JPS58167788A - Highly durable cathode with low hydrogen overvoltage and preparation thereof - Google Patents

Highly durable cathode with low hydrogen overvoltage and preparation thereof

Info

Publication number
JPS58167788A
JPS58167788A JP57049965A JP4996582A JPS58167788A JP S58167788 A JPS58167788 A JP S58167788A JP 57049965 A JP57049965 A JP 57049965A JP 4996582 A JP4996582 A JP 4996582A JP S58167788 A JPS58167788 A JP S58167788A
Authority
JP
Japan
Prior art keywords
electrode
cathode
hydrogen overvoltage
component
low hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57049965A
Other languages
Japanese (ja)
Other versions
JPS6136590B2 (en
Inventor
Yoshio Oda
小田 吉男
Takashi Otoma
音馬 敞
Eiji Endo
栄治 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57049965A priority Critical patent/JPS58167788A/en
Publication of JPS58167788A publication Critical patent/JPS58167788A/en
Publication of JPS6136590B2 publication Critical patent/JPS6136590B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To keep hydrogen overvoltage in a cathode low, by coating the surface of the cathode used in electrolysis of an alkali halide aqueous solution with an active layer comprising a mixture of specific metal particles. CONSTITUTION:In preparing the cathode of an electrolytic tank used in electrolysis of an aqueous solution of an alkali halide such as NaCl, a cathode core is plated in a plating bath contg. a plating liquid having dispersed active metal particles of an alloy consisting of a component X comprising Ni or Co, a component Y being selected from Al, Zn and Mg and a component Z being the group IV metal of the Periodic Table such as Ti, Sn and the compsn. of said alloy being within a range surrounded by points A', B', C', D', E' in the drawing (A) or said alloy particles being coated by a melt coating method or a baking method on said cathode core. In this case, the composition of the alloy coated on the cathode should be in an area surrounded by points A, B, C, D, and E in the drawing (A) in order to obtain satisfactory low hydrogen overvoltage.

Description

【発明の詳細な説明】 本発明は高耐久性低水素過電圧陰極、特には酸化性環境
下においても特性の劣化が極めて小さい低水素過電圧陰
極及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly durable low hydrogen overvoltage cathode, and particularly to a low hydrogen overvoltage cathode whose properties are hardly deteriorated even in an oxidizing environment, and a method for producing the same.

低水素過電圧陰極、特にはハロゲン化アルカリ水溶液電
解用の陰極として各種のものが提案されている。これら
の中で、本出願人が既に提案した特開昭54−1127
85号公報で開示される電極は、それまでに知られた電
極に比べて低水素過電圧化及びその耐久性に関し、大き
な効果を持つものであるが、本発明者等は、更に検討を
加えた結果、上記公報で開示される電極もある場合には
、必ずしも耐久性が充分でない場合のあることを見出し
、この解決のため鋭意努力した結果本発明を見出すに至
ったものである。
Various types of low hydrogen overvoltage cathodes have been proposed, particularly as cathodes for aqueous halide electrolysis. Among these, Japanese Patent Application Laid-Open No. 1127-1987, which the present applicant has already proposed,
Although the electrode disclosed in Publication No. 85 has greater effects in terms of lower hydrogen overvoltage and durability than previously known electrodes, the present inventors have conducted further studies. As a result, we found that some of the electrodes disclosed in the above publications do not always have sufficient durability, and as a result of our earnest efforts to solve this problem, we have arrived at the present invention.

ハロゲン化アルカリ水溶液電解槽で電解により陽極室か
らはハロゲンガス、陰極室からは苛性アルカリ水溶液と
水素ガスを製造することは既によく知られた工業的な塩
素及び苛性アルカリの製造法である。この電解槽の陰極
としては低水素過電圧の上述の如き陰極が好ましく用い
られるが、上記電解槽は運転の途中、種々の理由により
運転を停止することがあシ、この場合、運転を再開する
と水素過電圧の上昇することが認められた。本発明者等
はこの現象について深ぐ追求し次結果、電極活性成分で
あるラネーニッケル粒子あるいはラネーコバルト粒子の
ニッケルあるいはコバルトが水酸化ニッケルあるいは水
酸化コバルトに変質することにより電極活性が劣化する
(即ち、水素過電圧が上昇する)ことを見出したもので
、この変質を防止するのニ、ニッケル、コバルト等の第
一の成分とアルミニウム、亜鉛、マグネシウム、銀等の
第二の成分とからなる公知の金属粒子に第三の特定の成
分を含有せしめることが著しい効果をもたらすことを見
出し、本発明を完成したもので、本発明は、電極活性金
属粒子の一部が電極芯体上に設けた層の表面に露出して
なる電極において、該電極活性金属粒子がニッケル及び
/又はコバルトからなる成分x1アルミニウム、亜鉛、
マグネシウムから選ばれる成分Y1及び周期律表第■族
金属から選ばれる成分2が、第1−の点A、B、C,D
及びEで囲まれる範囲にある合金である高耐久性低水素
過電圧陰極 A :  X = ggWi% y=  □wt%  
Z=  1wt%13 ;  X == 7gwt% 
y = 20wt%  z−Iwt%C:)(=5QW
’T;% y=20wt%  Z=30wt%D:X、
=42wt% y = 16wt% z=42wt%に
:X:5Qwt% y=  □wt%  Z=50wt
%及び電極活性金属粒子の一部が電極芯体上に設けた層
の表面に露出してなる電極の製法において、ニッケル及
び/又はコバルトからなる成分X1アルミニウム、亜鉛
、マグネシウムから選ばれる成分Y及び周期律表第■族
金属から選ば今 レル成分zが、第・図の点A/ 、 B7 、 C′、
 D/及びE′で囲まれる範囲にある合金 からなる該電極活性金属粒子を メッキ浴中に均一に分散せしめ、該電極芯体上″に共電
着せしめるか、該電極活性金属粒子を該電極芯体上に溶
融塗付ないし焼付することを特徴とする高耐久性低水素
過電圧陰極の製法” : X = 5gwt% Y =
 40wt% Z=  IWl;%B′、 X= 3g
wt% Y= 60wt%  Z==  Iwt%C’
 ; X = 25wt% y = 60wt%  z
 = 15wt%D/ :  X = 25wt%  
 Y−= 50wt%  z = 25wt%”’ :
  X==35wt%  ”f = 40wt%  z
 = 25wt%を要旨とするものである。
Producing halogen gas from the anode chamber and caustic alkali aqueous solution and hydrogen gas from the cathode chamber by electrolysis in an alkali halide aqueous solution electrolytic cell is already a well-known industrial method for producing chlorine and caustic alkali. As the cathode of this electrolytic cell, the above-mentioned cathode with a low hydrogen overvoltage is preferably used, but the electrolytic cell may be stopped for various reasons during operation, and in this case, when the operation is resumed, the hydrogen An increase in overvoltage was observed. The present inventors investigated this phenomenon in depth and found that the nickel or cobalt in Raney nickel particles or Raney cobalt particles, which are electrode active ingredients, changes into nickel hydroxide or cobalt hydroxide, resulting in a deterioration of electrode activity (i.e. In order to prevent this deterioration, a known method consisting of a first component such as nickel or cobalt and a second component such as aluminum, zinc, magnesium or silver has been discovered. The present invention was completed based on the discovery that the inclusion of a third specific component in the metal particles brings about a remarkable effect. In the electrode formed by exposing on the surface of
Component Y1 selected from magnesium and component 2 selected from group Ⅰ metals of the periodic table are located at the 1-th points A, B, C, and D.
Highly durable low hydrogen overvoltage cathode A which is an alloy in the range surrounded by and E: X = ggWi% y = □wt%
Z = 1wt%13; X == 7gwt%
y = 20wt% z-Iwt%C:) (=5QW
'T;% y=20wt% Z=30wt%D:X,
= 42wt% y = 16wt% z = 42wt%: X: 5Qwt% y = □wt% Z = 50wt
% and a method for manufacturing an electrode in which a part of the electrode active metal particles is exposed on the surface of a layer provided on an electrode core, a component X consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, magnesium, and The current element z selected from Group II metals of the periodic table is at points A/, B7, C',
The electrode-active metal particles made of an alloy in the range surrounded by D/ and E' are uniformly dispersed in a plating bath and co-electrodeposited on the electrode core, or the electrode-active metal particles are co-electrodeposited on the electrode core. A method for manufacturing a highly durable, low hydrogen overvoltage cathode characterized by melt coating or baking on a core: X = 5gwt% Y =
40wt% Z = IWl;%B', X = 3g
wt% Y= 60wt% Z== Iwt%C'
; X = 25wt% y = 60wt% z
= 15wt% D/: X = 25wt%
Y-=50wt% z=25wt%"':
X==35wt% ”f=40wt% z
= 25 wt%.

ここで、第1図は、ニッケル及び/又はコバルトからな
る成分x1アルミニウム、亜鉛、マグネシウムから選ば
れる成分Y及び周期律表第■族金属から選ばれる成分2
の三成分ダイアグラムであって、本発明陰極における金
属粒子の合?組成は第1図の点A、B、C,D、にで囲
まれる範囲のものであることが必要である。好ましくは
、F、G、H,にの範囲である。ここで点F、G、H(
7)X、Y、Z成分の童は、各k (95゜0.5)、
 (85,10,5)、 (46,10,44)である
Here, FIG. 1 shows a component x1 consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, and magnesium, and a component Y selected from group Ⅰ metals of the periodic table.
This is a ternary diagram of the combination of metal particles in the cathode of the present invention. The composition must be within the range surrounded by points A, B, C, and D in FIG. Preferably, the range is F, G, H. Here, points F, G, H (
7) The children of X, Y, and Z components are each k (95°0.5),
(85, 10, 5), (46, 10, 44).

本発明の効果は合金組成の1取分として周期律表第■族
金属が包含されることによるものであるが、何故に、第
N族金属の包含がニッケルまたはコバルトの水酸化物化
&を阻止しうるのか詳細については未だ解明されていな
い。しかしながら、本発明者叫は、第N族金属の内でも
最適であるとの知見を得ている。即ち、第N族金属の内
でもチタニウム、スズを用いる時Kid、より激しい環
境条件においてもより長期にわたって低水素過電圧を維
持することができる。
The effects of the present invention are due to the inclusion of Group I metals in the periodic table as a proportion of the alloy composition, but why does the inclusion of Group N metals prevent nickel or cobalt from becoming hydroxides? The details of whether this is possible have not yet been clarified. However, the present inventor has found that it is the most suitable among the N group metals. That is, when using titanium and tin among the N group metals, it is possible to maintain a low hydrogen overvoltage for a longer period of time even under more severe environmental conditions.

本発明陰極の金属粒子が第1図のABCDKで囲まれる
組成を有することがよいのは、上記範囲以外の組成の粒
子では、長期にわたって水素過電圧を低く維持できなか
ったりすることによる。
The reason why it is preferable for the metal particles of the cathode of the present invention to have a composition surrounded by ABCDK in FIG. 1 is because particles having a composition outside the above range may not be able to maintain a low hydrogen overvoltage over a long period of time.

上述の金属粒子の平均粒径は、電極表面の多孔性塵及び
後述する電極製造の際の粒子の分散性にも関係するが、
0.1μ〜Zooμであれば充分である。
The average particle size of the metal particles mentioned above is also related to the porous dust on the electrode surface and the dispersibility of particles during electrode manufacturing, which will be described later.
A value of 0.1 μ to Zooμ is sufficient.

上記範囲中、電極表面の多孔性等の点から、好1しくは
0.9μ〜50μ、更に好ましくFi1μ〜30μであ
る。
Among the above ranges, from the viewpoint of the porosity of the electrode surface, Fi is preferably 0.9 μ to 50 μ, more preferably Fi 1 μ to 30 μ.

更に本発明の粒子は、電極のよシ低い水素過電圧を達成
するため、表面多孔性であることが好ましい。
Furthermore, the particles of the present invention are preferably superficially porous in order to achieve a lower hydrogen overpotential of the electrode.

この表面多孔性とは、粒子の全表面が多孔性であること
のみを意味するものでなく、前述−した金属から成る層
より露出した部分のみが多孔性になっておれば充分であ
る。
This surface porosity does not mean only that the entire surface of the particle is porous, but it is sufficient that only the portion exposed from the above-mentioned metal layer is porous.

多孔性の程度は、その程度がかなシ大きい程好ましいが
、過度に多孔性にすると粒子の機械的強度が低下する為
多孔度(porosity )が20〜90%にするこ
とが好ましい。上記範囲中更に好ましくは35〜85%
、特に好ましくは50〜80%である。
The degree of porosity is preferably as high as possible; however, if the degree of porosity is too high, the mechanical strength of the particles decreases, so the porosity is preferably 20 to 90%. More preferably 35 to 85% within the above range
, particularly preferably 50 to 80%.

尚、上記多孔度とは、公知の水銀圧入法或いは水置換法
によって測定される値である。
The above porosity is a value measured by a known mercury intrusion method or water displacement method.

多孔性にする方法としては補々の方法が採用できるが、
例えば成分X、Y、Zからなる合金から、成分Yの金属
の一部又は全部を除去して多孔性にする方法が好ましい
Complementary methods can be used to make it porous, but
For example, a method is preferred in which a part or all of the metal of component Y is removed from an alloy consisting of components X, Y, and Z to make it porous.

かかる場合、成分X、Y、、Zが所定割合に均一に配合
された合金を苛性アルカリ処理して、成分Yの金塊の少
くとも一部を除去せしめる方法が特に好ましい。本発明
の陰極の場合、例えばハロゲン化アルカリ水溶液を電解
して苛性アルカI) 7製造する陰極に使用される場合
には、必ずしも電解槽に装着される前に苛性アルカリで
処理する必要はなく、使用される陰極液が苛性アルカリ
条件であるため、電解中に徐々に成分Yの金塊が除去さ
れ、目的の陰極となりうる。
In such a case, a particularly preferred method is to treat an alloy in which components X, Y, . In the case of the cathode of the present invention, for example, when used as a cathode produced by electrolyzing an aqueous alkali halide solution to produce caustic alkali (I)7, it is not necessarily necessary to treat it with caustic alkali before installing it in an electrolytic cell. Since the catholyte used is under caustic conditions, the gold ingots of component Y are gradually removed during electrolysis and can become the desired cathode.

上記金属粒子の組成の組合せとしては各種のものが使用
でき、その代表的なものとしては、N1−AI−Ti 
、Ni−Al二Sn 、Ni−Zn−Ti、Ni−Zn
−8n。
Various combinations of compositions of the metal particles can be used, and typical examples include N1-AI-Ti.
, Ni-Al2Sn, Ni-Zn-Ti, Ni-Zn
-8n.

Co−Al−Ti 、 Go −Al−8n 、 Go
−Zn−Ti 、 Co−Zn−8n 。
Co-Al-Ti, Go-Al-8n, Go
-Zn-Ti, Co-Zn-8n.

Ni −Mg−Ti 、 Ni −Mg−8n 、 C
o −Mg−Ti 、 Co−Mg−8nなどが考えら
れる。
Ni-Mg-Ti, Ni-Mg-8n, C
Possible examples include o-Mg-Ti and Co-Mg-8n.

この中でも特に好ましい組合せはNi−Al−Ti。Among these, a particularly preferred combination is Ni-Al-Ti.

Go−AI−Tiである。Go-AI-Ti.

かような苛性アルカリ処理の条件は、出発金属粒子の組
成によっても異るが、後述するような組成の金属粒子の
場合、苛性アルカリ濃度(NaOH換算)10〜35重
1t%の10〜50℃水浴液に0.5〜3時間浸漬する
ことが好ましい。
The conditions for such caustic alkali treatment vary depending on the composition of the starting metal particles, but in the case of metal particles with the composition described below, the caustic alkali concentration (NaOH equivalent) is 10 to 35% by weight and 1 t%, and the temperature is 10 to 50°C. It is preferable to immerse it in a water bath solution for 0.5 to 3 hours.

この理由は、成分Yはなるべく除去しやすく、また成分
z1就中スズはなるべく除去されないことを条件として
選定したものである。
The reason for this is that component Y was selected to be as easy to remove as possible, and component z1, particularly tin, was selected on the condition that it was to be removed as little as possible.

上述の金属粒子が金属基体上に強固に設けられるための
層は、金属粒子を構成する成分Xと同じ金属であること
が好ましい。
The layer on which the metal particles are firmly provided on the metal substrate is preferably made of the same metal as component X constituting the metal particles.

かくして、本発明の陰極の電極表面には、多数の上述の
粒子が付着しており、巨視的に見ると、陰極表面は微多
孔性になっている。
Thus, a large number of the above particles are attached to the electrode surface of the cathode of the present invention, and macroscopically, the cathode surface is microporous.

このように本発明の陰極は、それ自体低い水素過電圧を
有するニッケル及び/又はコノ(ルトを含む粒子が電極
表面に多数存在し、且つ前述した通り、電極表面が微多
孔性になっているため、それだけ電極活性面が大きくな
シ、これらの相乗効果によって、効果的に水素過電圧の
低減を針条ことができる。
In this way, the cathode of the present invention has a large number of particles containing nickel and/or nickel, which itself has a low hydrogen overvoltage, on the electrode surface, and as mentioned above, the electrode surface is microporous. As the active surface of the electrode becomes larger, the synergistic effect of these effects can effectively reduce the hydrogen overvoltage.

しかも本発明の粒子は、上記金属から成る層によって、
電極表面に強固に付着しているので、劣化しにくく、上
記低水素過電圧の持続性を飛躍的に延ばすことができる
Moreover, the particles of the present invention have a layer made of the above-mentioned metal.
Since it is firmly attached to the electrode surface, it is difficult to deteriorate and can dramatically extend the durability of the above-mentioned low hydrogen overvoltage.

本発明の電極芯体はその材質として任意の適当な導電性
金属、例えばTi、 Zr、Fe、 Ni。
The electrode core of the present invention may be made of any suitable conductive metal, such as Ti, Zr, Fe, or Ni.

V、 MO,Cu、 Ag、 Mn、白金族金属、黒鉛
、 Crから選ばれた金属又はこれらの金属から選ばれ
た合金が採用し得る。この内Fe、 Fe合金(Fe、
Ni合金、Fe−Cr合金、Fe−Ni−Cr合金など
)、Ni、Ni合金(Ni−Cu合金、Ni−Cr合金
など)、Cu 、 C:u合金などを採用することが好
ましい。
A metal selected from V, MO, Cu, Ag, Mn, platinum group metals, graphite, and Cr, or an alloy selected from these metals can be used. Of these, Fe, Fe alloy (Fe,
It is preferable to employ Ni alloy, Fe-Cr alloy, Fe-Ni-Cr alloy, etc.), Ni, Ni alloy (Ni-Cu alloy, Ni-Cr alloy, etc.), Cu, C:u alloy, etc.

特に好ましい電極芯体の材質はFe、 Cu、 Ni。Particularly preferred materials for the electrode core are Fe, Cu, and Ni.

Fe −Ni合金、Fe−Ni−Cr合金である0電極
芯体の構造は、使用する電極の構造に合わせて任意適宜
な形状寸法にすることができる。
The structure of the 0 electrode core, which is a Fe-Ni alloy or a Fe-Ni-Cr alloy, can be made into any suitable shape and size depending on the structure of the electrode used.

その形状は、例えば板状、多孔状、網状(例えばエクス
パンドメタルなど)、すだれ状等が採用でき、これらを
平板状9曲板状、筒状にしてもよい。
The shape may be, for example, plate-like, porous, net-like (for example, expanded metal), or blind-like, and these may be flat, curved, or cylindrical.

本発明の層の厚みは、採用する粒子の粒径にもよるが、
20〜200μであれば充分で、更に好ましくは25〜
150μ、特に好ましくは30〜100μである。これ
は本発明では、前述した粒子の一部が電極芯体上の金属
から成る層に埋没しfc状態で、付着せしめるからであ
る。
The thickness of the layer of the present invention depends on the particle size of the particles employed, but
20~200μ is sufficient, more preferably 25~200μ
150μ, particularly preferably 30-100μ. This is because, in the present invention, some of the particles described above are embedded in the metal layer on the electrode core and are attached in the fc state.

か\る状態?理解しやすい様に、本発明の電極表面の断
面図を第2図に示す。図示されている様に電極芯体1上
に金属から成る層2が設けられ、核層に電極活性金属粒
子3の一部が、その層の表面から無比する様に含まれて
いる。尚、層2中の粒子の割合は5〜80 wt%であ
ることが好ましく、更に好ましくは10〜5 Q wt
%である。か\る状態の外、電極芯体と、本発明の粒子
を含む層との間に、N”i 、 Go、 Ag、 Cu
から選ばれた金属から成る中間層を設けることによって
、更に本発明の電極の耐久性を向上させることができる
。か\る中間層は、上記層の金属と同種又は異極てあっ
ても差しつかえないが、か\る中間NIヲ前述した層と
の付着性の点からこれらの中間層及び層の金属は同種の
ものであることが好ましい。中間層の厚みは、機械的強
度等の点から5〜100μであれば充分であり、更に好
ましくは20〜80μ、時に好ましくは30〜50μで
ある。
Is it in a state of being? For ease of understanding, a cross-sectional view of the electrode surface of the present invention is shown in FIG. As shown in the figure, a layer 2 made of metal is provided on an electrode core 1, and a portion of electrode active metal particles 3 are contained in the core layer from the surface of the layer. The proportion of particles in layer 2 is preferably 5 to 80 wt%, more preferably 10 to 5 Q wt%.
%. In addition to this state, N"i, Go, Ag, Cu is present between the electrode core and the layer containing the particles of the present invention.
By providing an intermediate layer made of a metal selected from the following, the durability of the electrode of the present invention can be further improved. Such an intermediate layer may be of the same type or different metal from the above-mentioned layer, but from the viewpoint of adhesion of the intermediate layer with the above-mentioned layer, the metal of these intermediate layers and layers may be Preferably, they are of the same type. It is sufficient for the thickness of the intermediate layer to be 5 to 100 microns from the viewpoint of mechanical strength, more preferably 20 to 80 microns, and sometimes preferably 30 to 50 microns.

この様な中間層を設けた電極を理解しやすいように1電
極の断面図を第3図に示した。
A cross-sectional view of one electrode is shown in FIG. 3 to facilitate understanding of the electrode provided with such an intermediate layer.

1は電極芯体、4は中間層、2は粒子を含む層、3は本
発明の粒子である。
1 is an electrode core, 4 is an intermediate layer, 2 is a layer containing particles, and 3 is the particle of the present invention.

本発明の電極は第2.第3図から見て明らかな様に、そ
の表面を微視的に見れば、電極表面に多数の粒子が露出
しているわけであるが、巨視的に見ると表面は多孔性に
なっている。
The electrode of the present invention is the second one. As is clear from Figure 3, when looking at the surface microscopically, many particles are exposed on the electrode surface, but when looking macroscopically, the surface is porous. .

前述した様に多孔性の度合は、水素過電圧の低下にも関
連する為多孔性の度合は電気二重層容量で1000μF
/ ct/を以上であれば充分に目的を達成できる。上
記範囲中好ましくは2000μII′/ crA以上、
特に好ましくは5000 pF/、d以上である。電気
二重層容量は、電解質溶液中に電極全浸漬した場合に、
電極表面近傍に正負のイオンが短い距離を隔てて相対的
に分布して形成される電気二重層の静電容量であり、詳
しくは、実測される微分容量を示す。
As mentioned above, the degree of porosity is also related to the reduction in hydrogen overvoltage, so the degree of porosity is 1000μF in electric double layer capacity.
/ct/ or more can sufficiently achieve the purpose. In the above range, preferably 2000μII'/crA or more,
Particularly preferably, it is 5000 pF/.d or more. The electric double layer capacity is calculated as follows when the electrode is completely immersed in an electrolyte solution.
This is the capacitance of an electric double layer formed by positive and negative ions relatively distributed over a short distance in the vicinity of the electrode surface, and more specifically, it shows the actually measured differential capacitance.

この容量は、電極表面が大きくなると共に大きくなる。This capacitance increases as the electrode surface becomes larger.

従って電極表面が多孔性となシ電極表面積が大きくなる
と、電極表面の電気二重層容量も大きくなる。よって、
電気二重層容量によって、電気化学的に有効な電極表面
積即ち電極表面の多孔性度が判る。
Therefore, when the electrode surface becomes porous and the electrode surface area increases, the electric double layer capacity of the electrode surface also increases. Therefore,
The electric double layer capacity determines the electrochemically effective electrode surface area, that is, the degree of porosity of the electrode surface.

尚、電気二重層容量は、測定時の温度や電解質溶液の種
類、濃度、電極電位等によっても変化するので、本発明
の電気二重層容量は、下記の方法によって測定された値
を意味する。
Note that the electric double layer capacity varies depending on the temperature at the time of measurement, the type of electrolyte solution, the concentration, the electrode potential, etc., so the electric double layer capacity of the present invention means a value measured by the following method.

試験片(電極)を40 wt % NaOH水溶液(2
5℃)に浸漬し、試験片の約100倍の見掛は面積をも
つ白金黒付き白金板を対極として挿入し、この状dでの
セルインピーダンスをコールラウシュブリツヂで測定し
て試験片の電気二重層容量を求める。
The test piece (electrode) was soaked in a 40 wt% NaOH aqueous solution (2
A black platinum plate with an apparent area approximately 100 times that of the test piece was inserted as a counter electrode, and the cell impedance in this state d was measured using a Kohlrausch bridge. Find the electric double layer capacity.

電極表面層の具体的な付着手段としては、種々の手法が
採用され、例えば分散メッキ法、溶融塗付法、焼付法な
どが採用される。
Various methods can be used to specifically attach the electrode surface layer, such as a dispersion plating method, a melt coating method, and a baking method.

この内、特に分散メッキ法が、良好に本発明の粒子を付
着し得るので好ましい。
Among these, the dispersion plating method is particularly preferable because the particles of the present invention can be adhered to the method well.

分散メッキ法とは、金属層を形成する金属を含む水溶液
に、−例としてニッケルを主体とする粒子を分散せしめ
た浴に、電極芯体を陰極として、メッキを行い、電極芯
体上に、上記金属と粒子を共電着せしめるものである。
The dispersion plating method is a method in which plating is performed using an electrode core as a cathode in an aqueous solution containing the metal forming the metal layer, for example, a bath in which nickel-based particles are dispersed. The above metal and particles are co-electrodeposited.

尚、更に詳しく述べれば、浴中で粒子は金属イオンを吸
着して電荷全滞び電気泳動によって芯体に付着し、同時
に金属メッキが行われるものと考えられる。例えば、金
属層としてニッケル層を採用する場合、全塩化ニッケル
浴、高塩化ニッケル浴、塩化ニッケルー酢酸ニッケル浴
などが採用しうる。また、金属層としてコバルト層を採
用する場合には、全塩化コバルト浴、高塩化コノ(ルト
浴、塩化コバルト−酢酸コバルト浴などが採用しうる。
To be more specific, it is considered that the particles adsorb metal ions in the bath and adhere to the core body through charge retention and electrophoresis, and metal plating is performed at the same time. For example, when a nickel layer is used as the metal layer, a total nickel chloride bath, a high nickel chloride bath, a nickel chloride-nickel acetate bath, etc. can be used. When a cobalt layer is used as the metal layer, a total cobalt chloride bath, a high chloride cobalt bath, a cobalt chloride-cobalt acetate bath, etc. can be used.

この場合、浴のpHが重要である。即ち、メッキ浴中に
分散せしめる電極活性金属粒子は、一般にその粒子表面
に酸素が付着していることが多く、この状態では、金属
層との接合が充分でなく、電極として使用中、粒子の剥
落等の生ずることがあり、こ、−を防ぐためには、該粒
子表面の付着酸素量を減少させることが必要であり、そ
のためにはメッキ浴のpa ? 1.5〜10とするの
が好ましい。
In this case, the pH of the bath is important. In other words, the electrode-active metal particles dispersed in the plating bath generally have oxygen attached to their surfaces, and in this state, the bonding with the metal layer is not sufficient, and the particles may become loose during use as an electrode. In order to prevent this, it is necessary to reduce the amount of oxygen attached to the surface of the particles, and for this purpose, the pa? It is preferable to set it as 1.5-10.

また、本発明の場合、金属粒子としては、ニッケル及び
/又はコバルトからなる成分x1アルミニウム、亜鉛、
マグネシウムから選ばれる成分Y及び周期律表第■族金
鵬から選ばれる成分2が第4図の点A’ 、 B’ 、
 C’ 、D’及びに/ テ囲まれる範囲の合金である
ことが必要である。その理由は、この範囲からはずれる
と電着工程での付着を全充分に確保できなかったり、電
着できとしての活性が充分でないなどのためである。
In the case of the present invention, the metal particles include component x1 consisting of nickel and/or cobalt, aluminum, zinc,
Component Y selected from magnesium and component 2 selected from metals from group Ⅰ of the periodic table are points A', B', and
It is necessary that the alloy be in the range enclosed by C', D', and /Te. The reason for this is that if it deviates from this range, it may not be possible to ensure sufficient adhesion during the electrodeposition process, or the activity for electrodeposition may not be sufficient.

従って、A′〜E′で示される範囲から若干ずれる場合
には初期の水素過電圧が若干高く後述の短絡による酸化
に対する抵抗性が低下するが、太きくずれる場合は低い
機械的強度や高い初期過電圧のため、もはや実用に供す
ることはできないからである。
Therefore, if there is a slight deviation from the range shown by A' to E', the initial hydrogen overvoltage will be a little high and the resistance to oxidation due to short circuits, which will be described later, will be reduced. Therefore, it can no longer be put to practical use.

以上の如く、該粒子の金i層と接触する表面部分には酸
素の付着量の少ないことが粒子の接着強度の点から好ま
しいが、一方、取扱い上、か\る粒子表面に部分的に酸
化被膜を形成せしめて、安定化せしめておくことが好ま
しい。このような粒子に付着した酸化物被膜は、電極を
塩化アルカリ水溶液等の′電解の際の陰極として使用す
る場合、発生する水素で還元され除去される。この外電
極として使用する前に、か\る酸化物被膜を還元(例え
ば水素雰囲気で加熱する)除去することもできる。。
As mentioned above, it is preferable from the viewpoint of adhesive strength of the particle that the surface portion of the particle that comes into contact with the gold i-layer has a small amount of attached oxygen. It is preferable to form a film for stabilization. When the electrode is used as a cathode for electrolysis of an aqueous alkali chloride solution, the oxide film adhering to such particles is reduced and removed by generated hydrogen. Before use as the outer electrode, any oxide film can be removed by reduction (for example, by heating in a hydrogen atmosphere). .

この様な粒子の浴中での割合は、1v/l〜2001/
lにしておくことが電極表面に粒子の付着状態を良好に
する意味から好ましい。又分散メッキ作業時の温度条件
は20〜80℃、電流智度はlA/drr?〜20A/
drr?であることが好ましい。
The proportion of such particles in the bath ranges from 1 v/l to 2001/l
It is preferable to keep the temperature at 1 from the viewpoint of improving the adhesion state of particles to the electrode surface. Also, the temperature conditions during dispersion plating work are 20-80℃, and the current level is lA/drr? ~20A/
drrr? It is preferable that

尚メッキ浴には、歪減少用の添加剤、共電着を助長する
添加剤等を適宜加えてよいことはもちろんである。
It goes without saying that additives for reducing strain, additives for promoting co-electrodeposition, etc. may be added to the plating bath as appropriate.

この外前述した様に、電極芯体と粒子を含む金属層との
間に中間層を設ける場合は、電極芯体ヲマずN1メッキ
、COメッキ又はCuメッキしその後前述した分散メッ
キ法、溶融噴霧法の手段でその上に粒子を含む金属層を
形成する。
In addition, as mentioned above, when providing an intermediate layer between the electrode core and the metal layer containing particles, the electrode core is first plated with N1, CO, or Cu, and then the aforementioned dispersion plating method or melt spraying is applied. forming a metal layer containing particles thereon by means of a method;

か\る場合のメ゛ツキ浴としては上述した糧々のメッキ
浴が採用でき、Cuメッキについても公知のメッキ浴が
採用できる。
In such a case, the plating bath described above can be used as the plating bath, and a known plating bath can also be used for Cu plating.

この様にして、電極芯体上に、金鵬層を介して本発明の
粒子が付着した電極が得られる。
In this way, an electrode is obtained in which the particles of the present invention are adhered to the electrode core via the metal layer.

このようにして得られた低水素過電圧陰極の表面に非電
子伝導性物質を付着させることも有効である。
It is also effective to attach a non-electronically conductive substance to the surface of the low hydrogen overvoltage cathode thus obtained.

本発明陰極を、例えば210ゲン化アルカリ水溶液の電
解用陰極として用いる場合、陰極液中に周囲の電槽材料
から溶出した鉄イオン又は鉄を含むイオンが存在するこ
とがあり、これらが陰極上で放電し、鉄の化合物(例え
ば水酸化鉄)が陰極上に析出することがある。この場合
、陰極の活性表面が失われ1、陰極過電圧が上昇するこ
とになる。
When the cathode of the present invention is used, for example, as a cathode for electrolysis of a 210 alkali aqueous solution, iron ions or iron-containing ions eluted from the surrounding battery material may be present in the catholyte, and these may be present on the cathode. A discharge may occur and iron compounds (eg iron hydroxide) may be deposited on the cathode. In this case, the active surface of the cathode is lost 1 and the cathode overvoltage increases.

このような放電析出を防止するために、例えばフッ素含
有樹脂(テフロン等)のような非電子電導性物質を本発
明陰極上、更には、陰極表面に突出している金属粒子上
に付着させておくことが有効である。このための具体的
な手段としては特願昭56−126921号に開示され
る如き方法が好ましく採用されうる。
In order to prevent such discharge precipitation, a non-electronically conductive substance such as a fluorine-containing resin (Teflon, etc.) is attached on the cathode of the present invention and further on the metal particles protruding from the cathode surface. This is effective. As a specific means for this purpose, a method as disclosed in Japanese Patent Application No. 126921/1988 can be preferably adopted.

かくして、得られる陰極は、その後必賛に応じ、苛性ア
ルカリ処理(例えば苛性アルカリ水溶液に浸漬する)し
て、合金粒子中の成分Yの金属の少なくとも一部を溶出
除去せしめ、該粒子を多孔性にする。
The resulting cathode is then optionally treated with caustic alkali (e.g., immersed in an aqueous caustic solution) to elute and remove at least a portion of the metal of component Y in the alloy particles, thereby making the particles porous. Make it.

か\る場合の条件は前述の通りである。The conditions for this case are as described above.

又、粒子として前述した成分X、Y、Zの合金を採用し
た場合、上述した様な苛性アルカリ処理を行うことが好
ましいが、か\る粒子を付着した電極を苛性アルカリ処
理全せず、そのまま塩化アルカリ電解槽に取シ付け、実
際に電解を行ってもよい。
In addition, when an alloy of the components X, Y, and Z described above is used as particles, it is preferable to perform the caustic alkali treatment as described above, but the electrode with such particles attached is not subjected to any caustic alkaline treatment and is left as is. It may be attached to an alkali chloride electrolytic cell to actually perform electrolysis.

か\る場合、電解の過程で・成分Yの金属力監溶出し、
電極の過電圧が低下する。ただし、該溶出した成分Yの
金属イオンによって、生成苛性アルカリ水溶液が若干汚
染されるが、一般には問題となることはない。
If so, during the electrolysis process, component Y will be eluted under the supervision of the metal force,
Electrode overvoltage decreases. However, although the aqueous caustic alkaline solution produced is slightly contaminated by the eluted metal ions of component Y, this generally does not pose a problem.

本発明の電極はイオン交換膜性塩化アルカリ水溶液電解
用の電極、特に陰極として採用できることはもちろんで
あるが、この外、多孔性隔膜(例えばアスベスト隔膜)
を用いた塩イヒアルカリ水溶液電解用9電極としても採
用し得る。
The electrode of the present invention can of course be used as an electrode for ion-exchange membrane-based alkaline chloride aqueous solution electrolysis, especially as a cathode, but it can also be used as a porous diaphragm (e.g. asbestos diaphragm).
It can also be employed as a 9-electrode for electrolysis of aqueous salt and alkali solutions using .

次に本発明の実施例を挙げて説明する0実施例1〜10 表1に示す組成を有する合金粉末(200メツシユバス
)を調製し、とれを実施例1〜8については、特開昭5
4−112785号公報の実施例12に従い、また実施
例9.10については同公報の実施例12ONi(:l
、−6H,OをCOCl、−6H,0(濃度aoor/
J)に、Ni板陽極’6GO板陽極にそれぞれ変えたメ
ッキ方法に基づく分散メッキ法(ただし、メッキ後の展
開処理温度は50℃とした)によつ、て低水素過電圧電
極を製造した。
Next, Examples 1 to 10 of the present invention will be described with reference to Examples 1 to 10. An alloy powder (200 mesh bath) having the composition shown in Table 1 was prepared and prepared.
According to Example 12 of Publication No. 4-112785, and for Examples 9.10, Example 12ONi(:l
, -6H,O to COCl, -6H,0 (concentration aoor/
J), a low hydrogen overvoltage electrode was manufactured using a dispersion plating method based on a different plating method (however, the development temperature after plating was 50° C.) using a Ni plate anode and a '6GO plate anode.

得られた電極上の金属粒子を一部剥離して、その組成を
調べた。その結果を第1表に併記し次0 ついで、これらの電極金、陽極f RuO2−TiO2
とし、含フツ素系陽イオン交換膜(旭硝子■製CF :
 CF2とOF2.、=CFO(CF2)3COOCH
3との共重合体、イオン交換容量1.45 meq/′
i樹脂)tイオン交換膜とする食塩電解槽用陰極として
用い、短絡に対する抵抗性試験を行った。陽極液は3N
 NaC1溶液、陰極液を35 % NaOHとし90
℃で電流密度20 A/an?として電解開始後3日月
につぎの短絡試験を実施した。
A part of the metal particles on the obtained electrode was peeled off and its composition was investigated. The results are also listed in Table 1. Next, these electrode gold and anode f RuO2-TiO2
Fluorine-containing cation exchange membrane (CF manufactured by Asahi Glass):
CF2 and OF2. ,=CFO(CF2)3COOCH
Copolymer with 3, ion exchange capacity 1.45 meq/'
Resin) T An ion exchange membrane was used as a cathode for a salt electrolytic cell, and a short circuit resistance test was conducted. The anolyte is 3N
NaCl solution, catholyte 35% NaOH, 90
Current density 20 A/an? The following short circuit test was conducted three days after the start of electrolysis.

まず、直流電源による給電を停止するとともに、銅導線
によって陽極、陰極を電槽外部で接続し、そのま\約1
5時間放置した。この間陰極から陽極への電流を観測し
た。なお、電解停止彼約3時間の間隙極液温度を90℃
に保持し、ついで自然放冷した。15時間の放置冷却後
、′wIL慣を取り出して水素過電圧を測定した結果を
pxに示す。これは試験前の性能とほとんど同一である
First, stop the power supply from the DC power supply, connect the anode and cathode outside the battery case with a copper conductor, and then
It was left for 5 hours. During this time, the current flowing from the cathode to the anode was observed. In addition, the temperature of the interstitial polar liquid was 90℃ for about 3 hours after electrolysis was stopped.
and then allowed to cool naturally. After leaving to cool for 15 hours, the 'wIL sample was taken out and the hydrogen overvoltage was measured. The results are shown in px. This is almost the same as the pre-test performance.

また、実施例2の電極を、40チNaOH水溶液中に1
00℃で1週間浸漬した。空気との接触を充分にさせる
ため容器深さを7αと浅くし、容器上部は開放した。本
電極の水素過電圧を浸漬試験前と後に測定した。水素過
電圧は0.09Vと試験前後でほとんど変化なかった。
In addition, the electrode of Example 2 was placed in a 40-inch NaOH aqueous solution for 1 hour.
It was immersed for one week at 00°C. In order to ensure sufficient contact with air, the depth of the container was made shallow to 7α, and the top of the container was left open. The hydrogen overvoltage of this electrode was measured before and after the immersion test. The hydrogen overvoltage was 0.09V, which was almost unchanged before and after the test.

比較例1〜2 比較例1については特開昭54−112785号公報の
実施例12に従い、比較例2については同公報の実施例
12中のNiCl2・0H20iCOCI□・6H20
(+#度300 v/l )に、Ni板陽極をGo板陽
極にそれぞれかえたメッキ方法にもとすき、Ni−Al
およびCo −A1合金粉末分散メッキ電極を製造した
Comparative Examples 1 to 2 Comparative Example 1 follows Example 12 of JP-A-54-112785, and Comparative Example 2 follows NiCl2・0H20iCOCI□・6H20 in Example 12 of the same publication.
(+# degree 300 v/l), a plating method in which the Ni plate anode was replaced with a Go plate anode, and Ni-Al
and a Co-A1 alloy powder dispersion plated electrode was manufactured.

得られた1[極上の金属粒子を一部剥離して、その組成
を調べた。その結果を表2に併記した。
A portion of the obtained 1[superior metal particles was peeled off and its composition was investigated. The results are also listed in Table 2.

実施例1〜10と同様に短絡試験を、行い、その前後で
の水素過電圧変化を測定した。結果を表2に示す。なお
試験前の水素過電圧は0.07〜o、 o s vであ
った。
A short circuit test was conducted in the same manner as in Examples 1 to 10, and changes in hydrogen overvoltage before and after the test were measured. The results are shown in Table 2. Note that the hydrogen overvoltage before the test was 0.07 to 0.0 sv.

比較例3〜9 合金粉末の組成を表2の比較例3〜9に変えたこと以外
は実施例と同様にして陰極を製作した。(ただし、展開
処理条件はNa OH濃度4Qwt%。
Comparative Examples 3 to 9 Cathodes were manufactured in the same manner as in the example except that the composition of the alloy powder was changed to Comparative Examples 3 to 9 in Table 2. (However, the development processing conditions were NaOH concentration 4Qwt%.

温度120℃、5時間とした。)そして実施例と同様に
して行った短絡試験の結果を表2に示した。
The temperature was 120°C for 5 hours. ) The results of the short circuit test conducted in the same manner as in the examples are shown in Table 2.

短絡試験前の水素過電圧は、比較例3〜9について、各
々0.18V 、 0.18V、 0.21V、 0.
16■。
The hydrogen overvoltages before the short-circuit test were 0.18V, 0.18V, 0.21V, and 0.1V for Comparative Examples 3 to 9, respectively.
16■.

0.10V、0.09V、0.09Vであッ7’(。0.10V, 0.09V, 0.09V.

表  1 表  2 ■1 合金粒子の付着強度及び機械的強度が乏しく、短
絡試験の電解作業中の合金粒子の剥落が激しく、このた
め、合金粒子の組成及び、試験後の水素過電圧の測定は
行わなかった。
Table 1 Table 2 ■1 The adhesion strength and mechanical strength of the alloy particles were poor, and the alloy particles peeled off severely during the electrolytic work of the short circuit test. Therefore, the composition of the alloy particles and the hydrogen overvoltage after the test were not measured. There wasn't.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、X:Ni又はTi、Y=Al又はZn。 Z : Ti又はSnの3成分からなるダイヤグラムで
点A、B、C,D、Pcで囲まれる範囲の組成は本発明
陰極の電極活性粒子の組成を示す。 第2図は、本発明の電極の一例の表面部分断面図、第3
図は、本発明の電極の他の例の表面部分断面図全夫々示
す。 第4図は、 X−Ni又はTi、Y==AI又はZn。 Z、=Ti又はSnの3成分からなるダイヤグラムで点
A’、 B/、 C/、 D/、E’で囲まれる範囲の
組成は、本発明方法に使用される電極活性粒子の組成範
囲を示す。 一一一−X(%) 才/[4 才24 才3ylX オー!+覇
In FIG. 1, X: Ni or Ti, Y=Al or Zn. Z: The composition in the range surrounded by points A, B, C, D, and Pc in the diagram consisting of the three components of Ti or Sn indicates the composition of the electrode active particles of the cathode of the present invention. FIG. 2 is a partial cross-sectional view of the surface of an example of the electrode of the present invention, and FIG.
The figures show partial surface cross-sectional views of other examples of the electrode of the present invention. FIG. 4 shows: X-Ni or Ti, Y==AI or Zn. The composition range surrounded by points A', B/, C/, D/, and E' in the diagram consisting of the three components Z, = Ti or Sn is the composition range of the electrode active particles used in the method of the present invention. show. 111-X (%) years old/[4 years old 24 years old 3ylX Oh! + conquest

Claims (1)

【特許請求の範囲】 (リ 電極活性金属粒子の一部が電極芯体上に設けた層
の表面に露出してなる電極において、該電極活性金属粒
子がニッケル及び/又はコバルトからなる成分x1アル
ミニウムl亜鉛1マグネシウムから選ばれる成分Y1及
び周期律表第■族金属から選ばれる成分2が第1図の点
A;B、C,D及びEで囲まれる範囲にある合金   
           −である高耐久性低水素過電圧
陰極。 \ A:X =99wt%y=  o   z=  1wt
−%−B :  )(=7gwt%y = 20wt%
z−Iwt%C:X−50載%y ]= zowt%z
 :=: 3owt%D ;  X = 42wt%y
 :: 16Wt、%z=42wt%K :  x−s
owt% y=  o   z= sowt%(2)周
期律表第N族金属がチタン及び/又はスズである特許請
求の範囲第(1)項の高耐久性低水素過電圧陰極。 (3)電極活性金属粒子の一部が電極芯体上に設けた層
の表面に露出してなる電極の製法において、ニッケル及
び/又はコバルトからなる成分x1アルミニウム、亜鉛
、マグネシウムから選ばれる成分Y及び周期律表第■族
金属から選ばれる成分2が第;図の点A・、B・、。・
。 D′及びE′で囲まれる範囲にある合金を噛モ;−−か
らなる該電極活 性金属粒子をメッキ浴中に均一に分散せしめ、該電極芯
体上に共電着せしめ°るが、該電極活性金属粒子を該電
極芯体上に溶融塗付ないし焼付することを特徴とする高
耐久性低水素過電圧陰極の製法。 A′ 二   ](=  59”t%  Y=  40
wt%   Z:    、wt%13/:  X=3
9wt%Y=60wt% Z=Iwt%C’ :  X
== 25wt%’f = 60wt% Z=15wt
%D’ :  X= 25wt%Y=50wt% Z=
25wt%[/:  X:35wt%Y= 4 oet
% z=25wt%(4)周期律表第■族金属がチタン
及び/又はスズである特許請求の範囲第(3)項の高耐
久性低水素過電圧陰極の製法。 (5)  メッキ浴が成分Xと同種の金属イオンを含む
特許請求の範囲第(3)項又は第(4)項の高耐久性低
水素過電圧陰極の製法。 (6)メッキ浴がpH1,5〜3.0である特許請求の
範囲第(3)〜(5)項いずれかの高耐久性低水素過電
圧陰極の製法。 (7)共電着、溶融塗付ないし焼付けされた電極活性金
属粒子をNaOH濃度lO〜35 %1温度10〜50
℃の苛性ソーダ水溶液中で0.5〜3時間処理する高耐
久性低水素過電圧陰極の製法。
[Scope of Claims] (Re) An electrode in which a part of electrode active metal particles is exposed on the surface of a layer provided on an electrode core, wherein the electrode active metal particles are composed of nickel and/or cobalt x1 aluminum An alloy in which the component Y1 selected from lzinc, magnesium, and the component 2 selected from group Ⅰ metals of the periodic table are in the range surrounded by points A; B, C, D, and E in Figure 1.
- Highly durable low hydrogen overvoltage cathode. \ A:X =99wt%y=oz=1wt
-%-B: ) (=7gwt%y = 20wt%
z-Iwt%C:X-50 loading%y]=zowt%z
:=: 3wt%D; X = 42wt%y
:: 16Wt,%z=42wt%K: x-s
owt% y=oz=sowt% (2) The highly durable, low hydrogen overvoltage cathode according to claim (1), wherein the Group N metal of the periodic table is titanium and/or tin. (3) In a method for manufacturing an electrode in which a part of the electrode active metal particles is exposed on the surface of a layer provided on an electrode core, component x1 consisting of nickel and/or cobalt, component Y selected from aluminum, zinc, and magnesium. and component 2 selected from group Ⅰ metals of the periodic table are points A・, B・, etc. in the figure.・
. The electrode active metal particles consisting of an alloy in the range surrounded by D' and E' are uniformly dispersed in a plating bath and co-electrodeposited on the electrode core. A method for producing a highly durable and low hydrogen overvoltage cathode, which comprises melting and applying or baking electrode active metal particles onto the electrode core. A′ 2 ](= 59”t% Y= 40
wt% Z: , wt%13/: X=3
9wt%Y=60wt%Z=Iwt%C': X
== 25wt%'f = 60wt% Z=15wt
%D': X= 25wt% Y=50wt% Z=
25wt% [/: X: 35wt%Y= 4 oet
% z = 25 wt% (4) The method for producing a highly durable and low hydrogen overvoltage cathode according to claim (3), wherein the metal of Group Ⅰ of the periodic table is titanium and/or tin. (5) The method for producing a highly durable and low hydrogen overvoltage cathode according to claim (3) or (4), wherein the plating bath contains metal ions of the same type as component X. (6) The method for producing a highly durable and low hydrogen overvoltage cathode according to any one of claims (3) to (5), wherein the plating bath has a pH of 1.5 to 3.0. (7) Electrode active metal particles co-electrodeposited, melt-coated or baked at NaOH concentration lO~35%, temperature 10~50
A method for producing a highly durable and low hydrogen overvoltage cathode which is treated in a caustic soda aqueous solution at 0.5 to 3 hours.
JP57049965A 1982-03-30 1982-03-30 Highly durable cathode with low hydrogen overvoltage and preparation thereof Granted JPS58167788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049965A JPS58167788A (en) 1982-03-30 1982-03-30 Highly durable cathode with low hydrogen overvoltage and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049965A JPS58167788A (en) 1982-03-30 1982-03-30 Highly durable cathode with low hydrogen overvoltage and preparation thereof

Publications (2)

Publication Number Publication Date
JPS58167788A true JPS58167788A (en) 1983-10-04
JPS6136590B2 JPS6136590B2 (en) 1986-08-19

Family

ID=12845730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049965A Granted JPS58167788A (en) 1982-03-30 1982-03-30 Highly durable cathode with low hydrogen overvoltage and preparation thereof

Country Status (1)

Country Link
JP (1) JPS58167788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679384B2 (en) * 2011-10-24 2015-03-04 三菱電機株式会社 Multi-cylinder rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679384B2 (en) * 2011-10-24 2015-03-04 三菱電機株式会社 Multi-cylinder rotary compressor

Also Published As

Publication number Publication date
JPS6136590B2 (en) 1986-08-19

Similar Documents

Publication Publication Date Title
US4498962A (en) Anode for the electrolysis of water
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
US4536259A (en) Cathode having high durability and low hydrogen overvoltage and process for the production thereof
KR860000604B1 (en) Electrolytic electrodes hohing high durokility
KR890003164B1 (en) Durable electrode for electrolysis and process for production thereof
JP3612365B2 (en) Active cathode and method for producing the same
SE447397B (en) CATHOLIC FOR ELECTROLYDESAMAL
JPS5925985A (en) Low overvoltage cathode having high durability and its production
US5035790A (en) Highly durable cathode with low hydrogen overvoltage and method for producing the same
JPS58167788A (en) Highly durable cathode with low hydrogen overvoltage and preparation thereof
JPS60159184A (en) Anode for electrolyzing water
JPS5925940A (en) Low overvoltage cathode having high durability and its production
JPS6145713B2 (en)
US4869799A (en) Membrane cell for the electrolysis of alkali metal chloride and process thereof
JPS5967382A (en) Anode for water electrolysis and its production
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
JPS58133387A (en) Cathode having low hydrogen overvoltage and preparation thereof
JPS5970785A (en) Joined body consisting of ion exchange membrane and electrode and its manufacture
JPS6067687A (en) Highly durable low hydrogen overvoltage cathode and preparation thereof
JPS6123278B2 (en)
JPS5943552B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JP3712220B2 (en) Ion exchange membrane electrolysis method
KR820000886B1 (en) Process for preparing electrode
JPS5943553B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JPS63145790A (en) Highly durable low-hydrogen overvoltage cathode and its production