JPS5993891A - Joined body of ion exchange membrane to electrode and its production - Google Patents

Joined body of ion exchange membrane to electrode and its production

Info

Publication number
JPS5993891A
JPS5993891A JP57203640A JP20364082A JPS5993891A JP S5993891 A JPS5993891 A JP S5993891A JP 57203640 A JP57203640 A JP 57203640A JP 20364082 A JP20364082 A JP 20364082A JP S5993891 A JPS5993891 A JP S5993891A
Authority
JP
Japan
Prior art keywords
component
exchange membrane
ion exchange
electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57203640A
Other languages
Japanese (ja)
Other versions
JPS6012429B2 (en
Inventor
Yoshio Oda
小田 吉男
Takashi Otoma
音馬 敞
Eiji Endo
栄治 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57203640A priority Critical patent/JPS6012429B2/en
Publication of JPS5993891A publication Critical patent/JPS5993891A/en
Publication of JPS6012429B2 publication Critical patent/JPS6012429B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To provide a titled joined body as an anode for water electrolysis having a low oxygen overvoltage and excellent durability by sticking alloy particles consisting of three components, such as Ni or Co, Al, etc. and a noble metal, etc. having a prescribed compsn., as an anode, on an ion exchange membrane. CONSTITUTION:The alloy particles having the prescribed compsn. consisting of the three components X, Y, Z; the component X=Ni and/or Co, the component Y=Al, Zn, Mg, or Si, and the component Z= a noble metal or Re, are stuck on an ion exchange membrane and is thereafter treated with an aq. caustic alkali soln., whereby at least a part of the metal of the above-mentioned component Y is eluted off and the above-mentioned alloy particles are made porous. A joined body of an ion exchange membrane to an electrode wherein the particles of the electrode active metal consisting of the alloy having the compsn. of the above- mentioned three components X, Y, Z in the range enclosed with the points A, B, C and D, more preferably in the range enclosed with the posints A, B, E and F in the compsn. diagram are deposited, as an anode, to an ion exchange membrane is thus obtd.

Description

【発明の詳細な説明】 本発明は水電勉用陽極の製造法、特には低電圧で水電解
が可能な電極触媒イオン膜接合体とその製造法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an anode for water electric study, and more particularly to an electrode catalyst ion membrane assembly capable of water electrolysis at low voltage and a method for manufacturing the same.

水素は、最近のエネルギー事情を反映し石油に代る新し
いエネルギー源として多方面から注目されている。そし
て、水素の工業的製造方法としては大別して水電解法と
コークスや石油のガス化法が挙げられる。前者の方法は
、原料として入手し易い水が用いられる反面、多数の電
解設備が必要なこと、電流の過不足に対する適応性が不
充分であること、電b・を液の戻限化によ・ る劣化や
床面積、設備費などに多くの問題が残本発明はこのよう
な陽イオン交換膜を用いる陽イオン交換)漠に接合した
ものを発明の主旨とするものである。
Reflecting the recent energy situation, hydrogen is attracting attention from many quarters as a new energy source to replace oil. Industrial hydrogen production methods can be roughly divided into water electrolysis methods and coke or petroleum gasification methods. Although the former method uses water, which is easily available as a raw material, it requires a large number of electrolytic equipment, is insufficiently adaptable to excess or insufficient current, and has problems with electricity b due to limited return of the liquid. - Many problems remain in terms of deterioration, floor space, equipment costs, etc., and the main purpose of the present invention is to vaguely bond cation exchange using such a cation exchange membrane.

通常卑金ハ(系電極触媒としてはニッケル、ニッケル多
孔体、ニッケル複合酸化物などが用いられる。たとえは
、本発明者等が既に提案した特願昭56−82542号
で開示される電極は、それまでに知られた電極に比べて
低酸素過電圧化及びその4久性に関し、大きな効果を持
つものである。しかしながら本発明者等は、更に詳細に
検削を加えた結果、上記電極もある場合には、必ずしも
耐久性が充分で万い場合のあることを見出し、との部′
決のため鋭意努力した結果本発明を見出すに至ったもの
である。
Generally, base metal (nickel), nickel porous bodies, nickel composite oxides, etc. are used as base metal (base metal)-based electrode catalysts. Compared to the previously known electrodes, this electrode has a greater effect in terms of lower oxygen overvoltage and its durability.However, as a result of more detailed inspection, the inventors discovered that the above-mentioned electrode also exists. We have found that in some cases, durability is not always sufficient.
As a result of diligent efforts to resolve this issue, we have discovered the present invention.

さらに寸だ本発明は従来電極にくらべて低いて水電解を
行ういわゆるSPB水電解はすでに陽極が好ましく用い
られるが、上記電解運転によシ厳素過電圧の上昇するこ
とが認められた。
Furthermore, the present invention is advantageous in the so-called SPB water electrolysis, in which water electrolysis is performed at a lower voltage than conventional electrodes, and an anode is already preferably used, but it has been found that the above-mentioned electrolytic operation causes an increase in the severe overvoltage.

本発明者等はこの現象について深く追求した結果、電極
活性成分であるラネーニッケル粒子あるいはラネーコバ
ルト粒子のニッケルあるいはコバルトが水酸化ニッケル
あるいは水酸化コバルトに変質することにより電極活性
が劣化する(即ち、酸素過電圧が上昇する)ことを見出
したもので、この変質を防止するのに、ニッケル。
As a result of deep investigation into this phenomenon, the present inventors found that the electrode activity deteriorates due to the nickel or cobalt in the Raney nickel particles or Raney cobalt particles, which are electrode active ingredients, deteriorating into nickel hydroxide or cobalt hydroxide (i.e., due to the deterioration of the electrode activity). It was discovered that overvoltage increases), and nickel is used to prevent this deterioration.

コバルト等の第一の成分とアルミニウム、亜鉛。The first ingredients such as cobalt and aluminum, zinc.

マグネシウム、シリコン等の第二の成分とからなる公知
の金属粒子に第三の4J!i金属、レニウムから選ばれ
る成分を含有せしめることが著しい効果をもたらすこと
並びに酸素過電圧低減の効果が顕著であることを見出し
、本発明を完成したもので、本発明はイオン交換膜上に
、ニッケ2が第1図の点A、B、C及びDで四重れる範
分Y1及び拐金属、レニウムから選ばれる成分2が第2
図の点/4’、  B’、  C’及びD′で四重れる
範囲にある合金からなる電極活性全局粒子をイオン交換
膜膜」二に陽極として何着せしめることを特徴とする晶
面1久性tii 給イオン膜接合体のル!I法を主旨と
するものである。
A third 4J to known metal particles consisting of a second component such as magnesium or silicon! The present invention was completed based on the discovery that the inclusion of a component selected from i-metal and rhenium brings about a remarkable effect and also has a remarkable effect of reducing oxygen overvoltage. The range Y1 where 2 is quadrupled at points A, B, C, and D in Figure 1 and the component 2 selected from rhenium is the second
Crystal plane 1 characterized in that electrode active local particles made of an alloy in the quadruple range of points 4', B', C' and D' in the figure are applied to an ion exchange membrane as an anode. Kusu tii Ion-supplying membrane conjugate! The main idea is the I method.

ここで、貴金属とは、周知の如く、金、銀及び白金属金
属(即ち、白金、ロジウム、ルテニウム、パラジウム、
イリジウム)?意味するものである。
Here, the precious metals include gold, silver, and platinum metals (i.e., platinum, rhodium, ruthenium, palladium,
iridium)? It means something.

ここで、第1図は、ニッケル及び/又ハコハルトからな
る成分x1アルミニウム、亜鉛、マグネシウム、シリコ
ンから選ばれる成分Y及び貴金属、レニウムから選ばれ
る成分2の三成分ダイアグラムであって、本発明電極触
媒活性合金組成は第1図の点A、B、O及びDで囲まれ
(79,6,20,0,4)、E (60,20゜20
)、F(80,0,20)である。
Here, FIG. 1 is a ternary component diagram of component x1 consisting of nickel and/or hakohardt, component Y selected from aluminum, zinc, magnesium, and silicon, and component 2 selected from noble metals and rhenium, which is the electrode catalyst of the present invention. The active alloy composition is surrounded by points A, B, O and D in Figure 1 (79,6,20,0,4) and E (60,20°20
), F(80,0,20).

本発明の効果は合金組成の1成分とし、て貰金属、レニ
ウムから選ばれる成分が包含されることによるものであ
るが、伺故に、これら成分の包含がニッケルまたはコバ
ルトの水酸化物生成を阻止しうるのか詳細については未
だ解明されていない。しかしながら、本発明者等は、こ
れらの成分の内でも白金、ロジウム、ルテニウムが本発
明の効果を奏するのにメヒ適であるとの知見を得ている
。即ち、金属の内でも、白金、ロジウム、ルテニウムを
用いる時には、本電極触媒イオン交換膜接合体はよシ厳
しい環境条件においてもよシ長期にわたって特段に低い
酸素過電圧を維持することができる。
The effects of the present invention are due to the inclusion of a component selected from nickel metals and rhenium as one component of the alloy composition, but it is believed that the inclusion of these components prevents the formation of hydroxides of nickel or cobalt. The details of whether this is possible have not yet been clarified. However, the present inventors have found that among these components, platinum, rhodium, and ruthenium are most suitable for achieving the effects of the present invention. That is, when using platinum, rhodium, and ruthenium among metals, the present electrocatalyst ion exchange membrane assembly can maintain an especially low oxygen overvoltage for a long period of time even under severe environmental conditions.

本発明接合体の陽極の合金が第1図のABCDで囲まれ
る組成を有することがよいのけ、上金籾、レニウムの成
分とこの範囲に越えて多量上述の合金が粒子の場合、平
均粒径は、電極表側の多孔性度及び後述する電極製造の
際の粒子の分散性にも関係するが、01μ〜100μで
あれば充分である。
It is preferable that the alloy of the anode of the bonded body of the present invention has a composition surrounded by ABCD in FIG. The diameter is also related to the porosity of the electrode surface and the dispersibility of particles during electrode manufacture, which will be described later, but a diameter of 01 μm to 100 μm is sufficient.

上記範囲中、電極表面の多孔性等の点から、好ましくは
0,1μ〜50μ、更に好1しくは0、 jp−j O
μである。
In the above range, from the viewpoint of porosity of the electrode surface, preferably 0.1 to 50 μ, more preferably 0, jp-j O
μ.

更に本発明の合金の層は、電極のよυ低い酸素過電圧会
達成するため、表面多孔性であることが好ましい。更に
は粒子内部まで多孔性になっていることが好丑しい。
Furthermore, the layer of the alloy of the present invention is preferably superficially porous in order to achieve a lower oxygen overpotential than the electrode. Furthermore, it is preferable that the inside of the particles be porous.

多孔性の程度は、その程度がかなり大きい程好ましいが
、過度に多孔性にすると粒子の機械的強度が低下する為
多孔度(porosity )が20・〜90%にする
ことが好ましい。上記範囲中央に好甘しくに、35〜8
5%、特に好ましくは50〜80%である。
As for the degree of porosity, it is preferable that the degree is quite large, but if the degree of porosity is excessively large, the mechanical strength of the particles decreases, so it is preferable that the porosity is 20% to 90%. Preferably in the middle of the above range, 35 to 8
5%, particularly preferably 50-80%.

なお、上記多孔度とは、公知の窒素吸着法水炎孔性にす
る方法が好ましい。
The porosity mentioned above is preferably determined by the known nitrogen adsorption method to obtain water flame porosity.

かかる場合、成分X、Y、Zが所定割合に均一に配合さ
壮た合金を苛性アルカリ処理して、成分Yの金属の少く
とも一部を除去せしめる方法が6′に好ましい。本発明
の陽極の場合、アルカリ水溶液を水電解して水素を製造
する場合必ずしも電W(槽に装着される前に苛性アルカ
リで処理する必要はなく、使用される陽極液が苛性アル
カリ条件であるため、電解中に徐々に成分Yの争1リシ
が除去宴れ、目的の陽極となシうる。
In such a case, a method 6' is preferred in which an alloy in which components X, Y, and Z are uniformly blended in predetermined proportions is treated with caustic alkali to remove at least a portion of the metal of component Y. In the case of the anode of the present invention, when producing hydrogen by water electrolysis of an alkaline aqueous solution, it is not necessarily necessary to treat it with caustic alkali before installing it in the electrolysis tank, and the anolyte used is under caustic conditions. Therefore, during electrolysis, the content of component Y is gradually removed and becomes the desired anode.

また、本発明の場合、金属粒子としては、ニッケル及び
/又はコバルトからなる成分X、アルミニウム、亜鉛、
マクネシウム、シリコンから選ばれる成分Y及び貴金属
、レニウムから選ばれる成分2が第2図の点A’、  
E’、  O’及びD′で囲まれる91β囲の合金であ
ることが必要である。
In the case of the present invention, the metal particles include component X consisting of nickel and/or cobalt, aluminum, zinc,
Component Y selected from magnesium and silicon and component 2 selected from noble metals rhenium are at point A' in Figure 2,
It is necessary that the alloy be in the 91β range surrounded by E', O' and D'.

なお、第2図におけるA’、  B’、  O’、  
D’の合金40.0.2)、B’(39,8,60,0
,2)、C′(s、  6o、35)、D’(12,4
0,48)である。
In addition, A', B', O', in Fig. 2
Alloy D'40.0.2), B'(39,8,60,0
,2), C'(s, 6o, 35), D'(12,4
0.48).

の理由は、この範囲をはずれるとアルカリ土類金属即ち
成分Yの溶解抽tl’、後の電イ・r1ミ触媒とし、て
の活性が充分でないためである。
The reason for this is that, outside this range, the activity of the alkaline earth metal, that is, component Y, as a catalyst for dissolving tl' and later elec- tric acid and r1 is insufficient.

あるいは1だ、貴金属成分量が木範四を相嶋に越えても
、酸素過電圧の低減効果や耐久性が格段に向上するもの
ではない等のためである。
Or 1. This is because even if the amount of precious metal components exceeds that of Kihanshi and Aishima, the oxygen overvoltage reduction effect and durability will not be significantly improved.

上記金属粒子の組成の組合せとしては各種のものが使用
でき、その代表的なものとしては、N1−AI−Pt 
、  Ni−Al−Rh 、  Nj、−Al−Ru 
、  N1−Zn−J’t 。
Various combinations of compositions of the metal particles can be used, and typical examples include N1-AI-Pt
, Ni-Al-Rh, Nj, -Al-Ru
, N1-Zn-J't.

Ni−Zn−Rh 、  Ni−Zn−Ru 、  N
i−1Ei−Pt 、  Ni−8i−Rh 。
Ni-Zn-Rh, Ni-Zn-Ru, N
i-1Ei-Pt, Ni-8i-Rh.

Ni−5i−Ru 、  Co−Al−Pt 、  C
o−Al−Rh 、  co−AI−、Ru 。
Ni-5i-Ru, Co-Al-Pt, C
o-Al-Rh, co-AI-, Ru.

Co−Zn−Pt 、  co−Zn−Rh 、  C
o−ZIl−Rlx 、  Co−8i−Pt 。
Co-Zn-Pt, co-Zn-Rh, C
o-ZIl-Rlx, Co-8i-Pt.

Ni−Mg−Ru 、  Co−Mg−Pt 、  C
!o−Mg−Rh 、  Co−Mg−Ruなどが考え
られる。
Ni-Mg-Ru, Co-Mg-Pt, C
! Possible examples include o-Mg-Rh and Co-Mg-Ru.

この中でも特に好ましい組合せは、Ni−Al−につい
ては特別に限定されることは必要でなく、□l:、“震
;た、苛性アルカリ処理の条件は、出発合金の組成によ
っても異るが、後述するような組成の合金の場合、苛性
アルカリ濃度(NaOH換算)10〜35重量%の10
〜100℃水溶液に0.5〜30時間浸漬することが好
ましい。この理由tよ、成分Yはなるべく除去しやすく
することを条件として選定したものである。
Among these, a particularly preferable combination is not particularly limited to Ni-Al-; In the case of an alloy with a composition as described below, 10% by weight of caustic alkali (NaOH equivalent) of 10 to 35% by weight.
It is preferable to immerse it in an aqueous solution at ~100°C for 0.5 to 30 hours. For this reason, component Y was selected on the condition that it should be as easy to remove as possible.

また、成分2は上記アルカリ処理によって除去されない
ものである。
Moreover, component 2 is not removed by the above-mentioned alkali treatment.

かくして、得られた電極イオン膜接合体は、その後必要
に応じ、苛性アルカリ処理(例えば苛性アルカリ水溶液
に浸漬する)して、合金粒子中の成分Yの金属の少なく
とも一部を溶出除去せしめ、該粒子?多孔性にする。
The thus obtained electrode ion membrane assembly is then treated with caustic alkali (for example, immersed in an aqueous caustic solution) as necessary to elute and remove at least a portion of the metal of component Y in the alloy particles. particle? Make it porous.

かかる場合の条件は前述の通シである。The conditions in such a case are as stated above.

又、前述した成分X、Y、Zの合金と採用した場合、上
述したような苛性アルカリ処理を行うことが好ましいが
、かかる合金を411着した接かかる場合、電解の過程
で成分Yの金属が溶問題となることはない。
In addition, when using an alloy of components X, Y, and Z as described above, it is preferable to perform the caustic alkali treatment as described above, but when such an alloy is used, the metal of component Y may be removed during the electrolysis process. There is no problem with melting.

尚本発明の場合、陰極として使用する電極触媒は、特に
限定さ扛ることなく、陰極触媒として有効である各種貴
金属、例えばルテニウム、ロジウム、イリジウム、白金
などでよい。さらにはニッケル系電俊触媒でもよい。こ
れらが膜に直接接合されていてもよく、別の芯体上に各
1jiiの方法、たとえは浸漬法、化学メッキ法、市1
気メッキ法、噴霧法などによって結合されプζ電極体を
用いてもよい。これらは本水電解法においては水素過電
圧がなるべく低いことが好ましいことはいうまでもない
。また本発明に用いる陽イオン交換膜へとしては公知の
含フツ素系陽イオン交換膜が使用≧れうるがなかでもイ
メン交換基としてカルボン酸基を有するパーフルオロフ
ッ化カーホン膜(例えは特開昭51−140 −899
号、特開昭52−48598号に開示さ実施例1〜12 仏を加え、15分間混練し、触媒4ペーストを得た。C
F2= CF2と0F2−OFO(CF2)3COOO
H3との共重合体でイオン交換容量1.9 meq /
 f樹脂、膜厚“150μの陽イオン交換膜の片面に上
記の合金粉末牙それぞれ1.0■/c!n2スクリ一ン
印刷機で塗布した。
In the case of the present invention, the electrode catalyst used as the cathode is not particularly limited, and may be any of various noble metals that are effective as cathode catalysts, such as ruthenium, rhodium, iridium, and platinum. Furthermore, a nickel-based electron catalyst may also be used. These may be directly bonded to the membrane, and may be bonded to a separate core using a method such as dipping, chemical plating, or bonding.
A ζ electrode body bonded by plating, spraying, or the like may also be used. It goes without saying that in this water electrolysis method, it is preferable that the hydrogen overvoltage is as low as possible. Further, as the cation exchange membrane used in the present invention, any known fluorine-containing cation exchange membrane may be used, but in particular, a perfluorinated carbon membrane having a carboxylic acid group as an imen exchange group (for example, Showa 51-140 -899
Examples 1 to 12 disclosed in JP-A No. 52-48598 were added and kneaded for 15 minutes to obtain catalyst 4 paste. C
F2= CF2 and 0F2-OFO(CF2)3COOO
Copolymer with H3 has an ion exchange capacity of 1.9 meq/
Each of the above alloy powders was coated on one side of a cation exchange membrane made of F resin and having a film thickness of 150 μm using a 1.0 μ/c!n2 screen printer.

イオン膜の他の側には別に調製したルテニウム黒を3 
m17cm2塗布した。つぎにこれを150℃、250
 F47cm2テ10分間プレスした。80℃、15%
KOH水溶液で20時間加水分解した。
On the other side of the ion membrane, 3 pieces of ruthenium black prepared separately were placed.
17cm2 was applied. Next, heat this at 150℃ and 250℃.
Pressed at F47cm2 for 10 minutes. 80℃, 15%
Hydrolysis was carried out with an aqueous KOH solution for 20 hours.

ここで電極触媒の一部を剥離して組成分析した。Here, a part of the electrode catalyst was peeled off and the composition was analyzed.

つぎにN1  メツシュ会集電体として用い、ルテニウ
ム黒側を陰極として15裂KOH1110℃、100 
A/dm2の条件下に60日間電解を行った。
Next, using N1 as a current collector and using the ruthenium black side as a cathode, 15-fiber KOH 1110°C, 100
Electrolysis was performed for 60 days under A/dm2 conditions.

各電極触媒の初期酸素過電圧と3o日後の酸素過電圧な
らびにイオン膜の加水分解後の電極表   1 評価した。酸素過電圧の変化を表2に示す。
The initial oxygen overvoltage of each electrode catalyst, the oxygen overvoltage after 30 days, and the electrode after hydrolysis of the ionic membrane were evaluated. Table 2 shows the changes in oxygen overpotential.

比較例6〜6 合金粉末の組成を表2の比較例3〜6に示すものに変え
た以外は実施例と同様に電極触媒−イオン膜接合体を作
製した。実施例と同様にして行った試験結果を表2に示
す。
Comparative Examples 6 to 6 Electrocatalyst-ion membrane assemblies were produced in the same manner as in Examples except that the composition of the alloy powder was changed to those shown in Comparative Examples 3 to 6 in Table 2. Table 2 shows the test results conducted in the same manner as in the examples.

比較例6〜4はRhやIrの合金をある程度以上に増し
ても特段の性能の向上は見られないことを示しており、
比較例5,6は原料粉末の組成が適切な範囲を外れてい
るため当初より酸素過電圧が高いことを示している。
Comparative Examples 6 to 4 show that even if the Rh and Ir alloys are increased beyond a certain level, no particular improvement in performance is observed.
Comparative Examples 5 and 6 show that the composition of the raw material powder is outside the appropriate range, so the oxygen overvoltage is higher than the initial value.

表  2Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、X = Ni又はCo 、 Y = Al 
、 Zn 。 Mg又はSl、2=貴金属又はレニウムの3成分からな
る夕゛イヤグラムで点A、B、O,Dで囲1れる範囲の
組成は本発明電極触媒−イオン交換1iC+の活性[↓
り極粒子の合金の組成を示す。 第2図は、X = Ni又はCo 、 Y = AI 
、  Zn 。
In Figure 1, X = Ni or Co, Y = Al
, Zn. The composition in the range surrounded by points A, B, O, and D in the diagram consisting of the three components Mg or Sl, 2=noble metal or rhenium indicates the activity of the electrocatalyst-ion exchange 1iC+ of the present invention [↓
The composition of the alloy of the electrode particles is shown below. Figure 2 shows that X = Ni or Co, Y = AI
, Zn.

Claims (1)

【特許請求の範囲】[Claims] (1)  イオン交換膜上に、ニッケル及び/又はコバ
ルトからなる成分X、アルミニウム、亜鉛、マグネシウ
ム、シリコンから選ばれる成分Y及び貴金属、レニウム
から選ばれる成分2からなる合金であって成分X、Y、
Zが第1図X、アルミニウム、亜鉛、マグネシウム、シ
リコンから選ばれる成分Y及び貴金属、レニウムから選
ばれる成分2が第2図の点A’、  B’。 D′及びD′で囲まれる範囲にある合金からなる電極活
性金属粒子を陽極としてイオン交換膜」二に付着せしめ
ることを特徴どするイオン交換膜、電極接合体の製法。
(1) An alloy consisting of a component X consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, magnesium, silicon, and a component 2 selected from a noble metal, rhenium, on an ion exchange membrane, where the components X, Y ,
Z is X in Figure 1, component Y selected from aluminum, zinc, magnesium, and silicon, and component 2 selected from noble metals and rhenium are points A' and B' in Figure 2. A method for producing an ion exchange membrane and an electrode assembly, characterized in that electrode active metal particles made of an alloy in the range surrounded by D' and D' are attached to an ion exchange membrane as an anode.
JP57203640A 1982-11-22 1982-11-22 How to electrolyze water Expired JPS6012429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203640A JPS6012429B2 (en) 1982-11-22 1982-11-22 How to electrolyze water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203640A JPS6012429B2 (en) 1982-11-22 1982-11-22 How to electrolyze water

Publications (2)

Publication Number Publication Date
JPS5993891A true JPS5993891A (en) 1984-05-30
JPS6012429B2 JPS6012429B2 (en) 1985-04-01

Family

ID=16477390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203640A Expired JPS6012429B2 (en) 1982-11-22 1982-11-22 How to electrolyze water

Country Status (1)

Country Link
JP (1) JPS6012429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122172A (en) * 2019-01-29 2020-08-13 国立研究開発法人理化学研究所 Water electrolysis laminate and water electrolysis apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122172A (en) * 2019-01-29 2020-08-13 国立研究開発法人理化学研究所 Water electrolysis laminate and water electrolysis apparatus using the same

Also Published As

Publication number Publication date
JPS6012429B2 (en) 1985-04-01

Similar Documents

Publication Publication Date Title
US4498962A (en) Anode for the electrolysis of water
JPS6136591B2 (en)
DE3047636A1 (en) CATHODE, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AND ELECTROLYSIS CELL
JP2629963B2 (en) High durability low hydrogen overvoltage cathode
RU2383659C2 (en) Method of producing surface of nickel oxide of enhanced conductivity
JPS5993891A (en) Joined body of ion exchange membrane to electrode and its production
JPS6145711B2 (en)
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
JPS5943552B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JPS5970785A (en) Joined body consisting of ion exchange membrane and electrode and its manufacture
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
JPS5993892A (en) Joined body of ion exchange membrane to electrode and its production
Zabielaitė et al. Investigation of stability of gold nanoparticles modified zinc–cobalt coating in an alkaline sodium borohydride solution
JPS5967383A (en) Anode for water electrolysis and its production
JPS5925940A (en) Low overvoltage cathode having high durability and its production
JPS63145790A (en) Highly durable low-hydrogen overvoltage cathode and its production
JPS58133387A (en) Cathode having low hydrogen overvoltage and preparation thereof
JP3236682B2 (en) Electrolytic cathode and method for producing the same
JPS6112032B2 (en)
JPH0250992A (en) High-durability low hydrogen overvoltage cathode and manufacture thereof
DE102022115040A1 (en) Bifunctional gas diffusion electrode for alkaline electrochemical energy conversion systems and method for their production
JPH01275791A (en) Cathode having high durability and low hydrogen overvoltage and production thereof
JPH02258992A (en) Cathode having low hydrogen overvoltage and high durability and production thereof
JPH02310388A (en) Low hydrogen overvoltage cathode with high durability and its production
JPS58167788A (en) Highly durable cathode with low hydrogen overvoltage and preparation thereof