JPH01275791A - Cathode having high durability and low hydrogen overvoltage and production thereof - Google Patents

Cathode having high durability and low hydrogen overvoltage and production thereof

Info

Publication number
JPH01275791A
JPH01275791A JP63104107A JP10410788A JPH01275791A JP H01275791 A JPH01275791 A JP H01275791A JP 63104107 A JP63104107 A JP 63104107A JP 10410788 A JP10410788 A JP 10410788A JP H01275791 A JPH01275791 A JP H01275791A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen
particles
cathode
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63104107A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Naoki Yoshida
直樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63104107A priority Critical patent/JPH01275791A/en
Publication of JPH01275791A publication Critical patent/JPH01275791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To obtain a cathode having high durability and low hydrogen overvoltage by adhering particles of a specified hydrogen occluding alloy to the surface of an electrode as the cathode for electrolyzing an aq. alkali halide soln. so that the particles are exposed. CONSTITUTION:When an aq. soln. of an alkali halide such as NaCl is electrolyzed in an electrolytic cell to produce NaOH and gaseous H2 on the cathode and gaseous Cl on the anode, the cathode is obtd. by electroplating the surface of an electrode core 1 in an Ni plating bath contg. dispersed particles of a hydrogen occluding alloy represented by formula I (where 0.3<=n<=4) so as to form an Ni plating layer 2 contg. exposed particles 3 of the hydrogen occluding alloy. The exposed particles 3 may be adhered to the surface of the core 1 by baking or melt coating. By the presence of the particles 3, the cathode has superior durability and low hydrogen overvoltage at the time of electrolysis of the aq. NaCl soln.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高耐久性低水素過電圧陰極、特には酸化性環境
下においても特性の劣化が極めて小さい低水素過電圧陰
極及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a highly durable low hydrogen overvoltage cathode, and particularly to a low hydrogen overvoltage cathode whose characteristics are extremely minimally deteriorated even in an oxidizing environment, and a method for producing the same.

(従来の技術) 低水素過電圧陰極、特にはハロゲン化アルカリ水溶液電
解用の陰極として各種のものが提案されている。これら
の中で、本出願人が既に提案した特開昭54−1127
85号公報で開示される電極は、それまでに知られた電
極に比べて低水素過電圧化及びその耐久性に関し、大き
な効果を持つものであるが、本発明者等は、更に検討を
加えた結果、上記公報で開示される電極もある場合には
、必ずしも耐久性が充分でない場合のあることを見出し
、この解法のため鋭意努力した結果本発明を見出すに至
ったものである。
(Prior Art) Various types of low hydrogen overvoltage cathodes have been proposed, particularly as cathodes for aqueous halogenated alkali solution electrolysis. Among these, Japanese Patent Application Laid-Open No. 1127-1987, which the present applicant has already proposed,
Although the electrode disclosed in Publication No. 85 has greater effects in terms of lower hydrogen overvoltage and durability than previously known electrodes, the present inventors have conducted further studies. As a result, we discovered that some of the electrodes disclosed in the above publications do not always have sufficient durability, and as a result of our earnest efforts to solve this problem, we have arrived at the present invention.

ハロゲン化アルカリ水溶液電解槽で電°解により陽極室
からはハロゲンガス、陰極室からは苛性アルカリ水溶液
と水素ガスを製造することは既によく知られた工業的な
塩素及び苛性アルカリの製造法である。この電解槽の陰
極としては低水素過電圧の上述の如き陰極が好ましく用
いられるが、上記電解槽は運転の途中、種々の理由によ
り運転を停止することがあり、この場合、運転を再開す
ると水素過電圧の上昇することが認められた。本発明者
等はこの現象について深く追求した結果、電解槽の停止
時に陽極と陰極をブスバーで短絡して停止する停止方法
の場合には、短絡時に発生する逆電流により陰極が酸化
され、ニッケルやコバルトを活性成分とした陰極の場合
はそれらが水酸化物に変質することにより電極活性が低
下し、運転再開後も元の活性状態に戻らない(即ち水素
過電圧が上昇する)ことをみいだした。
Producing halogen gas from the anode chamber and caustic alkali aqueous solution and hydrogen gas from the cathode chamber by electrolysis in an alkali halide aqueous solution electrolytic tank is already a well-known industrial method for producing chlorine and caustic alkali. . As the cathode of this electrolytic cell, the above-mentioned cathode with a low hydrogen overvoltage is preferably used, but the electrolytic cell may be stopped for various reasons during operation, and in this case, when the operation is resumed, the hydrogen overvoltage is low. was observed to increase. The present inventors investigated this phenomenon in depth, and found that when the electrolytic cell is stopped by short-circuiting the anode and cathode with a bus bar, the cathode is oxidized by the reverse current generated during the short circuit, and nickel and In the case of a cathode containing cobalt as an active ingredient, it was found that the electrode activity decreased due to the deterioration of cobalt into hydroxides, and the electrode activity did not return to its original active state even after restarting operation (i.e., the hydrogen overvoltage increased). .

また、陽極と陰極を短絡せずに通電を停止する停止方法
においても、高温高濃度N 、 011中に陰極が長時
間浸漬されると、陰極活性成分がニッケル又はコバルト
の場合にはそれらが腐食電位に突入して水酸化物に変質
しくこの反応も一種の電気化学的酸化反応である)電極
活性が低下することをみいだした。
In addition, even in the stopping method of stopping current supply without shorting the anode and cathode, if the cathode is immersed in high-temperature, high-concentration N,011 for a long time, if the cathode active component is nickel or cobalt, it will corrode. It was discovered that the electrode activity decreases when exposed to electric potential (this reaction is also a type of electrochemical oxidation reaction) and changes into hydroxide.

(発明の解決しようとする課題) 本発明は上記使用条件下でも電極活性の低下しない電極
及びその製法を提供するものである。
(Problems to be Solved by the Invention) The present invention provides an electrode whose electrode activity does not decrease even under the above conditions of use, and a method for manufacturing the same.

(課題を解決するための手段) そこでこの現象を防止するため鋭意検討した結果、電気
化学的に水素の吸蔵、放出を行い、かつ水素過電圧の低
い水素吸蔵金属を電極活性成分に用いれば、前記の様な
電槽の停止においては、水素吸蔵金属中に吸蔵された多
量の水素が電気化学的に酸化されることで電極活性成分
の酸化を効果的に防止できること、即ち活性を長期に維
持できることを見出し、本発明を完成したもので、本発
明は電極活性金属粒子の一部が電極芯体上に設けた層の
表面に露出してなる電極において、該電極活性粒子が電
気化学的に水素の吸蔵及び放出のできる水素吸蔵金属で
ある高耐久性低水素過電圧陰極及び後述する上記の高耐
久性低水素過電圧陰極の製造方法を要旨とするものであ
る。
(Means for solving the problem) As a result of intensive studies to prevent this phenomenon, we found that if a hydrogen storage metal that electrochemically absorbs and releases hydrogen and has a low hydrogen overvoltage is used as an electrode active component, When the battery case is stopped, a large amount of hydrogen stored in the hydrogen storage metal is electrochemically oxidized, which effectively prevents the oxidation of the electrode active component, that is, the activity can be maintained for a long period of time. The present invention is based on an electrode in which a part of the electrode active metal particles is exposed on the surface of a layer provided on an electrode core, in which the electrode active particles are electrochemically hydrogenated. The gist of the present invention is to provide a highly durable low hydrogen overvoltage cathode which is a hydrogen storage metal capable of absorbing and desorbing hydrogen, and a method for manufacturing the above-mentioned highly durable low hydrogen overvoltage cathode described below.

ここで電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属とはアルカリ性水溶液中で次の様な電極反応を行う
ものを言う。即ち還元反応では水を還元して生成した水
素原子を金属中に吸蔵し、酸化反応では吸蔵水素を金属
表面で水酸イオンと反応させて水にする反応を行うもの
をいう。反応式を以下に示す。
Here, the hydrogen storage metal that can electrochemically store and release hydrogen refers to a metal that undergoes the following electrode reaction in an alkaline aqueous solution. That is, in the reduction reaction, hydrogen atoms generated by reducing water are occluded in the metal, and in the oxidation reaction, the occluded hydrogen is reacted with hydroxide ions on the metal surface to form water. The reaction formula is shown below.

Mは水素吸蔵金属でありMllxはそれの水素化物を示
す。この水素吸蔵金属を電極活性粒子とした陰極を用い
て、例えばイオン膜性による食塩電解を行った場合、通
電初期には反応式(1)の右向き反応により水素吸蔵金
属中に水素が吸蔵され、やがて水素の吸蔵が飽和に達す
ると以下に示す反応(2)により、水素吸蔵金属の表面
で水素が発生し、本来の陰極上における電極反応が進行
する。
M is a hydrogen storage metal, and Mllx represents its hydride. When a cathode containing this hydrogen storage metal as electrode active particles is used, for example, for salt electrolysis using an ionic membrane, hydrogen is stored in the hydrogen storage metal due to the rightward reaction of reaction formula (1) at the initial stage of energization. When hydrogen absorption eventually reaches saturation, hydrogen is generated on the surface of the hydrogen storage metal by reaction (2) shown below, and the original electrode reaction on the cathode proceeds.

11zO+ e+坏+1.+011− (2)一方、電
槽の短絡などによる停止時には、水素吸蔵金属中に大量
に吸蔵された水素が電気化学的に反応式(1)の左向き
の反応より水素を放出し、即ち電気化学的に水素を酸化
して酸化電流を負担することにより電極活性粒子自体の
酸化を効果的に防止することができる。
11zO+ e+坏+1. +011- (2) On the other hand, when the battery is stopped due to a short circuit in the battery case, a large amount of hydrogen stored in the hydrogen storage metal electrochemically releases hydrogen through the leftward reaction of reaction formula (1). By oxidizing hydrogen and bearing the oxidation current, it is possible to effectively prevent the electrode active particles themselves from being oxidized.

この様に本発明に使用しつる水素吸蔵金属は上述の如く
、電気化学的に水素を吸蔵及び放出できるものであり、
具体的には1.aNia。A12. II!n(ただし
、0.3≦n≦4である。)で表わされるランタン、ニ
ッケル及びアルミニウムの3種の金属よりなる合金であ
る。
As described above, the vine hydrogen storage metal used in the present invention is capable of electrochemically storing and releasing hydrogen,
Specifically, 1. aNia. A12. II! It is an alloy made of three metals: lanthanum, nickel, and aluminum, represented by n (0.3≦n≦4).

n<0.3では、初期的には水素過電圧は低いものの、
経時的な水素過電圧の上昇がみられ、長期間の使用に耐
えることができない。また、n>4では、この水素吸蔵
金属に吸蔵しつる水素量が減少し、本発明の効果が不十
分となってしまう。したがって0.3≦n≦4であるこ
とが必要であり、好ましくは0.5≦n≦2である。
When n<0.3, although the hydrogen overvoltage is initially low,
Hydrogen overvoltage increases over time and cannot withstand long-term use. Moreover, when n>4, the amount of hydrogen stored and retained in this hydrogen storage metal decreases, and the effect of the present invention becomes insufficient. Therefore, it is necessary that 0.3≦n≦4, and preferably 0.5≦n≦2.

またこれらの水素吸蔵金属は水素の吸蔵、放出により脆
性破壊をおこし微粉化していくことが知られているため
、この微粉化による脱落等を防ぐために、あらかじめ機
械的な粉砕や気相中で水素ガスの吸蔵放出をくり返すこ
とにより微粉化した金属を用いたり、この脱落を防止す
るためマトリックス材として、金属粒子、例えばニッケ
ル粉末やバインダーとしてポリマー粉末等を用いてもよ
い。
In addition, these hydrogen storage metals are known to cause brittle fracture and become pulverized due to absorption and release of hydrogen, so in order to prevent them from falling off due to pulverization, it is necessary to crush them mechanically or to pulverize hydrogen in the gas phase in advance. A metal that has been pulverized by repeated occlusion and release of gas may be used, or metal particles such as nickel powder may be used as a matrix material to prevent this from falling off, and polymer powder or the like may be used as a binder.

上述の水素吸蔵金属粒子の平均粒径は、電極表面の多孔
性度及び後述する電極製造の際の粒子の分散性にも関係
するが、0.1μ〜100μであれば充分である。
The average particle size of the above-mentioned hydrogen storage metal particles is related to the porosity of the electrode surface and the dispersibility of the particles during electrode production, which will be described later, but a range of 0.1 to 100 μ is sufficient.

上記範囲中、電極表面の多孔性等の点から、好ましくは
0.9μ〜50μ、更に好ましくはlu〜30μである
In the above range, from the viewpoint of porosity of the electrode surface, etc., it is preferably 0.9 μ to 50 μ, more preferably lu to 30 μ.

更に本発明に用いる粒子は、電極のより低い水素過電圧
を達成するため1表面多孔性であることが好ましい。
Furthermore, the particles used in the present invention are preferably single-surface porous in order to achieve a lower hydrogen overpotential of the electrode.

この表面多孔性は、粒子の全表面が多孔性であることの
みを意味するものでなく、前述した金属から成る層より
露出した部分のみが多孔性になっておれば充分である。
This surface porosity does not mean only that the entire surface of the particle is porous; it is sufficient that only the portion exposed from the metal layer described above is porous.

多孔性の程度は、その程度がかなり大きい程好ましいが
、過度に多孔性にすると電極芯体上に設けられた層の機
械的強度が低下する為多孔度(porosity)が2
0〜90%にすることが好ましい。上記範囲中更に好ま
しくは35〜85%、特に好ましくは50〜80%であ
る。
The degree of porosity is preferably as large as possible; however, if the degree of porosity is excessively large, the mechanical strength of the layer provided on the electrode core will decrease.
It is preferable to set it to 0-90%. Within the above range, it is more preferably 35 to 85%, particularly preferably 50 to 80%.

尚、上記多孔度とは、公知の水銀圧入法或いは水置換法
によって測定される値である。
The above porosity is a value measured by a known mercury intrusion method or water displacement method.

上述の電極活性金属粒子が金属基体上に強固に設けられ
るための層は、該粒子を構成する成分の一部と同じ金属
であることが好ましい。
The layer on which the electrode active metal particles are firmly provided on the metal substrate is preferably made of the same metal as part of the components constituting the particles.

かくして、本発明の陰極の電極表面には、多数の上述の
粒子が付着しており、巨視的に見ると、陰極表面は微多
孔性になっている。
Thus, a large number of the above particles are attached to the electrode surface of the cathode of the present invention, and macroscopically, the cathode surface is microporous.

このように本発明の陰極は、それ自体低い水素過電圧を
有する粒子が電極表面に多数存在し、且つ前述した通り
、電極表面が微多孔性になっているため、それだけ電極
活性面が大きくなり、これらの相乗効果によって、効果
的に水素過電圧の低減を計ることができる。
As described above, in the cathode of the present invention, a large number of particles having a low hydrogen overvoltage are present on the electrode surface, and as mentioned above, the electrode surface is microporous, so the active surface of the electrode becomes larger. These synergistic effects make it possible to effectively reduce hydrogen overvoltage.

しかも本発明に用いられる粒子は、上記金属からなる層
によって、電極表面に強固に付着しているので、劣化し
に<<、上記低水素過電圧の持続性を飛躍的に延ばすこ
とができる。
Moreover, since the particles used in the present invention are firmly attached to the electrode surface by the layer made of the metal, the durability of the low hydrogen overvoltage can be dramatically extended without deterioration.

本発明の電極芯体はその材質として任意の適当な導電性
金属、例えばTi、Zr、Fe、Ni、V、Mo。
The electrode core of the present invention may be made of any suitable conductive metal, such as Ti, Zr, Fe, Ni, V, or Mo.

Cu、 Ag、 Mn、白金族金属、黒鉛、 Crから
選ばれた金属又はこれらの金属から選ばれた合金が採用
し得る。この内Fe、Fe合金(Fe−Ni合金。
A metal selected from Cu, Ag, Mn, platinum group metals, graphite, and Cr, or an alloy selected from these metals can be used. Among these, Fe, Fe alloy (Fe-Ni alloy).

Fe−Cr合金、 Fe−Ni−Cr合金など) 、 
Ni、Ni合金(Ni−Cu合金、 Ni−Cr合金な
ど) 、 Cu、Cu合金などを採用することが好まし
い。特に好ましい電極芯体の材質はFe、 Cu、旧、
 Fe−Ni合金、 Fe−Ni−Cr合金である。
Fe-Cr alloy, Fe-Ni-Cr alloy, etc.),
It is preferable to use Ni, Ni alloy (Ni-Cu alloy, Ni-Cr alloy, etc.), Cu, Cu alloy, etc. Particularly preferable materials for the electrode core are Fe, Cu,
These are Fe-Ni alloy and Fe-Ni-Cr alloy.

電極芯体の構造は、使用する電極の構造に合わせて任意
適宜な形状寸法にすることができる。その形状は、例え
ば板状、多孔状、網状(例えばエクスパンドメタルなど
)、すだれ状等が採用でき、これらを平板状、曲板状、
筒状にしてもよい。
The structure of the electrode core can be made into any suitable shape and size depending on the structure of the electrode used. Its shape can be, for example, plate-like, porous, net-like (for example, expanded metal), or blind-like.
It may be made into a cylindrical shape.

本発明の層の厚みは、採用する粒子の粒径にもよるが、
20μ〜2mmであれば充分で、更に好ましくは25μ
〜I mmである。これは本発明では、前述した粒子の
一部が電極芯体上の金属から成る層に埋没した状態で、
付着せしめるからである。かかる状態を理解しやすい様
に、本発明の電極表面の断面図を第1図に示す。図示さ
れている様に電極芯体l上に金属から成る層2が設けら
れ、酸層に電極活性金属粒子3の一部が、その層の表面
から露出する様に含まれている。尚、層2中の粒子の割
合は5〜80wt%であることが好ましく、更に好まし
くはIO〜60wシ%である。かかる状態の外、電極芯
体と本発明の粒子を含む層との間に、N i、 Co、
 Ag、 Cuから選ばれた金属から成る中間層を設け
ることによって、更に本発明の電極の耐久性を向上させ
ることができる。かかる中間層は、上記層の金属と同種
又は異種であっても差しつかえないが、かかる中間層を
前述した層との付着性の点からこれらの中間層及び層の
金属は同種のものであることが好ましい。中間層の厚み
は、機械的強度等の点から5〜100μであれば充分で
あり、更に好ましくは20〜80μ、特に好ましくは3
0〜50μである。
The thickness of the layer of the present invention depends on the particle size of the particles employed, but
20μ to 2mm is sufficient, more preferably 25μ
~I mm. This is because in the present invention, some of the particles described above are buried in a layer made of metal on the electrode core.
This is because it causes the particles to adhere. In order to facilitate understanding of this state, a cross-sectional view of the electrode surface of the present invention is shown in FIG. As shown in the figure, a layer 2 made of metal is provided on an electrode core 1, and a portion of electrode active metal particles 3 are contained in the acid layer so as to be exposed from the surface of the layer. The proportion of particles in layer 2 is preferably 5 to 80 wt%, more preferably IO to 60 wt%. In addition to this state, between the electrode core and the layer containing the particles of the present invention, Ni, Co,
By providing an intermediate layer made of a metal selected from Ag and Cu, the durability of the electrode of the present invention can be further improved. Such an intermediate layer may be of the same type or a different type from the metal of the above-mentioned layer, but from the viewpoint of adhesion between the intermediate layer and the above-mentioned layer, these intermediate layers and the metals of the layer are of the same type. It is preferable. The thickness of the intermediate layer is preferably 5 to 100μ from the viewpoint of mechanical strength, more preferably 20 to 80μ, particularly preferably 3
It is 0 to 50μ.

この様な中間層を設けた電極を理解しやすいように、電
極の断面図を第2図に示した。
To facilitate understanding of the electrode provided with such an intermediate layer, a cross-sectional view of the electrode is shown in FIG.

lは電極芯体、4は中間層、2は粒子を含む層、3は電
極活性粒子である。
1 is an electrode core, 4 is an intermediate layer, 2 is a layer containing particles, and 3 is an electrode active particle.

電極表面層の具体的な付着手段としては、種種の手法が
採用され、例えば複合メッキ法、溶融塗付法、焼付法、
加圧形成焼結法などが採用される。この内、特に複合メ
ッキ法が、良好に電極活性金属粒子を付着し得るので好
ましい。
Various methods are used to specifically attach the electrode surface layer, such as composite plating, melt coating, baking,
Pressure forming and sintering methods are used. Among these, the composite plating method is particularly preferable because it allows the electrode active metal particles to be attached well.

複合メッキ法とは、金属層を形成する金属イオンを含む
水溶液に、−例としてニッケルを該合金成分の一部とす
る粒子を分散せしめた浴で、電極芯体を陰極としてメッ
キを行い、電極芯体上に、上記金属と粒子を共電着せし
めるものである。尚、更に詳しく述べれば、浴中で粒子
は電場の影響によってバイポーラ−となり、陰極表面近
傍に接近したときメッキの局部的電流密度を増大させ、
陰極に接触したとき通常の金属イオンの還元による金属
メッキにより芯体に共電着するものと考えられる。
The composite plating method is a bath in which particles containing, for example, nickel as a part of the alloy component are dispersed in an aqueous solution containing metal ions forming a metal layer, and plating is performed using the electrode core as a cathode. The metal and particles are co-electrodeposited on the core. In more detail, the particles become bipolar under the influence of the electric field in the bath, and when they approach the cathode surface, they increase the local current density of the plating.
It is thought that when it comes into contact with the cathode, it is co-electrodeposited onto the core by metal plating caused by reduction of ordinary metal ions.

例えば、金属層としてニッケル層を採用する場合、全塩
化ニッケル浴、高塩化ニッケル浴、塩化ニッケルー酢酸
ニッケル浴、ワット浴、スルファミン酸旧浴など種々の
ニッケルメッキ浴が採用しつる。
For example, when a nickel layer is used as the metal layer, various nickel plating baths can be used, such as a total nickel chloride bath, a high nickel chloride bath, a nickel chloride-nickel acetate bath, a Watts bath, and an old sulfamic acid bath.

この様な粒子の浴中での割合は、Ig742〜200g
/βにしておくことが電極表面に粒子の何首状態を良好
にする意味から好ましい。又分散メッキ作業時の温度条
件は20〜80℃、電流密度はI  A/dm”〜20
A/dm”であることが好ましい。
The proportion of such particles in the bath is between 742 and 200 g of Ig.
/β is preferable from the viewpoint of improving the number of particles on the electrode surface. Also, the temperature conditions during dispersion plating work are 20 to 80℃, and the current density is IA/dm'' to 20℃.
A/dm" is preferable.

尚、メッキ浴には、歪減少用の添加剤、共電着を助長す
る添加剤等を適宜加えてよいことはもちろんである。
It goes without saying that additives for reducing strain, additives for promoting co-electrodeposition, etc. may be added to the plating bath as appropriate.

また粒子の密着強度をさらに向上させるために、複合メ
ッキ終了後に、粒子を完全には被覆しない程度に普通の
メッキ又は無電解メッキを行ったり、不活性又は還元性
雰囲気中で加熱焼成等を適宜行ってもよい。
In addition, in order to further improve the adhesion strength of the particles, after completion of composite plating, ordinary plating or electroless plating may be performed to the extent that the particles are not completely covered, or heating and baking in an inert or reducing atmosphere may be carried out as appropriate. You may go.

この外前述した様に、電極芯体と粒子を含む金属層との
間に中間層を設ける場合は、電極芯体をまずNiメッキ
、Coメッキ又はCuメッキし、その後前述した分散メ
ッキ法、溶融噴霧法の手段でその上に粒子を含む金属層
を形成する。
In addition, as described above, when providing an intermediate layer between the electrode core and the metal layer containing particles, the electrode core is first plated with Ni, Co, or Cu, and then the dispersion plating method described above or the melt plating method is applied. A metal layer containing particles is formed thereon by means of a spraying method.

かかる場合のメッキ浴としては上述した種々のメッキ浴
が採用でき、Cuメッキについても公知のメッキ浴が採
用できる。
As the plating bath in such a case, the various plating baths mentioned above can be used, and also for Cu plating, a known plating bath can be used.

この様にして、電極芯体上に金属層を介して水素吸蔵金
属よりなる電極活性金属粒子が付着した電極が得られる
In this way, an electrode is obtained in which electrode active metal particles made of a hydrogen storage metal are attached to the electrode core via a metal layer.

次に、本発明の陰極を製造する別の方法について説明す
る。
Next, another method for manufacturing the cathode of the present invention will be explained.

本発明の陰極は溶融塗布法あるいは焼付法によっても製
造されつる。即ち、水素吸蔵金属粉末を所定粒度に調整
し、プラズマ、酸素/アセチレン炎等により溶融吹付け
し、電極芯体上にこれら粒子の部分的に露出した被覆層
を得たり、あるいはこれら粒子の分散液ないしスラリー
を電極芯体上に塗布し、焼成により焼付け、所望の被覆
層を得るものである。
The cathode of the present invention can also be manufactured by a melt coating method or a baking method. That is, hydrogen-absorbing metal powder is adjusted to a predetermined particle size and melted and sprayed using plasma, oxygen/acetylene flame, etc. to obtain a partially exposed coating layer of these particles on the electrode core, or by dispersing these particles. A liquid or slurry is applied onto the electrode core and baked to obtain a desired coating layer.

また、本発明の陰極は水素吸蔵金属を含む電極シートを
予め製作しておき、これを電極芯体上に取付けることに
よっても得られる。この場合、該シートは、水素吸蔵金
属の粒子を有機ポリマー粒子と混合して成形し、又は成
形後焼成してシートとなす方法が好ましい。勿論、この
場合該シートの表面から電極活性粒子が露出している。
The cathode of the present invention can also be obtained by preparing an electrode sheet containing a hydrogen-absorbing metal in advance and attaching it to an electrode core. In this case, the sheet is preferably formed by mixing hydrogen-absorbing metal particles with organic polymer particles and molding the mixture, or by baking the mixture after molding. Of course, in this case, the electrode active particles are exposed from the surface of the sheet.

かしくて得られる該シートは電極芯体上に圧着し、加熱
して電極芯体上に固着される。
The sheet thus obtained is pressed onto the electrode core and fixed onto the electrode core by heating.

本発明の電極はイオン交換脱法塩化アルカリ水溶液電解
用の電極、特に陰極として採用できることはもちろんで
あるが、この外、多孔性隔膜(例えばアスベスト隔膜)
を用いた塩化アルカリ水溶液電解用の電極としても採用
し得る。
The electrode of the present invention can of course be used as an electrode for ion exchange removal alkaline chloride aqueous solution electrolysis, especially as a cathode, but it can also be used as a porous diaphragm (for example, an asbestos diaphragm).
It can also be used as an electrode for aqueous alkali chloride electrolysis using.

塩化アルカリ電解用陰極として用いる場合、電解槽材料
から陰極液中に溶出する鉄分が陰極上に電析し、電極活
性を低下せしめることがあり、これを防止するために、
本発明の陰極上に、特開昭57−143482号公報で
開示されるような非電子電導性物質を付着せしめること
は、有効な方法である。
When used as a cathode for alkali chloride electrolysis, iron dissolved from the electrolytic cell material into the catholyte may be deposited on the cathode, reducing electrode activity. To prevent this,
It is an effective method to deposit a non-electronically conductive material as disclosed in JP-A-57-143482 on the cathode of the present invention.

実施例1〜5及び比較例1.2 表1に示した水素吸蔵合金を25μm以下に粉砕し、こ
の粉末を塩化ニッケル浴(NiC42m・−5Hz03
00g/氾、 11.80.38g/J2 >中に3.
5g/flの割合で投入し、これをよく攪拌しながらN
i製エキスバンドメタルを陰極とし、Ni板を陽極とし
て複合メッキを行った。温度は40℃、p■は2.5、
電流密度は3A/dm2とした。この結果いずれも、水
素吸蔵合金の共析量が3. Ig/dm”の複合メッキ
層が得られた。このメッキ層の厚みは約130μ、多孔
率は約70%であった。
Examples 1 to 5 and Comparative Example 1.2 The hydrogen storage alloys shown in Table 1 were ground to 25 μm or less, and the powder was placed in a nickel chloride bath (NiC42m・-5Hz03
00g/flood, 11.80.38g/J2 >3.
Add N at a rate of 5g/fl and stir well
Composite plating was performed using i-manufactured Exband Metal as a cathode and a Ni plate as an anode. The temperature is 40℃, p■ is 2.5,
The current density was 3 A/dm2. As a result, the amount of eutectoid of the hydrogen storage alloy is 3. A composite plating layer of Ig/dm" was obtained. The thickness of this plating layer was about 130 μm, and the porosity was about 70%.

これらの電極を、陽極を Run□−Tinsとし、含
フツ素系陽イオン交換膜(旭硝子(株)製CF2=CF
2とCF、・CFOfOFF) acOOcHsとの共
重合体、イオン交換膜ffk 1.45meq/g樹脂
)をイオン交換膜とする食塩電解槽用陰極として用い、
短絡に対する抵抗性試験を行った。陽極液は3N Na
CJ2溶液、陰極液を35%NaOHとし90℃で電流
密度30A/dm”として電解開始後200日目につぎ
の短絡試験を実施した。
These electrodes were constructed using Run□-Tins as the anode, and a fluorine-containing cation exchange membrane (CF2=CF
A copolymer of 2 and CF, CFOfOFF) acOOcHs, ion exchange membrane ffk 1.45 meq/g resin) was used as a cathode for a salt electrolytic cell with an ion exchange membrane.
A short circuit resistance test was conducted. The anolyte is 3N Na
The following short circuit test was conducted 200 days after the start of electrolysis using a CJ2 solution and 35% NaOH as the catholyte at 90° C. and a current density of 30 A/dm.

まず電解中の陽極と陰極を銅線により短絡して電解を停
止し、そのまま約5時間放置した。
First, the anode and cathode during electrolysis were short-circuited with a copper wire to stop electrolysis, and the electrolysis was left as it was for about 5 hours.

この間陰極から陽極へ流れる電流を観測した。During this time, the current flowing from the cathode to the anode was observed.

なお陰極液の温度は90℃に保持した。その後この銅線
をとりはずして1日間電解を行った。
Note that the temperature of the catholyte was maintained at 90°C. Thereafter, this copper wire was removed and electrolysis was performed for one day.

この操作を5回くり返した。This operation was repeated 5 times.

試験終了後さらに30日間電解を続けた後電極を取り出
して35%NaOH,90℃、電流密度30A/dm”
で各電極の水素過電圧を測定し、試験前の値とともに表
1に示した。実施例1〜5はいずれも試験前とほとんど
変わらず、水素過電圧の変化はl OmV以下だった。
After the test was completed, electrolysis was continued for another 30 days, and then the electrodes were taken out and electrolyzed with 35% NaOH, 90°C, and a current density of 30A/dm.
The hydrogen overvoltage of each electrode was measured and shown in Table 1 along with the values before the test. In Examples 1 to 5, there was almost no change from before the test, and the change in hydrogen overvoltage was 1 OmV or less.

比較例1および2についても同様の試験を行なった。比
較例では、短絡試験の前後での過電圧変化はlOmVで
実施例と同程度であったが、実施例にはみられない、水
素過電圧の経時変化がみられ、電解開始後10日目には
実施例1と同様に90mVであったものが、200日目
にはIlOmVに上昇していた。一方比較例2では、短
絡試験により30mVの水素過電圧の上昇があった。
Similar tests were conducted for Comparative Examples 1 and 2 as well. In the comparative example, the overvoltage change before and after the short circuit test was lOmV, which was the same as in the example, but there was a change in hydrogen overvoltage over time, which was not seen in the example, and on the 10th day after the start of electrolysis, As in Example 1, the voltage was 90 mV, but it had increased to IlOmV on the 200th day. On the other hand, in Comparative Example 2, the hydrogen overvoltage increased by 30 mV in the short circuit test.

実施例6 実施例2で使用したLaNi11.sAl+、os粗粉
末70重量%、カルボニルニッケル粉末20重量%、P
TFE粉末10重量%からなる組成の混合物を乳ばちで
十分に混合し、シート状に成型した。
Example 6 LaNi11. used in Example 2. sAl+, os coarse powder 70% by weight, carbonyl nickel powder 20% by weight, P
A mixture having a composition of 10% by weight of TFE powder was thoroughly mixed with a pestle and formed into a sheet.

このシートの厚みは約1mm多孔率は約50%であった
。これをニッケルエキスバンドメタルに圧着し、その後
350℃で1時間アルゴン雰囲気で焼成して電極とした
。これを実施例1と同様に試験した結果、水素過電圧は
 IoomVであり、試験前とほとんど変わらなかった
The thickness of this sheet was about 1 mm, and the porosity was about 50%. This was press-bonded to nickel expanded metal, and then fired at 350° C. for 1 hour in an argon atmosphere to form an electrode. As a result of testing this in the same manner as in Example 1, the hydrogen overvoltage was IoomV, which was almost the same as before the test.

実施例7 実施例3に使用したLaN1aAli、 rs粉末に、
増粘剤としてメチルセルロース水溶液を加え、よく混合
してペーストを作成した。これをニッケル製パンチトメ
タル基板上に、スクリーン印刷法により均一に塗布した
。次に、これを空気中で 100℃で1時間乾燥した後
に、真空巾約1000℃で1時間焼成し、LaNi5A
l□16の焼結層を形成した。この層の厚みは約1mm
であり、多孔率は約50%であった。これを用いて、実
施例1と同様の試験をした結果、水素過電圧は100m
Vであり、試験前とほとんど変わらなかった。
Example 7 LaN1aAli, rs powder used in Example 3,
An aqueous methyl cellulose solution was added as a thickener and mixed well to prepare a paste. This was uniformly applied onto a nickel punched metal substrate by screen printing. Next, this was dried in air at 100°C for 1 hour, and then fired at a vacuum width of about 1000°C for 1 hour to form a LaNi5A
A sintered layer of 1□16 was formed. The thickness of this layer is approximately 1mm
The porosity was approximately 50%. Using this, a test similar to Example 1 was conducted, and the hydrogen overvoltage was 100 m
V, which was almost the same as before the test.

表  1Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の電極の一例の表面部分断面図、第2
図は、本発明の電極の他の例の表面部分断面図を夫々示
す。
FIG. 1 is a partial cross-sectional view of the surface of an example of the electrode of the present invention, and FIG.
The figures each show a partial cross-sectional view of the surface of another example of the electrode of the present invention.

Claims (8)

【特許請求の範囲】[Claims] (1)電極活性金属粒子が電極芯体上に設けられてなる
電極において、該電極活性金属粒子が電気化学的に水素
を吸蔵及び放出できる水素吸蔵金属であり、その水素吸
蔵金属が 次式 LaNi_5_+_nAl_2_.18_n(ただし、
0.3≦n≦4である) で表わされる高耐久性低水素過電圧陰極。
(1) In an electrode in which electrode active metal particles are provided on an electrode core, the electrode active metal particles are a hydrogen storage metal that can electrochemically absorb and release hydrogen, and the hydrogen storage metal has the following formula: LaNi_5_+_nAl_2_ .. 18_n (However,
0.3≦n≦4) A highly durable low hydrogen overvoltage cathode.
(2)電極活性金属粒子がメッキ金属により電極芯体上
に付着されてなる特許請求の範囲第(1)項の高耐久性
低水素過電圧陰極。
(2) A highly durable and low hydrogen overvoltage cathode according to claim (1), wherein the electrode active metal particles are adhered to the electrode core by plating metal.
(3)メッキ金属が電極活性金属粒子を構成する成分の
一部と同じ金属である特許請求の範囲第(2)項の高耐
久性低水素過電圧陰極。
(3) The highly durable and low hydrogen overvoltage cathode according to claim (2), wherein the plating metal is the same metal as a part of the components constituting the electrode active metal particles.
(4)組成式が、 LaNi_5_+_nAl_2_.18_n(ただし、
0.3≦n≦4である) である電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属粒子を、電極活性金属粒子として分散させたメッキ
浴中に電極芯体を浸漬して複合メッキ法により、該電極
芯体上に該電極活性金属粒子をメッキ金属と共に共電着
せしめることを特徴とする高耐久性低水素過電圧陰極の
製造方法。
(4) The compositional formula is LaNi_5_+_nAl_2_. 18_n (However,
0.3≦n≦4) A composite plating method is performed in which the electrode core is immersed in a plating bath in which hydrogen-absorbing metal particles that can electrochemically absorb and release hydrogen are dispersed as electrode-active metal particles. A method for producing a highly durable and low hydrogen overvoltage cathode, comprising co-electrodepositing the electrode active metal particles together with a plating metal on the electrode core.
(5)メッキ金属が電極芯体上に層状に形成せられ、電
極活性金属粒子の一部が該層の表面に露出してなる特許
請求の範囲第(4)項記載の高耐久性低水素過電圧陰極
の製造方法。
(5) High durability and low hydrogen according to claim (4), wherein the plated metal is formed in a layer on the electrode core, and a part of the electrode active metal particles are exposed on the surface of the layer. Method of manufacturing overvoltage cathode.
(6)電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属粒子を、電極活性金属粒子として含有する層を焼付
法あるいは溶融塗布法により、該電極活性金属粒子の一
部が該層の表面に露出するように電極芯体上に設けるこ
とを特徴とする高耐久性低水素過電圧陰極の製造方法。
(6) A layer containing hydrogen-absorbing metal particles that can electrochemically absorb and release hydrogen as electrode-active metal particles is baked or melt-coated, so that some of the electrode-active metal particles are applied to the surface of the layer. A method for producing a highly durable and low hydrogen overvoltage cathode, which is characterized in that it is provided on an electrode core so as to be exposed.
(7)電気化学的に水素を吸蔵及び放出できる水素吸蔵
金属からなる電極活性金属粒子をその一部が少くとも一
方の面の表面より露出するように含有せしめられたシー
トを作製し、該シートの該粒子露出面と反対側の面を電
極芯体に固定する高耐久性低水素過電圧陰極の製造方法
(7) Produce a sheet containing electrode active metal particles made of a hydrogen storage metal capable of electrochemically absorbing and desorbing hydrogen so that a portion thereof is exposed from the surface of at least one side, and the sheet A method for producing a highly durable and low hydrogen overvoltage cathode, in which the surface opposite to the exposed surface of the particles is fixed to an electrode core.
(8)該シートが糊剤として有機ポリマー粒子を含む特
許請求の範囲第(7)項の高耐久性低水素過電圧陰極の
製造方法。
(8) A method for producing a highly durable and low hydrogen overvoltage cathode according to claim (7), wherein the sheet contains organic polymer particles as a sizing agent.
JP63104107A 1988-04-28 1988-04-28 Cathode having high durability and low hydrogen overvoltage and production thereof Pending JPH01275791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104107A JPH01275791A (en) 1988-04-28 1988-04-28 Cathode having high durability and low hydrogen overvoltage and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104107A JPH01275791A (en) 1988-04-28 1988-04-28 Cathode having high durability and low hydrogen overvoltage and production thereof

Publications (1)

Publication Number Publication Date
JPH01275791A true JPH01275791A (en) 1989-11-06

Family

ID=14371903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104107A Pending JPH01275791A (en) 1988-04-28 1988-04-28 Cathode having high durability and low hydrogen overvoltage and production thereof

Country Status (1)

Country Link
JP (1) JPH01275791A (en)

Similar Documents

Publication Publication Date Title
Safizadeh et al. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review
US4498962A (en) Anode for the electrolysis of water
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
US4536259A (en) Cathode having high durability and low hydrogen overvoltage and process for the production thereof
JP2629963B2 (en) High durability low hydrogen overvoltage cathode
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
US4877508A (en) Highly durable cathode of low hydrogen overvoltage and method for manufacturing the same
JP3676554B2 (en) Activated cathode
JPS6145711B2 (en)
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
JPH01275791A (en) Cathode having high durability and low hydrogen overvoltage and production thereof
JPH0250992A (en) High-durability low hydrogen overvoltage cathode and manufacture thereof
JPH11229170A (en) Activated cathode
JPS6112032B2 (en)
JPS63145790A (en) Highly durable low-hydrogen overvoltage cathode and its production
JP3236682B2 (en) Electrolytic cathode and method for producing the same
JPH02258992A (en) Cathode having low hydrogen overvoltage and high durability and production thereof
JPH02310388A (en) Low hydrogen overvoltage cathode with high durability and its production
JP3941898B2 (en) Activated cathode and method for producing the same
JPS5970785A (en) Joined body consisting of ion exchange membrane and electrode and its manufacture
JPS5943552B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JPS6136590B2 (en)
JPS5943553B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JPS6145713B2 (en)
JPS5993891A (en) Joined body of ion exchange membrane to electrode and its production