage metal are bonded in advance with a binder.

この場合、バインダーとしては、製造工程における安定
性の点でフッ素樹脂が好ましく、特にはポリテトラフル
オロエチレン(PTFE)、四フッ化エチレン−六フッ
化プロピレン共重合体が好ましい。
In this case, the binder is preferably a fluororesin from the viewpoint of stability during the manufacturing process, and polytetrafluoroethylene (PTFE) and tetrafluoroethylene-hexafluoropropylene copolymer are particularly preferred.

ラネーニッケル、ラネーコバルト等の粒子、水素吸蔵金
属粒子およびバインダーの混合物粉末中のバインダー含
有率は0.1wt%〜10wt%が好ましい、0.1w
t%より少ないとバインダーとして十分には作用せず、
10wt%より多いとバインダーによる電極活性金属粒
子の被覆により電極活性が低下してしまう。
The binder content in the mixture powder of particles such as Raney nickel and Raney cobalt, hydrogen storage metal particles and binder is preferably 0.1wt% to 10wt%, 0.1w
If it is less than t%, it will not function sufficiently as a binder,
If the amount exceeds 10 wt%, the electrode active metal particles will be coated with the binder, resulting in a decrease in electrode activity.

この場合、初期の目的を達成するためには、該水素吸蔵
金属は電極活性金属全体中で5〜9゜wt%、特には7
0〜80wt%存在せしめるのが好ましい。
In this case, in order to achieve the initial objective, the hydrogen storage metal should be present in an amount of 5 to 9% by weight, especially 7% of the total electrode active metal.
Preferably, it is present in an amount of 0 to 80 wt%.

またこれらの水素吸蔵金属は水素の吸蔵、放出により脆
性破壊をおこし微粉化していくことが知られているため
、この微粉化による脱落等を防ぐために、あらかじめ機
械的な粉砕や気相中で水素ガスの吸蔵放出をくり返すこ
とにより微粉化した金属を用いたり、この脱落を防止す
るためマトリックス材として前記ラネーニッケルやラネ
ーコバルトの外に、金属粒子、例えばニッケル粉末やバ
インダーとしてポリマー粉末等を用いてもよい。
In addition, these hydrogen storage metals are known to cause brittle fracture and become pulverized due to absorption and release of hydrogen, so in order to prevent them from falling off due to pulverization, it is necessary to crush them mechanically or to pulverize hydrogen in the gas phase in advance. Metals that have been pulverized by repeated absorption and release of gases are used, and in order to prevent this from falling off, metal particles such as nickel powder and polymer powders are used as binders in addition to the Raney nickel and Raney cobalt as matrix materials. Good too.

更に、化学メッキにより、該金属粒子を金属薄層で覆う
マイクロカプセル化が好ましい。
Furthermore, microencapsulation in which the metal particles are covered with a thin metal layer by chemical plating is preferred.

ここで金mC4層は、一般に内部と通ずるマイクロポア
があるものであるから、該gJ層を構成する金属は、必
ずしも水素透過能があることを要しないが、電極として
の性能を考慮した場合、水素透過能のあるものが好まし
い。
Here, since the gold mC4 layer generally has micropores that communicate with the inside, the metal constituting the gJ layer does not necessarily need to have hydrogen permeability, but when considering its performance as an electrode, Those with hydrogen permeability are preferred.

このような水素透過能のある金属としては、多数ある中
でニッケル、コバルト、鉄などが好ましく、他には、コ
スト的に若干問題があるがパラジウム等も好適に使用さ
れうる。
As such metals having hydrogen permeability, among many metals, nickel, cobalt, iron, etc. are preferable, and palladium and the like may also be suitably used, although there are some problems in terms of cost.

次に上述の金属のB膜の厚みは、薄膜層の性状(密度、
水素透過速度、水素溶解量)、水素吸蔵金属粒子の性状
(水素透過速度、密度)、大きさによって変りうる。即
ち、被覆層の厚みはその中における水素の拡散が水素の
吸、蔵、放出の全過程の中で律速段階となるほど厚くな
ってはならず、かつ水素吸蔵金属の水素吸蔵放出に伴な
う体積変化に耐え、微粉化を抑制できる強度を有する厚
みを有する必要がある。又必要以上に厚みを増すことは
、マイクロカプセル化水素吸蔵金属に占める水素吸蔵金
属の重量割合を減少させ、マイクロカプセル化体の単位
体積あたりの水素吸蔵金属を低下させる。一般的には薄
層を構成する金属の重量が水素吸蔵金属粒子の重量の3
0%以下、好ましくは5〜15%程度になるように厚み
を選択するとよい結果が得られる。
Next, the thickness of the metal B film mentioned above is determined by the properties of the thin film layer (density,
(hydrogen permeation rate, amount of hydrogen dissolved), properties of hydrogen storage metal particles (hydrogen permeation rate, density), and size. In other words, the thickness of the coating layer must not be so thick that the diffusion of hydrogen therein becomes the rate-limiting step in the entire process of hydrogen absorption, storage, and release, and the thickness of the coating layer must not be so thick that hydrogen diffusion within it becomes the rate-determining step in the entire process of hydrogen absorption, storage, and release, and the thickness of the coating layer must not be so large that hydrogen diffusion within it becomes the rate-limiting step in the entire process of hydrogen absorption, storage, and release. It is necessary to have a thickness that is strong enough to withstand volume changes and suppress pulverization. Moreover, increasing the thickness more than necessary decreases the weight ratio of the hydrogen storage metal in the microencapsulated hydrogen storage metal, and decreases the hydrogen storage metal per unit volume of the microencapsulated body. Generally, the weight of the metal constituting the thin layer is 3 times the weight of the hydrogen-absorbing metal particles.
Good results can be obtained by selecting the thickness to be 0% or less, preferably about 5 to 15%.

一般に水素吸蔵金属粒子は、平均粒子径が0.1〜10
0μ程度のものが使用されることから、該?jN2の厚
みは、金属種によっても左右されるが、0.01〜20
終、好ましくは0.03〜10=程度が好ましい、該厚
みが上記下限より・薄いと水素吸蔵金属の微粉化防止の
効果が小さくなる。
Generally, hydrogen storage metal particles have an average particle diameter of 0.1 to 10
Since a material with a diameter of about 0μ is used, is it applicable? The thickness of jN2 depends on the metal type, but is 0.01 to 20
Finally, the thickness is preferably about 0.03 to 10. If the thickness is thinner than the above lower limit, the effect of preventing pulverization of the hydrogen storage metal will be reduced.

また、該厚みが上記上限より大きいと水素の透過速度が
小さくなり、本発明の目的が充分に達せられない、また
、上述の水素吸蔵金属粒子の平均粒径は、電極表面の多
孔性度及び後述する電極製造の際の粒子の分散性にも関
係するが、0.1ル〜1 ooILであれば充分である
In addition, if the thickness is larger than the above upper limit, the hydrogen permeation rate becomes low and the object of the present invention cannot be fully achieved. Although it is related to the dispersibility of particles during electrode production, which will be described later, 0.1 l to 1 ooIL is sufficient.

上記範囲中、電極表面の多孔性等の点から、好ましくは
、0.91L〜50終、更に好ましくは1μ〜30IL
である。
Within the above range, from the viewpoint of porosity of the electrode surface, etc., preferably 0.91L to 50IL, more preferably 1μ to 30IL
It is.

本発明陰極の好ましい態様は、電極活性金属粒子がメッ
キ金属により、電極芯体に付着されている陰極である。
A preferred embodiment of the cathode of the present invention is a cathode in which the electrode active metal particles are attached to the electrode core by plating metal.

この場合、メッキ金属は電極芯体上に層状に設けられ、
該電極活性金属粒子はメッキ金属層の表面に一部露出し
ている。
In this case, the plated metal is provided in a layer on the electrode core,
The electrode active metal particles are partially exposed on the surface of the plated metal layer.

更に本発明に用いる粒子は、電極のより低い水素過電圧
を達成するため1表面多孔性であることが好ましい。
Furthermore, the particles used in the present invention are preferably single-surface porous in order to achieve a lower hydrogen overpotential of the electrode.

この表面多孔性とは、粒子の全表面が多孔性であること
のみを意味するものでなく、前述したメッキ金属から成
る層より露出した部分のみが多孔性になっておれば充分
である。
This surface porosity does not mean only that the entire surface of the particle is porous; it is sufficient that only the portion exposed from the layer made of the plated metal described above is porous.

多孔性の程度は、その程度がかなり大きい程好ましいが
、過度に多孔性にすると電極芯体上に設けられた層の機
械的強度が低下する為多孔度(porositF)が2
0〜90%にすることが好ましい、上記範囲中更に好ま
しくは35〜85%、特に好ましくは50〜80%であ
る。
The degree of porosity is preferably as large as possible; however, if the degree of porosity is excessively large, the mechanical strength of the layer provided on the electrode core decreases, so the degree of porosity (porositF) should be 2.
It is preferably 0 to 90%, more preferably 35 to 85%, particularly preferably 50 to 80%.

尚、上記多孔度とは、公知の水銀圧入法或いは゛水置換
法によって測定される値である。
The above porosity is a value measured by a known mercury intrusion method or water displacement method.

上述の電極活性金属粒子が金属基体上に強固に設けられ
るための層は、該粒子を構成する成分の一部と同じ金属
であることが好ましい。
The layer on which the electrode active metal particles are firmly provided on the metal substrate is preferably made of the same metal as part of the components constituting the particles.

かくして、本発明の陰極の電極表面には、多数の上述の
粒子が付着しており、巨視的に見ると、陰極表面は微多
孔性になっている。
Thus, a large number of the above particles are attached to the electrode surface of the cathode of the present invention, and macroscopically, the cathode surface is microporous.

このように本発明の陰極は、それ自体低い水素過電圧を
有する水−素吸蔵金属を含む粒子が電極表面に多数存在
し、且つ前述した通り、電極表面が微多孔性になってい
るため、それだけ電極活性面が大きくなり、これらの相
乗効果によって、効果的に水素過電圧の低減を計ること
ができる。
In this way, the cathode of the present invention has a large number of particles containing a hydrogen-absorbing metal, which itself has a low hydrogen overvoltage, on the electrode surface, and as mentioned above, the electrode surface is microporous. The active surface of the electrode becomes larger, and the synergistic effect of these makes it possible to effectively reduce the hydrogen overvoltage.

しかも本発明に用いられる粒子は、上記好ましい態様に
おいては、上記金属から成る層によって、電極表面に強
固に付着しているので、劣化しにくく、上記低水素過電
圧の持続性を飛躍的に延ばすことができる。
Furthermore, in the preferred embodiment, the particles used in the present invention are firmly attached to the electrode surface by the layer made of the metal, so they are not easily deteriorated, and the sustainability of the low hydrogen overvoltage can be dramatically extended. I can do it.

本発明の電極芯体はその材質として任意の適当な導電性
金属、例えばTi 、Zr、Fe、Ni。
The electrode core of the present invention may be made of any suitable conductive metal, such as Ti, Zr, Fe, or Ni.

V、Mo 、Cu、、Ag、Mn、白金属金属、黒鉛、
Crから選ばれた金属又はこれらの金属から選ばれた合
金が採用し得る。この内Fe 、Fe合金(F e−N
 i合金、Fe−Cr合金、Fe−Ni−Cr合金など
)、Ni、Ni合金(N1−Cu合金、Ni−Cr合金
など)、Cu、Cu合金などを採用することが好ましい
、特に好ましい電極芯体の材質はFe 、 Cu 、 
Ni 、 Fe−Ni合金、Fe−Ni−Cr合金であ
る。
V, Mo, Cu, , Ag, Mn, white metal, graphite,
A metal selected from Cr or an alloy selected from these metals may be employed. Of these, Fe, Fe alloy (Fe-N
Particularly preferred electrode cores preferably employ Ni, Ni alloys (N1-Cu alloys, Ni-Cr alloys, etc.), Cu, Cu alloys, etc. The material of the body is Fe, Cu,
These are Ni, Fe-Ni alloy, and Fe-Ni-Cr alloy.

電極芯体の構造は、使用する電極の構造に合わせて任意
適宜な形状寸法にすることができる。その形状は例えば
板状、多孔状、網状(例えばエクスパンドメタルなど)
、すだれ状等が採用でき。
The structure of the electrode core can be made into any suitable shape and size depending on the structure of the electrode used. Its shape is, for example, plate-like, porous, or net-like (e.g. expanded metal)
, blind shapes etc. can be adopted.

これらを平板状、曲板状、筒状にしてもよい。These may be shaped like a flat plate, a curved plate, or a cylinder.

本発明の上記好ましい態様の場合、層の厚みは、採用す
る粒子の粒径にもよるが、20x〜2mmであれば充分
で、更に好ましくは25戸〜1mmである。これは本発
明では、前述した粒子の一部が電極芯体上の金属から成
る層に埋没した状態で、付着せしめられるからである。
In the case of the above-mentioned preferred embodiment of the present invention, the thickness of the layer is sufficient if it is 20x to 2 mm, and more preferably 25x to 1 mm, although it depends on the particle size of the particles employed. This is because, in the present invention, some of the particles described above are attached to the electrode core while being buried in the metal layer.

か−る状態を理解しやすい様に、本発明の電極表面の断
面図を第1図に示す0図示されている様に電極芯体l上
に金属から成る層2が設けられ、該層に電極活性金属粒
子3の一部がその層の表面から露出する様に含まれてい
る。尚、層2中の粒子の割合は5〜80wt%であるこ
とが好ましく、更に好ましくは10〜60wt%である
。か−る状態の外、電極芯体と本発明の粒子を含む層と
の間に、Ni 、Co、Ag、Cuから選ばれた金属か
ら成る中間層を設けることによって、更に本発明の電極
の耐久性を向上させることができる。か−る中間層は、
上記層の金属と同種又は異種であっても差しつかえない
が、か−る中間層を前述した層との付着性の点からこれ
らの中間層及び暦の金属は同種のものであることが好ま
しい、中間層の厚みは、機械的強度等の点から5〜Lo
opであれば充分であり、更に好ましくは20〜80p
、特に好ましくは30〜501Lである。
In order to make it easier to understand such a state, a cross-sectional view of the electrode surface of the present invention is shown in FIG. 1. As shown in FIG. A portion of the electrode active metal particles 3 are included so as to be exposed from the surface of the layer. The proportion of particles in layer 2 is preferably 5 to 80 wt%, more preferably 10 to 60 wt%. In addition to this state, the electrode of the present invention can be further improved by providing an intermediate layer made of a metal selected from Ni, Co, Ag, and Cu between the electrode core and the layer containing the particles of the present invention. Durability can be improved. The middle class is
The metal of the above-mentioned layer may be the same or different, but from the viewpoint of adhesion between the intermediate layer and the above-mentioned layer, it is preferable that the metal of the intermediate layer and the metal of the layer is of the same type. , the thickness of the intermediate layer is 5 to Lo from the viewpoint of mechanical strength, etc.
OP is sufficient, more preferably 20-80p
, particularly preferably from 30 to 501 L.

この様な中間層を設けた電極を理解しやすいように、電
極の断面図を第2図に示した。
To facilitate understanding of the electrode provided with such an intermediate layer, a cross-sectional view of the electrode is shown in FIG.

lは電極芯体、4は中間層、2は粒子を含む層、3は電
極活性粒子である。
1 is an electrode core, 4 is an intermediate layer, 2 is a layer containing particles, and 3 is an electrode active particle.

電極活性金属粒子の具体的な付着手段としては1種々の
手法が採用され、例えば複合メッキ法、溶融塗布法、焼
付法、加圧形成焼結法などが採用される。
As a specific means for attaching the electrode active metal particles, various methods are employed, such as a composite plating method, a melt coating method, a baking method, a pressure forming sintering method, and the like.

この内、特に複合メッキ法が、良好に電極活性金属粒子
を付着し得るので好ましい。
Among these, the composite plating method is particularly preferable because it allows the electrode active metal particles to be attached well.

複合メッキ法とは、金属層を形成する金属イオンを含む
水溶液に、−例としてニッケルを該金属粒子の成分の一
部とする金属粒子を分散せしめた浴で、電極芯体を陰極
としてメッキを行い、電極芯体上に、上記金属と金属粒
子を共電着せしめるものである。尚、更に詳しく述べれ
ば、浴中で粒子は電場の影響によってバイポーラ−とな
り、陰極表面近傍に接近したときメッキの局部的電流密
度を増大させ、陰極に接触したとき通常の金属イオンの
還元による金属メッキにより芯体に共電着するものと考
えられる。
The composite plating method is a bath in which metal particles, for example, nickel as a component of the metal particles, are dispersed in an aqueous solution containing metal ions forming a metal layer, and plating is performed using the electrode core as a cathode. The metal and metal particles are co-electrodeposited onto the electrode core. In more detail, the particles become bipolar in the bath under the influence of the electric field, increase the local current density of the plating when they approach near the cathode surface, and when they come into contact with the cathode, the particles become bipolar due to the reduction of normal metal ions. It is thought that it is co-electrodeposited on the core by plating.

この複合メッキ法において、ラネーニッケル等と水素吸
蔵金属の2種類の電極活性金属粒子を用いる場合、これ
らの粒子の電着特性が異り、電着された被覆層中のこれ
らの2種の粒子の存在割合が一定となりにくいため、前
述の如くこれら“2種の粒子を予め、バインダーで結合
しておくことが好ましい。
In this composite plating method, when two types of electrode active metal particles such as Raney nickel and hydrogen storage metal are used, the electrodeposition characteristics of these particles are different, and the difference between these two types of particles in the electrodeposited coating layer is Since the abundance ratio is difficult to be constant, it is preferable to bind these two types of particles in advance with a binder as described above.

例えば、金属層としてニッケル層を採用する場合、全塩
化ニッケル浴、高塩化ニッケル浴、塩化ニッケルー酢酸
ニッケル浴、ワット浴、スルファミン醜Ni浴など種々
のニッケルメッキ浴が採用しうる。
For example, when a nickel layer is used as the metal layer, various nickel plating baths can be used, such as a total nickel chloride bath, a high nickel chloride bath, a nickel chloride-nickel acetate bath, a Watts bath, and a sulfamine-ugly Ni bath.

この様な粒子の浴中での割合は、Ig/Jl〜200 
g / lにしておくことが電極表面に粒子の付着状態
を良好にする意味から好ましい、又分散メッキ作業時の
温度条件は20〜80℃、電流密度はIA/drn” 
〜20A/dtn’であることが好ましい。
The proportion of such particles in the bath is Ig/Jl ~ 200
g/l is preferable from the viewpoint of improving the adhesion of particles to the electrode surface, and the temperature conditions during dispersion plating work are 20 to 80°C, and the current density is IA/drn.
It is preferable that it is -20A/dtn'.

尚、メッキ浴には・、歪減少用の添加剤、共電着を助長
する添加剤等を適宜加えてよいことはもちろんである。
It goes without saying that additives for reducing strain, additives for promoting co-electrodeposition, etc. may be added to the plating bath as appropriate.

また粒子の密着強度をさらに向上させるために、複合メ
ッキ終了後に1粒子を完全には被層しない程度に電解メ
ッキ又は無電解メッキを行ったり、不活性又は還元性雰
囲気中で加熱焼成等を適宜行ってもよい。
In addition, in order to further improve the adhesion strength of the particles, electrolytic plating or electroless plating is performed to the extent that each particle is not completely coated after composite plating, or heating and baking in an inert or reducing atmosphere are performed as appropriate. You may go.

この外前述した様に、電極芯体と粒子を含む金属層との
間に中間層を設ける場合は、電極芯体をまずNiメッキ
、Coメツ革又はCuメッキし、その後前述した分散メ
ッキ法、溶融噴霧法の手段でその上に粒子を含む金属層
を形成する。
In addition to this, as described above, when providing an intermediate layer between the electrode core and the metal layer containing particles, the electrode core is first plated with Ni, Co leather, or Cu, and then the dispersion plating method described above is applied. A metal layer containing particles is formed thereon by means of melt spraying.

かへる場合のメッキ浴としては上述した種々のメッキ浴
が採用でき、Cuメッキについても公知のメッキ浴が採
用できる。
The various plating baths mentioned above can be used as plating baths in the case of heating, and known plating baths can also be used for Cu plating.

この様にして、電極芯体上に金属層を介して水素吸蔵金
属を含む電極活性金属粒子が付着した電極が得られる。
In this way, an electrode is obtained in which electrode active metal particles containing a hydrogen storage metal are attached to the electrode core via a metal layer.

次に本発明の陰極を製造する別の方法について説明する
Next, another method for manufacturing the cathode of the present invention will be explained.

本発明の陰極は溶融塗布法あるいは焼付法によっても製
造されうる。即ち、水素吸蔵金属粉末または、これと他
の低水素過電圧金属粉末との混合粉末(例えば、溶融粉
砕法等によって得られる)を所定粒度に調整し、プラズ
マ、酸素/アセチレン炎等により溶融吹付けし、電極芯
体上にこれら粒子の部分的に露出した被覆層を得たり、
あるいはこれら粒子の分散液ないしスラリーを電極芯体
上に塗布し、焼成により焼付け、所望の被覆層を得るも
のである。
The cathode of the present invention can also be manufactured by a melt coating method or a baking method. That is, a hydrogen-absorbing metal powder or a mixed powder of this and other low hydrogen overvoltage metal powder (for example, obtained by melting and pulverization) is adjusted to a predetermined particle size, and then melted and sprayed using plasma, oxygen/acetylene flame, etc. and obtain a partially exposed coating layer of these particles on the electrode core,
Alternatively, a dispersion or slurry of these particles is applied onto the electrode core and baked to obtain a desired coating layer.

また、本発明の陰極は水素吸蔵金属を含む電極シートを
予め製作しておき、これを電極芯体上に取付けることに
よっても得られる。この場合、該シートは水素吸蔵金属
の粒子または、水素吸蔵金属の粒子と他の金属粒子(例
えば低水素過電圧特性を示すラネー合金等)を有機ポリ
マー粒子と混合して成形し、又は成形後焼成してシート
となす方法が好ましい、勿論、この場合該シートの表面
から電極活性粒子が露出している。かくして得られる該
シートは電極芯体上に圧着し、加熱して電極芯体上に固
着される。
The cathode of the present invention can also be obtained by preparing an electrode sheet containing a hydrogen-absorbing metal in advance and attaching it to an electrode core. In this case, the sheet is formed by mixing hydrogen-absorbing metal particles or hydrogen-absorbing metal particles and other metal particles (for example, Raney alloy showing low hydrogen overvoltage characteristics) with organic polymer particles, or by baking after forming. Of course, in this case, the electrode active particles are exposed from the surface of the sheet. The sheet thus obtained is pressed onto the electrode core and fixed onto the electrode core by heating.

本発明の電極はイオン交換膜性塩化アルカリ水溶液電解
用の電極、特に陰極として採用できることはもちろんで
あるが、この外、多孔性隔膜(例えばアスベスト隔膜)
を用いた塩化アルカリ水溶液電解用の電極としても採用
し得る。
The electrode of the present invention can of course be used as an electrode for ion-exchange membrane-based alkaline chloride aqueous solution electrolysis, especially as a cathode, but it can also be used as a porous diaphragm (e.g. asbestos diaphragm).
It can also be used as an electrode for aqueous alkali chloride electrolysis using.

塩化アルカリ電解用陰極として用いる場合、電解槽材料
から陰極液中に溶出する鉄分が陰極上に電析し、電極活
性を低下せしめることがあり、これを防止するために1
本発明の陰極上に、特開昭57−143482号公報で
開示されるような非電子電導性物質を付着せしめること
は、有効な方法である。
When used as a cathode for alkali chloride electrolysis, iron dissolved from the electrolytic cell material into the catholyte may be deposited on the cathode, reducing electrode activity.
It is an effective method to deposit a non-electronically conductive material as disclosed in JP-A-57-143482 on the cathode of the present invention.

〔発明を実施するための最良の形態〕[Best mode for carrying out the invention]

(実施例1) 市販のLaNi5を500メツシユ以下に粉砕し、この
粉末を塩化ニッケル浴(N i Cl 2・6HO30
0g/i 、HBO38g/交)中に5 g / lの
割合で投入し、これをよく攪拌しながらNi製エキスパ
ンデッドメタルを陰極とし、Ni板を陽極として複合メ
ッキを行った。温度は40℃、pHは2.5、電流密度
は4A/drrfとした。この結果、黒灰色の複合メッ
キ層が得られ、LaNi5の共析量は10g/dm’で
あった。
(Example 1) Commercially available LaNi5 was pulverized to 500 mesh or less, and this powder was heated in a nickel chloride bath (NiCl2.6HO30
0 g/i, HBO 38 g/l) at a rate of 5 g/l, and while stirring well, composite plating was performed using the Ni expanded metal as the cathode and the Ni plate as the anode. The temperature was 40° C., the pH was 2.5, and the current density was 4 A/drrf. As a result, a black-gray composite plating layer was obtained, and the eutectoid amount of LaNi5 was 10 g/dm'.

また、該メッキ層の厚みは約2501L、多孔率は約6
0%であった。
The thickness of the plating layer is approximately 2501L, and the porosity is approximately 6.
It was 0%.

ついで、この電極を、陽極を Ru O2−T t O2とし、含フッ素系陽イオン交
模膜(旭硝子株製CF=CF2とCF2=CFO(CF
2)3COoCH3 との共重合体、イオン交換容量1.44 腸eq/ g
樹脂)をイオン交換膜とする食塩電解槽用陰極として用
い、短絡に対する抵抗性試験を行った。陽極液は3N 
 NaC1溶液、陰極液を35%N aOHとし90℃
で電流密度30A/drn’として電解開始後3日目に
つぎの短絡試験を実施した。
Next, this electrode was made of RuO2-TtO2 as an anode, and fluorine-containing cation exchange films (CF=CF2 and CF2=CFO (CF
2) Copolymer with 3COoCH3, ion exchange capacity 1.44 intestinal eq/g
Resistance tests against short circuits were conducted using the ion-exchange membrane (resin) as a cathode for a salt electrolytic cell. The anolyte is 3N
NaCl solution, catholyte 35% NaOH at 90℃
The following short circuit test was carried out on the third day after the start of electrolysis at a current density of 30 A/drn'.

まず電解中の陽極と陰極を銅線により短絡して電解を停
止し、そのまま約5時間放置した。この間陰極から陽極
へ流れる電流を観測した。なお陰極液の温度は90℃に
保持した。その後この銅線をとりはずして電解を再開し
た。この操作を5回くり返した後に電極を取り出して3
5%NaOH190℃、電流密度20 A / d m
″で水素過電圧を測定した結果、0.12Vであり、試
験前とほとんど変らなかった。
First, the anode and cathode during electrolysis were short-circuited with a copper wire to stop electrolysis, and the electrolysis was left as it was for about 5 hours. During this time, the current flowing from the cathode to the anode was observed. Note that the temperature of the catholyte was maintained at 90°C. The copper wire was then removed and electrolysis resumed. After repeating this operation 5 times, remove the electrode and
5% NaOH 190 °C, current density 20 A/d m
The hydrogen overvoltage was measured at 0.12 V, which was almost unchanged from before the test.

(実施例2) 市販のL a N i5を25鉢以下に粉砕し、この粉
末を塩化ニッケル浴(NiCM  ・6H20300g
/立、HBO3Bg7文)中に5g/fLの割合で投入
し、さらに市販のラネーニッケル合金粉末(用研ファイ
ンケミカル製、Ni50wt%、A250wt%、20
0メツシユパス)を前記メッキ液に5 g/lの割合で
投入し。
(Example 2) Commercially available L a N i5 was pulverized into 25 pots or less, and this powder was heated in a nickel chloride bath (NiCM 6H20300g).
In addition, commercially available Raney nickel alloy powder (manufactured by Yoken Fine Chemicals, Ni 50 wt%, A 250 wt%, 20
0 mesh pass) was added to the plating solution at a rate of 5 g/l.

これをよく攪拌しながら鉄製エキスパンデッドメタルを
陰極とし、Ni板を陽極として複合メッキを行った。温
度は40℃、PHは2.5.電流密度は3A/drn’
とした。この結果L a N t 5の共析量が6g/
drn’、ラネーニッケル合金の共析量が2g/dtn
’のL a N t 5とラネーニッケル合金の共存す
る複合メッキ層が得られた。このメッキ層の厚みは約3
00g、多孔率は約65%であった。この試料を90℃
の25%NaOH溶液に浸漬してラネーニッケル合金の
Anを展開した後。
While thoroughly stirring this, composite plating was performed using an iron expanded metal as a cathode and a Ni plate as an anode. The temperature is 40°C and the pH is 2.5. Current density is 3A/drn'
And so. As a result, the eutectoid amount of L a N t 5 was 6 g/
drn', the eutectoid amount of Raney nickel alloy is 2g/dtn
A composite plating layer in which LaNt 5 and Raney nickel alloy coexisted was obtained. The thickness of this plating layer is approximately 3
00g, and the porosity was about 65%. This sample was heated to 90℃
After developing the Raney nickel alloy An by immersion in 25% NaOH solution.

実施例1と同じ短絡試験を行った。試験終了後水素過電
圧を測定した結果o、oavであり試験前とほとんど変
らなかった。
The same short circuit test as in Example 1 was conducted. After the test, the hydrogen overvoltage was measured and was o, oav, which was almost the same as before the test.

(実施例3) 市販のL a N i5粉末(30ル以下)と市販の安
定化ラネーニッケル粉末(用研ファインケミカル製、商
品名゛ドライラネーニッケル″)とを高塩化ニッケル浴
(NtSO−6H20200g/見、NjC交  ・6
H20175g/文。
(Example 3) Commercially available LaNi5 powder (30 L or less) and commercially available stabilized Raney nickel powder (manufactured by Yoken Fine Chemicals, trade name: "Dry Raney Nickel") were mixed in a high nickel chloride bath (NtSO-6H20200 g/ml), NjC intersection ・6
H20175g/text.

8  BO340g/文)中にそれぞれl Og / 
1ずつ投入し、これをよく攪拌しなからNi製パンチト
メタルを陰極とし、Ni板を陽極として複合メッキを行
った。温度は50℃、pHは3,0゜′rL流密度は4
 A/ dm’とした。この結果。
8 BO340g/text) each contains l Og/
After stirring well, composite plating was performed using a Ni punched metal as a cathode and a Ni plate as an anode. The temperature is 50℃, the pH is 3,0゜'rL flow density is 4
A/dm'. As a result.

L a N i5と安定化ラネーニッケルを含む複合メ
ッキ層が得られ、この中のL a N i sの共析量
は5g/drn’、安定化ラネーニッケルの共析量は2
g/drrr’であった。また、このメッキ層の厚みは
約250JL、多孔率は約60%であった。これを用い
て実施例1と同じ短絡試験を行った。試験終了後水素過
電圧を測定した結果0.07Vであり試験前とほとんど
変らなかった。
A composite plating layer containing L a N i5 and stabilized Raney nickel was obtained, in which the eutectoid amount of L a N i s was 5 g/drn' and the eutectoid amount of stabilized Raney nickel was 2.
g/drrr'. Further, the thickness of this plating layer was about 250 JL, and the porosity was about 60%. Using this, the same short circuit test as in Example 1 was conducted. After the test, the hydrogen overvoltage was measured and found to be 0.07V, which was almost the same as before the test.

(実施例4) 市太のL a N + 5粉末(15鉢以下)を高塩化
ニッケル浴(N s S O・6 H20200g /
文、N iCl   C6H20175g / fL、
HBO40g/l)中に10g/文の割合で投入し、こ
れをよく攪拌しながら、あらかじめ50給の厚みにニッ
ケルメッキを施した鉄製エキスパンデッドメタルを陰極
とし、Ni板を陽極として複合メッキを行った。温度は
40℃、PHは2.0、電流密度は4A/drn’とし
た。この結果LaN15(7)共析量が10 g/dr
rfである複合メッキ層が得られた。このメッキ層の厚
みは約350鉢、多孔率は約65%であった。これを用
いて実施例1と同様に短絡試験を行った後に水素過電圧
を測定したところ0.10Vであり、試験前とほとんど
変らなかった。
(Example 4) Ichita's L a N + 5 powder (15 pots or less) was added to a high nickel chloride bath (N s SO 6 H 20200 g /
Sentence, N iCl C6H20175g/fL,
10 g/liter of HBO (40 g/l) was added, and while stirring the mixture well, composite plating was carried out using an iron expanded metal plated with nickel to a thickness of 50 mm as a cathode and a Ni plate as an anode. went. The temperature was 40°C, the pH was 2.0, and the current density was 4A/drn'. As a result, the eutectoid amount of LaN15(7) was 10 g/dr.
A composite plating layer that was rf was obtained. The thickness of this plating layer was approximately 350 mm, and the porosity was approximately 65%. After conducting a short circuit test using this in the same manner as in Example 1, the hydrogen overvoltage was measured to be 0.10 V, which was almost unchanged from before the test.

(実施例5) 実施例2のラネーニッケル合金粉末を展開済ラネーニッ
ケルに変えた以外は同じ条件で複合メッキを行った。そ
の結果、L a N s 5と展開ラネーニッケルを含
む複合メッキ層が得られ。
(Example 5) Composite plating was performed under the same conditions as in Example 2 except that the Raney nickel alloy powder was replaced with expanded Raney nickel. As a result, a composite plating layer containing L a N s 5 and expanded Raney nickel was obtained.

LaNi5の共析量は5g/dm’、展開ラネーニメタ
ルの共析量は3g/drrfであった。このメッキ層の
厚みは約400g、多孔率は約70%であった。これを
実施例1と同様に短絡試験を行った。試験終了後の水素
過電圧は0.08Vであり試験前と変らなかった。
The eutectoid amount of LaNi5 was 5 g/dm', and the eutectoid amount of expanded Laney metal was 3 g/drrf. The thickness of this plating layer was about 400 g, and the porosity was about 70%. A short circuit test was conducted on this in the same manner as in Example 1. The hydrogen overvoltage after the test was 0.08V, which was unchanged from before the test.

(比較例) 特開昭54−112785号公報の実施例12に従い、
ラネーニッケル合金複合メッキ陰極を得た。これを用い
て実施例1と同様に短絡試験を行った。試験前の水素過
電圧はo、oavであったものが、試験終了後は0.2
5Vに上昇していた。
(Comparative example) According to Example 12 of JP-A-54-112785,
A Raney nickel alloy composite plated cathode was obtained. A short circuit test was conducted using this in the same manner as in Example 1. The hydrogen overvoltage before the test was o, oav, but after the test it was 0.2
It had risen to 5V.

(実施例6) 実施例1のLaNi5をM m N 1 i、s A 
l o、5(Mm:ミツシュメタル)に変えた以外は実
施例1と同じ操作で複合メッキを行った。その結果、4
.5  0.5ノ共析量が9 、5 g/drrfMm
Ni   An の複合メッキ層が得られた。このメッキ層の厚みは約2
50μ、多孔率は約60%であった。これを実施例1ぶ
同様に短絡に対する抵抗試験を行つた。その結果、水素
過電圧は0.15Vであり、試験前とほとんど変らなか
った。
(Example 6) LaNi5 of Example 1 was M m N 1 i,s A
Composite plating was performed in the same manner as in Example 1, except that the plating was changed to 10,5 (Mm: Mitshu Metal). As a result, 4
.. 5 0.5 eutectoid amount is 9.5 g/drrfMm
A composite plating layer of NiAn was obtained. The thickness of this plating layer is approximately 2
50μ, and the porosity was about 60%. This was subjected to a short circuit resistance test in the same manner as in Example 1. As a result, the hydrogen overvoltage was 0.15V, which was almost unchanged from before the test.

(実施例7) Ni粉とTi粉をT l 2 N iの組成になる様に
混合し、アルゴン雰囲気でアーク熔融法によりTi2N
iを調製し、これを500メツシユ以下に粉砕した。
(Example 7) Ni powder and Ti powder were mixed to have a composition of T l 2 N i, and Ti2N was melted by arc melting in an argon atmosphere.
i was prepared and ground to 500 mesh or less.

このTi2Ni粉末6部、カルボニルニッケル粉末2部
、PTFE粉末2部を乳ばちで混合し、シート状に成型
した。このシートの厚みは約1mm、多孔率は約50%
であった。これをニッケルエキスパンデッドメタルにプ
レスして押し°つけ、その後350℃で1時間アルゴン
雰囲気で焼成して電極とした。これを実施例1と同様に
短絡に対する抵抗試験を行った結果、水素過電圧は0.
17Vであり、試験前とほとんど変らなかった。
6 parts of this Ti2Ni powder, 2 parts of carbonyl nickel powder, and 2 parts of PTFE powder were mixed in a pestle and molded into a sheet. The thickness of this sheet is approximately 1 mm, and the porosity is approximately 50%.
Met. This was pressed onto nickel expanded metal and then fired at 350° C. for 1 hour in an argon atmosphere to form an electrode. As a result of conducting a short circuit resistance test in the same manner as in Example 1, the hydrogen overvoltage was 0.
The voltage was 17V, which was almost unchanged from before the test.

(実施例8) 市販(7) L a N i s (500メツシユ以
下)5部とカルボニルニッケル粉末5部に増粘剤として
メチルセルロースの水溶液を加え、よく混合してペース
トを作成した。これをニッケル製パンチトメタル基板上
にスクリーングプリンテイングにより均一に塗布した0
次にこれを空気中100℃で1時間乾燥した後に、真空
巾約1000℃で1時間焼成しL a N r 5 −
メタル焼結層を形成した。
(Example 8) An aqueous solution of methyl cellulose was added as a thickener to 5 parts of commercially available (7) La Nis (500 mesh or less) and 5 parts of carbonyl nickel powder, and the mixture was thoroughly mixed to prepare a paste. This was applied uniformly onto a nickel punched metal substrate by screening printing.
Next, this was dried in air at 100°C for 1 hour, and then baked at a vacuum width of about 1000°C for 1 hour to obtain L a N r 5 -
A metal sintered layer was formed.

L a N i 5−ニッケル焼結層の厚みは約Inm
であり、この層の多孔率は約50%であった0重量変化
より焼結層中のL a N i5量は約9g/arrt
であった。これを用いて実施例1と同様に短絡試験を行
った結果、水素過電圧はO,14Vであり、試験前とほ
とんど変らなかった。
The thickness of the L a N i 5-nickel sintered layer is approximately Inm
The porosity of this layer was about 50%. From the zero weight change, the amount of L a N i5 in the sintered layer was about 9 g/arrt
Met. A short circuit test was conducted using this in the same manner as in Example 1, and as a result, the hydrogen overvoltage was 0.14 V, which was almost the same as before the test.

(実施例9) 500メツシユバスのL a N s 5を3%J!!
S中で処理し、水洗した後、アンモニア水でPH6,0
〜6.5に調整した市販のニッケル化学メッキ液(上村
工業株式会社製BEL801)に投入し、63〜65℃
で10分間メッキを行った。
(Example 9) 500 mesh bus L a N s 5 3% J! !
After processing in S and washing with water, adjust the pH to 6.0 with aqueous ammonia.
Pour into a commercially available nickel chemical plating solution (BEL801 manufactured by Uemura Kogyo Co., Ltd.) adjusted to ~6.5, and heat to 63~65℃.
Plating was carried out for 10 minutes.

メッキによりニッケル薄層の付着したLaNi5粒子は
濾過され、水洗委乾燥された。
The LaNi5 particles with a thin nickel layer attached by plating were filtered, washed with water and dried.

この粒子のニッケル薄層の平均厚みは1牌、ニッケル薄
層のL a N i5に対するmidM合は13%であ
った。
The average thickness of the thin nickel layer of these particles was 1 tile, and the midM ratio of the thin nickel layer to L a N i5 was 13%.

次に、実施例1に従い、上記粒子を5g7g、。Next, according to Example 1, 5 g and 7 g of the above particles were added.

ラネーニッケル合金粉末(200メツシユパス)を5 
g/lを含む複合メッキ浴を用い複合メッキを行った。
Raney nickel alloy powder (200 mesh pass) 5
Composite plating was performed using a composite plating bath containing g/l.

複合メッキ層中のL a N is粒子量は6g/dゴ
、ラネーニッケル合金粒子量は2g/drn’であった
。また、複合メッキ層の厚みは約300pで、該層の多
孔率は約65%であった。
The amount of La Nis particles in the composite plating layer was 6 g/d, and the amount of Raney nickel alloy particles was 2 g/drn'. Further, the thickness of the composite plating layer was about 300p, and the porosity of the layer was about 65%.

ついで、上述の陰極を20%N aOH水溶液中で展開
し、実施例1と同様にして短絡に対する抵抗性試験を行
った。試験後の陰極を実施例1と同様な方法で水素過電
圧を測定した所0.08Vで試験前とほとんど変らなか
った。
Next, the above cathode was developed in a 20% NaOH aqueous solution, and a short circuit resistance test was conducted in the same manner as in Example 1. The hydrogen overvoltage of the cathode after the test was measured in the same manner as in Example 1, and it was found to be 0.08V, which was almost the same as before the test.

(実施例10) 500メツシユパスのL a N L 5粒子を実施例
9と同様にして1分間メッキしてニッケル薄層付着L 
a N 15粒子を得た。この場合、ニッケル薄層の平
均厚みは0.1g、ニッケルg層のLaNi5粒子に対
する重量割合は1%であった。
(Example 10) La N L 5 particles of 500 mesh passes were plated for 1 minute in the same manner as in Example 9 to form a thin nickel layer.
aN 15 particles were obtained. In this case, the average thickness of the nickel thin layer was 0.1 g, and the weight ratio of the nickel g layer to the LaNi5 particles was 1%.

次に、この粒子を用い実施例9と同様にして陰極を製作
し、短絡試験を行った。結果は水素過電圧0.085V
で、水素過電圧は試験前よりわずか5mV上昇したのみ
であった。
Next, a cathode was manufactured using these particles in the same manner as in Example 9, and a short circuit test was conducted. The result is hydrogen overvoltage 0.085V
The hydrogen overvoltage was only 5 mV higher than before the test.

(実施例11) 実施例9において、ラネーニッケル合金粉末を用いない
点を除いては、実施例9と同様にして陰極を製作した。
(Example 11) A cathode was manufactured in the same manner as in Example 9, except that Raney nickel alloy powder was not used.

実施例9と同様の短絡試験を実施した所、水素過電圧は
0.11Vで試験前と比べ5mV上昇したのみであった
When the same short circuit test as in Example 9 was conducted, the hydrogen overvoltage was 0.11 V, which was only 5 mV higher than before the test.

(実施例12) 粒径が500メツシユアンダーのラネーNi合金(50
wt%Ni 、50wt%AIL)と粒径が500メツ
シユアンダーのLaNi5を重量比で4対lの割合(即
ち、電極活性金属全体に対して20wt%)とし、これ
にPTFEディスバージE7(三井フロロケミカル製 
テフロン30J)をPTFEが固型分の3wt%となる
ように加え、さらに適量の水を加えてペースト状にして
混練した。このペーストを乾燥固化し、粉砕してラネー
NiとL a N l 5の混合粉末を得た。
(Example 12) Raney Ni alloy with particle size of 500 mesh under (50
wt%Ni, 50wt%AIL) and LaNi5 with a particle size of 500 mesh under in a weight ratio of 4:1 (i.e., 20wt% with respect to the total electrode active metal), and PTFE Disverge E7 (Mitsui Fluorocarbon Made of chemical
Teflon 30J) was added so that the solid content of PTFE was 3 wt %, and an appropriate amount of water was added to form a paste and kneaded. This paste was dried and solidified and pulverized to obtain a mixed powder of Raney Ni and LaNl 5.

この混合粉末を塩化ニッケル浴(NiCJl。−6HO
300g/l、HBO3Hg/ 交)中に5 g/lの割合で投入し、これをよく攪拌し
ながら、Ni製パンチトメタルを陰極とし、Ni板を陽
極として複合メッキを行った。温度は40℃、pHは2
.5、電流密度は6A/drn’とした。この結果、黒
灰色の複合メッキ層が得られ、ラネーN1とL a N
 i sの混合物の共析量は4g/dm’であった。こ
のメッキ層の厚みは約3007zm、多孔率は約65%
であった。また共析したラネーNiとL a N is
の重量比は4対1であった。この試料を90℃の25%
N aOH溶液に2時間浸漬してラネーNi合金のAi
を展開した後、これを陰極とし、陽極にはRu O2−
T t O2を使用して、含フツ素系陽イオン交換膜(
旭硝子棟製フレミオン、イオン交換容量1.44mec
i/g樹脂)をイオン交換膜とする食塩電解を行い、陰
極の短絡に対する抵抗性試験を行った。陽極液は3.5
NNaCu溶液、陰極液は35%N aOH溶液とし、
90℃で電流密度30A/dm’として電解開始後2日
目に次の短絡試験を実施した。
This mixed powder was soaked in a nickel chloride bath (NiCJl.-6HO).
Composite plating was performed by using Ni punched metal as a cathode and Ni plate as an anode while stirring the mixture well. Temperature is 40℃, pH is 2
.. 5. The current density was 6 A/drn'. As a result, a black-gray composite plating layer was obtained, with Raney N1 and LaN
The eutectoid amount of the i s mixture was 4 g/dm'. The thickness of this plating layer is approximately 3007 zm, and the porosity is approximately 65%.
Met. Also, eutectoid Raney Ni and L a Ni is
The weight ratio was 4:1. This sample was heated to 25% at 90°C.
Ai of Raney-Ni alloy was immersed in NaOH solution for 2 hours.
After developing RuO2-, it is used as a cathode and RuO2-
Using T t O2, a fluorine-containing cation exchange membrane (
Flemion manufactured by Asahi Glass Building, ion exchange capacity 1.44mec
Salt electrolysis was performed using I/g resin) as an ion exchange membrane, and a cathode short-circuit resistance test was conducted. The anolyte is 3.5
NNaCu solution, catholyte is 35% NaOH solution,
The following short circuit test was conducted on the second day after the start of electrolysis at 90° C. and a current density of 30 A/dm'.

まず電解中の陽極と陰極を銅線により短絡して電解を中
止し、そのまま2時間放置した。この間、陰極液の温度
は90℃に保持した。2時間経過後、電解槽を回路から
切り離し、放冷して、十分に冷えた後、陰極液を新しい
35%NaOH溶液に入れかえ、再び回路に継ぎ電極間
を短絡して、昇温させながら、2時間放置した。その後
この銅線をはずして電解を再開した。この操作を。
First, the anode and cathode during electrolysis were short-circuited with a copper wire to stop electrolysis, and the electrolysis was left as it was for 2 hours. During this time, the temperature of the catholyte was maintained at 90°C. After 2 hours, the electrolytic cell was disconnected from the circuit, left to cool, and after it had cooled down sufficiently, the catholyte was replaced with a fresh 35% NaOH solution, the circuit was connected again, the electrodes were short-circuited, and the temperature was raised. It was left for 2 hours. The copper wire was then removed and electrolysis resumed. This operation.

5回繰り返した後に、90℃、35%NaOH溶液中で
、電流密度30A/drn’で水素過電圧を測定した結
果0.09Vであり試験前と変らなかった。
After repeating the test five times, the hydrogen overvoltage was measured in a 35% NaOH solution at 90° C. at a current density of 30 A/drn', and the result was 0.09 V, which was unchanged from before the test.

(実施例13) ”JmNlの500メツシユアンダーのL a N s
 5を145メツシユアンダーのL a N isに変
えた以外は、実施例12と同様に複合メッキを行った。
(Example 13) "L a N s of 500 mesh under JmNl
Composite plating was performed in the same manner as in Example 12, except that L a N is of 145 mesh under was used instead of L a N is.

ラネーNiとL a N isの混合物の共析量は4.
5g/dm’であった。このメッキ層の厚みは約300
gm多孔率は約60%であった。また共析したラネーN
fとLaNi5の重量比は4対lであった。
The eutectoid amount of the mixture of Raney Ni and La Ni is 4.
It was 5 g/dm'. The thickness of this plating layer is approximately 300 mm
gm porosity was approximately 60%. Also, the eutectoid Raney N
The weight ratio of f and LaNi5 was 4:1.

これを用いて実施例12と同じ短絡試験を行った、試験
後の水素過電圧は0.09Vであり試験前と変らなかっ
た。
Using this, the same short circuit test as in Example 12 was conducted. The hydrogen overvoltage after the test was 0.09 V, which was the same as before the test.

(実施例14) 実施例13のラネーNiとL a N i5の重量比を
1対lに変えた以外は実施例13と同様に複合メッキを
行った。ラネーNiとL a N i5の混合物の共析
量は6g/dm’であった。このメッキ層の厚みは約3
50 #Lm、多孔率は約60%であった。また共析し
たラネーNiとL a N i5の重量比は4対1であ
った。
(Example 14) Composite plating was performed in the same manner as in Example 13 except that the weight ratio of Raney Ni and LaNi5 in Example 13 was changed to 1:1. The eutectoid amount of the mixture of Raney Ni and LaNi5 was 6 g/dm'. The thickness of this plating layer is approximately 3
50 #Lm, the porosity was about 60%. Moreover, the weight ratio of eutectoided Raney Ni and LaNi5 was 4:1.

これを用いて実施例12と同じ短絡試験を行った。試験
後の水素過電圧は0.10Vであり試験前と変らなかっ
た。
Using this, the same short circuit test as in Example 12 was conducted. The hydrogen overvoltage after the test was 0.10V, which was unchanged from before the test.

(実施例tS) 塩化ニッケル浴中に、それぞれ粒径が500メツシユ以
下のラネーNi粉末を4 g / l、粒径が500メ
ツシユ以下(7) L a N i 5粉末をl g/
lの割合で投入し、これをよく攪拌しなからNi製パン
チトメタルを陰極とし、Ni板を陽極として複合メッキ
を行った。この結果、ラネーNiとL a N r 5
を含む複合メッキ層が得られ、ラネーNiの共析量は3
 g / d rn” 、 L a N i 5の共析
量はLg/drrfであった。このメッキ層の厚みは約
250Bm、多孔率は約60%であった。この試料を9
0℃の25%NaOH溶液に浸漬してラネーNi合金の
Anを展開した後、実施例12と同じ短絡試験を行った
。試験後の水素過電圧は0.09Vであり、試験前と変
らなかった。
(Example tS) In a nickel chloride bath, 4 g/l of Raney Ni powder with a particle size of 500 mesh or less, and 1 g/l of LaNi 5 powder with a particle size of 500 mesh or less (7).
After stirring well, composite plating was performed using a Ni punched metal as a cathode and a Ni plate as an anode. As a result, Raney Ni and L a N r 5
A composite plating layer containing Raney Ni was obtained, and the eutectoid amount of Raney Ni was 3.
The eutectoid amount of L a N i 5 was Lg/drrf. The thickness of this plating layer was about 250 Bm, and the porosity was about 60%.
After developing the Raney Ni alloy An by immersion in a 25% NaOH solution at 0° C., the same short circuit test as in Example 12 was conducted. The hydrogen overvoltage after the test was 0.09V, unchanged from before the test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の電極の一例の表面部分断面図、第2
図は、本発明の電極の他の例の表面部分断面図を夫々示
す。 図中、lは電極芯体、2は粒子を含む層、3は電極活性
粒子、4は中間層である。
Fig. 1 is a partial cross-sectional view of the surface of an example of the electrode of the present invention;
The figures each show a partial cross-sectional view of the surface of another example of the electrode of the present invention. In the figure, 1 is an electrode core, 2 is a layer containing particles, 3 is an electrode active particle, and 4 is an intermediate layer.

Claims (17)

【特許請求の範囲】[Claims] (1)電極活性金属粒子が電極芯体上に設けられてなる
電極において、該電極活性金属粒子の一部又は全部が電
気化学的に水素を吸蔵及び放出できる水素吸蔵金属であ
る高耐久性低水素過電圧陰極。
(1) In an electrode in which electrode-active metal particles are provided on an electrode core, a part or all of the electrode-active metal particles are hydrogen storage metals that can electrochemically absorb and release hydrogen. Hydrogen overvoltage cathode.
(2)電極活性金属粒子の一部が、ラネーニッケル及び
/又はラネーコバルトからなる粒子である特許請求の範
囲第1項の高耐久性低水素過電圧陰極。
(2) The highly durable and low hydrogen overvoltage cathode according to claim 1, wherein some of the electrode active metal particles are particles made of Raney nickel and/or Raney cobalt.
(3)ラネーニッケル及び/又はラネーコバルトからな
る粒子が水素吸蔵金属とバインダーで結合されたもので
ある特許請求の範囲第2項の高耐久性低水素過電圧陰極
(3) The highly durable and low hydrogen overvoltage cathode according to claim 2, wherein particles made of Raney nickel and/or Raney cobalt are bonded to a hydrogen storage metal with a binder.
(4)バインダーがポリテトラフルオロエチレン及び/
又は四フッ化エチレン−六フッ化プロピレン共重合体か
らなる特許請求の範囲第3項の高耐久性低水素過電圧陰
極。
(4) The binder is polytetrafluoroethylene and/or
or the highly durable and low hydrogen overvoltage cathode of claim 3, comprising a tetrafluoroethylene-hexafluoropropylene copolymer.
(5)水素吸蔵金属が、ランタン・ニッケル系合金、ミ
ッシュメタル、ニッケル系合金及びチタン・ニッケル系
合金から選ばれる合金である特許請求の範囲第1項又は
第3項の高耐久性低水素過電圧陰極。
(5) High durability and low hydrogen overvoltage according to claim 1 or 3, wherein the hydrogen storage metal is an alloy selected from lanthanum-nickel alloy, misch metal, nickel-based alloy, and titanium-nickel alloy. cathode.
(6)水素吸蔵金属が金属薄層で被覆された粒子である
特許請求の範囲第1項又は第5項の高耐久性低水素過電
圧陰極。
(6) The highly durable and low hydrogen overvoltage cathode according to claim 1 or 5, wherein the hydrogen storage metal is a particle coated with a thin metal layer.
(7)金属薄層が水素透過能のある特許請求の範囲第6
項の高耐久性低水素過電圧陰極。
(7) Claim 6 in which the metal thin layer has hydrogen permeability
Highly durable low hydrogen overvoltage cathode.
(8)電極活性金属粒子がメッキ金属により電極芯体上
に付着されてなる特許請求の範囲第1項の高耐久性低水
素過電圧陰極。
(8) The highly durable and low hydrogen overvoltage cathode of claim 1, wherein the electrode active metal particles are adhered to the electrode core by plating metal.
(9)メッキ金属が電極活性金属粒子を構成する成分の
一部と同じ金属である特許請求の範囲第8項の高耐久性
低水素過電圧陰極。
(9) The highly durable and low hydrogen overvoltage cathode according to claim 8, wherein the plating metal is the same metal as a part of the components constituting the electrode active metal particles.
(10)電気化学的に水素を吸蔵及び放出できる水素吸
蔵金属粒子を、電極活性金属粒子の少くとも一部として
分散させたメッキ浴中に電極芯体を浸漬して複合メッキ
法により、該電極芯体上に該電極活性金属粒子をメッキ
金属と共に共電着せしめることを特徴とする高耐久性低
水素過電圧陰極の製造方法。
(10) The electrode core is immersed in a plating bath in which hydrogen-absorbing metal particles capable of electrochemically absorbing and desorbing hydrogen are dispersed as at least a part of the electrode-active metal particles, and a composite plating method is applied to the electrode. A method for producing a highly durable and low hydrogen overvoltage cathode, which comprises co-electrodepositing the electrode active metal particles together with a plating metal on a core.
(11)電極活性金属粒子が水素吸蔵金属粒子と、ラネ
ーニッケル及び/又はラネーコバルトからなる粒子がバ
インダーで結合されたものである特許請求の範囲第10
項の高耐久性低水素過電圧陰極の製造方法。
(11) Claim 10, wherein the electrode active metal particles are hydrogen storage metal particles and particles made of Raney nickel and/or Raney cobalt bound together with a binder.
Method for manufacturing highly durable low hydrogen overvoltage cathodes.
(12)メッキ金属が電極芯体上に層状に形成せられ、
電極活性金属粒子の一部が該層の表面に露出してなる特
許請求の範囲第10項又は第11項記載の高耐久性低水
素過電圧陰極の製造方法。
(12) Plated metal is formed in a layer on the electrode core,
12. The method for producing a highly durable, low hydrogen overvoltage cathode according to claim 10 or 11, wherein a part of the electrode active metal particles is exposed on the surface of the layer.
(13)水素吸蔵金属粒子が金属薄層で被覆された粒子
である特許請求の範囲第10項又は第11項の高耐久性
低水素出過電圧陰極の製造方法。
(13) The method for producing a highly durable and low hydrogen output overvoltage cathode according to claim 10 or 11, wherein the hydrogen storage metal particles are particles coated with a thin metal layer.
(14)金属薄層が水素透過能のある特許請求の範囲第
13項の高耐久性低水素過電圧陰極の製造方法。
(14) A method for producing a highly durable and low hydrogen overvoltage cathode according to claim 13, wherein the metal thin layer has hydrogen permeability.
(15)電気化学的に水素を吸蔵及び放出できる水素吸
蔵金属粒子を、電極活性金属粒子の少くとも一部として
含有する層を焼付法あるいは溶融塗布法により、該電極
活性金属粒子の一部が該層の表面に露出するように電極
芯体上に設けることを特徴とする高耐久性低水素過電圧
陰極の製造方法。
(15) A layer containing hydrogen storage metal particles that can electrochemically absorb and release hydrogen as at least a part of the electrode active metal particles is formed by baking or melt coating, so that some of the electrode active metal particles are A method for producing a highly durable and low hydrogen overvoltage cathode, which comprises providing a cathode on an electrode core so as to be exposed on the surface of the layer.
(16)電気化学的に水素を吸蔵及び放出できる水素吸
蔵金属または、該金属と他の低水素過電圧金属からなる
電極活性金属粒子をその一部が少くとも一方の面の表面
より露出するように含有せしめられたシートを作製し、
該シートの該粒子露出面と反対側の面を電極芯体に固定
する高耐久性低水素過電圧陰極の製造方法。
(16) Electrode active metal particles consisting of a hydrogen storage metal capable of electrochemically absorbing and desorbing hydrogen, or the metal and another low hydrogen overvoltage metal, so that a part of the particles is exposed from at least one surface. Producing a sheet containing
A method for producing a highly durable and low hydrogen overvoltage cathode, in which a surface of the sheet opposite to the particle-exposed surface is fixed to an electrode core.
(17)該シートが糊剤として有機ポリマー粒子を含む
特許請求の範囲第16項の高耐久性低水素過電圧陰極の
製造方法。
(17) The method for producing a highly durable and low hydrogen overvoltage cathode according to claim 16, wherein the sheet contains organic polymer particles as a sizing agent.
JP61068503A 1985-04-10 1986-03-28 Highly durable low-hydrogen overvoltage cathode and its production Pending JPS63145790A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-501736 1985-04-10
JP50173685 1985-04-10

Publications (1)

Publication Number Publication Date
JPS63145790A true JPS63145790A (en) 1988-06-17

Family

ID=18527149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068503A Pending JPS63145790A (en) 1985-04-10 1986-03-28 Highly durable low-hydrogen overvoltage cathode and its production

Country Status (1)

Country Link
JP (1) JPS63145790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336287A (en) * 1989-06-30 1991-02-15 Asahi Glass Co Ltd Low hydrogen overvoltage cathode with high durability and its production
JP2007084914A (en) * 2005-09-21 2007-04-05 Future Solution:Kk Electrode of electrolytic cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336287A (en) * 1989-06-30 1991-02-15 Asahi Glass Co Ltd Low hydrogen overvoltage cathode with high durability and its production
JP2007084914A (en) * 2005-09-21 2007-04-05 Future Solution:Kk Electrode of electrolytic cell

Similar Documents

Publication Publication Date Title
Safizadeh et al. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review
US3377265A (en) Electrochemical electrode
US4498962A (en) Anode for the electrolysis of water
KR890000179B1 (en) Cathode having high durability and iow hydrogen overvoltage and process for the production thereof
JP2569267B2 (en) Manufacturing method of electro-activated material
JP2629963B2 (en) High durability low hydrogen overvoltage cathode
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
JPS58144488A (en) Multilayer structure for electrode-membrane assembly and electrolytic process thereby
JP2005280164A (en) Composite sheet body and its manufacturing method
JPS63145790A (en) Highly durable low-hydrogen overvoltage cathode and its production
US4877508A (en) Highly durable cathode of low hydrogen overvoltage and method for manufacturing the same
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
JP3676554B2 (en) Activated cathode
JPH11229170A (en) Activated cathode
JPS6125790B2 (en)
JPH02310388A (en) Low hydrogen overvoltage cathode with high durability and its production
JPS6112032B2 (en)
JPH02258992A (en) Cathode having low hydrogen overvoltage and high durability and production thereof
JPH0250992A (en) High-durability low hydrogen overvoltage cathode and manufacture thereof
JPH01275791A (en) Cathode having high durability and low hydrogen overvoltage and production thereof
JP3236682B2 (en) Electrolytic cathode and method for producing the same
DE3587430T2 (en) LONG-LASTING OVERVOLTAGE CATHODE WITH LOW HYDROGEN CONTENT AND THEIR PRODUCTION.
JP2935181B1 (en) Liquid leakage type gas diffusion electrode and method of manufacturing the same
JPS5970785A (en) Joined body consisting of ion exchange membrane and electrode and its manufacture
JPS59186265A (en) Method for manufacture of gas diffusion electrode for battery