JPS5943553B2 - Ion exchange membrane, electrode assembly and manufacturing method thereof - Google Patents

Ion exchange membrane, electrode assembly and manufacturing method thereof

Info

Publication number
JPS5943553B2
JPS5943553B2 JP57203641A JP20364182A JPS5943553B2 JP S5943553 B2 JPS5943553 B2 JP S5943553B2 JP 57203641 A JP57203641 A JP 57203641A JP 20364182 A JP20364182 A JP 20364182A JP S5943553 B2 JPS5943553 B2 JP S5943553B2
Authority
JP
Japan
Prior art keywords
component
electrode
membrane
nickel
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57203641A
Other languages
Japanese (ja)
Other versions
JPS5993892A (en
Inventor
吉男 小田
敞 音馬
栄治 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57203641A priority Critical patent/JPS5943553B2/en
Publication of JPS5993892A publication Critical patent/JPS5993892A/en
Publication of JPS5943553B2 publication Critical patent/JPS5943553B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は水電解用陽極の製造法、特には低電圧で水電解
が可能な電極触媒−イオン膜接合体とその製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an anode for water electrolysis, and more particularly to an electrode catalyst-ion membrane assembly capable of performing water electrolysis at low voltage and a method for manufacturing the same.

水素は、最近のエネルギー事情を反映し石油に代る新し
いエネルギー源として多方面から注目されている。
Reflecting the recent energy situation, hydrogen is attracting attention from many quarters as a new energy source to replace oil.

そして、水素の工業的製造方法としては大別して水電解
法とコークスや石油のガス化法が挙げられる。前者の方
法は、原料として入手し易い水が用いられる反面、多数
の電解設備が必要なこと、電流の過不足に対する適応性
が不充分であること、電解液の炭酸化による劣化や床面
積、設備費などに多くの問題が残されている。他方、後
者の方法は一般に操作が煩雑であると共に設備もかなり
大型のものが要求され、設備費がかなりかかるなどの問
題がある。上記の問題を解決する手段として、陽イオン
交換膜を坩い電解槽で水を電解し、水素を製造する方法
が最近提案されている。
Industrial hydrogen production methods can be roughly divided into water electrolysis methods and coke or petroleum gasification methods. Although the former method uses readily available water as a raw material, it requires a large number of electrolytic equipment, is insufficiently adaptable to excess or insufficient current, and suffers from deterioration due to carbonation of the electrolyte and floor space. Many issues remain, including equipment costs. On the other hand, the latter method is generally complicated to operate, requires fairly large equipment, and has problems such as considerable equipment costs. As a means to solve the above problems, a method has recently been proposed in which hydrogen is produced by electrolyzing water in an electrolytic cell using a cation exchange membrane.

本発明はこのような陽イオン交換膜を用いる水電解法に
おいて特にラネーニツケル、ラネーコバルト系三成分合
金を陽極用電極触媒として陽イオン交換膜に接合したも
のを発明の主旨とするものである。
The gist of the present invention is particularly directed to a water electrolysis method using such a cation exchange membrane, in which Raney nickel and Raney cobalt ternary alloys are bonded to the cation exchange membrane as an electrode catalyst for the anode.

通常卑金属系電極触媒としてはニッケル、ニッケル多孔
体、ニッケル複合酸化物などが用いられる。
Generally, nickel, porous nickel, nickel composite oxide, etc. are used as the base metal electrode catalyst.

たとえば、本発明者等が既に提案した特願昭56−82
542号で開示される電極は、それまでに知られた電極
に比べて低酸素過電圧化及びその耐久性に関し、大きな
効果を持つものである。しかしながら、本発明者等は、
更に詳細に検討を加えた結果、上記電極もある場合には
、必ずしも耐久性が充分でない場合のあることを見出し
、この解決のため鋭意努力した結果本発明を見出すに至
つたものである。本発明は電極触媒とイオン膜との直接
接合体の場合にもニッケル系触媒が有する同様な欠点が
見出されるので本改善が効果的である。
For example, the patent application filed in 1982-82, which the present inventors have already proposed,
The electrode disclosed in No. 542 has greater effects in terms of lower oxygen overvoltage and durability than previously known electrodes. However, the inventors
As a result of further detailed study, it was discovered that the durability of the above-mentioned electrodes may not necessarily be sufficient, and as a result of diligent efforts to solve this problem, the present invention was discovered. The present invention is also effective in the case of a direct assembly of an electrode catalyst and an ion membrane, since the same drawbacks of a nickel-based catalyst are found.

イオン膜の各側に電極触媒を付着接合せしめて水電解を
行ういわゆるSPE水電解はすでに述べたように従来の
アスベストを隔膜として用いる方法に代替し得る新しい
省エネルギータイプの水素製造法である。
As already mentioned, so-called SPE water electrolysis, in which water electrolysis is performed by bonding electrode catalysts to each side of an ion membrane, is a new energy-saving hydrogen production method that can replace the conventional method of using asbestos as a diaphragm.

そしてこの型の電解方式においては陽極として上述の如
き低酸過電圧陽極が好ましく用いられるが、上記電解運
転により、電解活性成分であるラネーニツケル粒子ある
いはラネーコバルト粒子のニツケルあるいはコバルトが
水酸化ニツケルあるいは水酸化コバルトに変質すること
により電極活性が劣化する(即ち、酸素化電圧が上昇す
る)ことを見出したもので、この変質を防止するのに、
ニツケル、コバルト等の第一の成分とアルミニウム、亜
鉛、マグネシウム、シリコン等の第二の成分とからなる
公知の金属粒子に第三の特定の成分を含有せしめること
が著しい効果をもたらすことを見出し、本発明を完成し
たもので、本発明は、電極活性金属粒子がニツケル及び
/又はコバルトからなる成分X1アルミニウム、亜鉛、
シリコン、マグネシウムから選ばれる成分Y、及び周期
律表第族金属から選ばれる成分Zが、第1図の点A,B
,C,D及びEで囲まれる範囲にある合金である高耐久
性低酸素過電圧電極触媒がイオン膜に接合されている電
極触媒−イオン膜接合体であり、その製法においてニツ
ケル及び/又はコバルトからなる成分X1アルミニウム
、亜鉛、マグネシウム、シリコンから選ばれる成分Y及
び周期律表第族金属から選ばれる成分Zが、第2図の点
A′,W,C,び及び狩で囲まれる範囲にある合金から
なる該電極活性金属粒子を陽極としてイオン膜に圧着せ
しめて接合することを特徴とする高耐久性水電解用イオ
ン膜一電極触媒接合体の製法を要旨とするものである。
In this type of electrolysis method, the above-mentioned low acid overvoltage anode is preferably used as the anode, but in the above electrolytic operation, the nickel or cobalt of the Raney nickel particles or Raney cobalt particles, which are the electrolytic active ingredients, is converted into nickel hydroxide or hydroxide. It was discovered that the electrode activity deteriorates (that is, the oxygenation voltage increases) due to the deterioration of cobalt, and in order to prevent this deterioration,
It has been discovered that incorporating a third specific component into known metal particles consisting of a first component such as nickel or cobalt and a second component such as aluminum, zinc, magnesium, or silicon brings about a remarkable effect, The present invention has been completed, and the present invention provides a component X1 in which the electrode active metal particles consist of nickel and/or cobalt, aluminum, zinc,
A component Y selected from silicon and magnesium, and a component Z selected from group metals of the periodic table are located at points A and B in Figure 1.
, C, D, and E is an electrode catalyst-ion membrane assembly in which a highly durable low oxygen overvoltage electrode catalyst is bonded to an ion membrane, and in its manufacturing process, it is made of nickel and/or cobalt. Component X1 Component Y selected from aluminum, zinc, magnesium, and silicon and component Z selected from group metals of the periodic table are in the range surrounded by points A', W, C, and K in Figure 2. The gist of the present invention is a method for producing a highly durable ion membrane-electrode catalyst assembly for water electrolysis, characterized in that the electrode-active metal particles made of an alloy are used as an anode and are bonded to the ion membrane by pressure.

ここで、第1図は、ニツケル及び/又はコバルトからな
る成分X1アルミニウム、亜鉛、マグネシウムから選ば
れる成分Y及び周期律表第族金属から選ばれる成分Zの
三成分ダイアグラムであつて、本発明陽極における金属
粒子の合金組成は第1図の点A,B,C,D,Eで囲ま
れる範囲のものであることが必要である。
Here, FIG. 1 is a three-component diagram of a component X consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, and magnesium, and a component Z selected from group metals of the periodic table, and is an anode of the present invention. It is necessary that the alloy composition of the metal particles falls within the range surrounded by points A, B, C, D, and E in FIG.

好ましくほ、F,G,H,Eの範囲である。ここで点F
,G,HのX,Y,Z成分の量は、各々(95,0,5
),(85,10,5),(46,10,44)である
。本発明の効果は合金組成の1成分として周期律表第族
金属が包含されることによるものであるが、何故に、第
族金属の包含がニツケルまたはコバルトの水酸化物生成
を阻止しうるのか詳細については未だ解明されていない
Preferably, the range is F, G, H, and E. Here point F
, G, H are respectively (95, 0, 5
), (85, 10, 5), (46, 10, 44). The effects of the present invention are due to the inclusion of a group metal of the periodic table as one component of the alloy composition, but why does the inclusion of a group metal prevent the formation of hydroxides of nickel or cobalt? The details have not yet been clarified.

しかしながら、本発明考等は、第族金属の内でもチタニ
ウム、スズ、ジルコニウムが本発明の効果を奏するのに
最適であるとの知見を得ている。即ち、第族金属の内で
もチタニウム、スズ、ジルコニウムを用いる時には、よ
り激しい環境条件においてもより長期にわたつて低酸素
過電圧を維持することができる。本発明陽極の金属粒子
が第1図のABCDEで囲まれる組成を有することがよ
いのは、上記範囲以外の組成の粒子では、長期にわたつ
て酸素過電圧を低く維持できなかつたりすることによる
However, the inventors of the present invention have found that titanium, tin, and zirconium among group metals are most suitable for achieving the effects of the present invention. That is, when using titanium, tin, and zirconium among Group metals, a low oxygen overvoltage can be maintained for a longer period of time even under more severe environmental conditions. The reason why it is preferable for the metal particles of the anode of the present invention to have a composition surrounded by ABCDE in FIG. 1 is because particles having a composition outside the above range may not be able to maintain a low oxygen overvoltage for a long period of time.

上述の金属粒子の平均粒径は、電極表面の多孔性度及び
後述する電極製法の際の粒子の分散性にも関係するが、
0.1μ〜100μであれば充分である。上記範囲中、
電極表面の多孔性等の点から、好ましくは0.1μ〜5
0μ、更に好ましくは0.1μ〜10μである。
The average particle size of the metal particles mentioned above is also related to the porosity of the electrode surface and the dispersibility of particles during the electrode manufacturing method described below.
A thickness of 0.1 μ to 100 μ is sufficient. Within the above range,
From the viewpoint of porosity of the electrode surface, preferably 0.1 μ to 5
It is 0μ, more preferably 0.1μ to 10μ.

更に本発明の粒子は、電極のより低い酸素過電圧を達成
するため、表面多孔性であることが好ましい。
Furthermore, the particles of the present invention are preferably superficially porous in order to achieve a lower oxygen overpotential of the electrode.

更には各粒子の内部まで多孔性になつていることが好ま
しい。多孔性の程度は、その程度がかなり大きい程好ま
しいが、過度に多孔性にすると粒子の機械的強度が低下
する為多孔度(POrOsity)が20〜90(F6
にすることが好ましい。
Furthermore, it is preferable that the inside of each particle is porous. The degree of porosity is preferably as large as possible; however, excessive porosity lowers the mechanical strength of the particles, so the porosity (POrOsity) should be 20 to 90 (F6
It is preferable to

上記範囲中更に好ましくは35〜85%、特に好ましく
は50〜80%である。尚、上記多孔度とは、公知の水
置換法または窒素吸着法によつて測定される値である。
Within the above range, it is more preferably 35 to 85%, particularly preferably 50 to 80%. Incidentally, the above-mentioned porosity is a value measured by a known water displacement method or nitrogen adsorption method.

多孔性にする方法としては種々の方法が採用できるが、
例えば成分X,Y,Zからなる合金から、成分Yの金属
の一部又は全部を除去して多孔性にする方法が好ましい
Various methods can be used to make it porous, but
For example, a method is preferred in which a part or all of the metal of component Y is removed from an alloy consisting of components X, Y, and Z to make it porous.

かかる場合、成分X,Y,Zが所定割合に均一に配合さ
れた合金を苛性アルカリ処理して、成分Yの金属の少く
とも一部を除去せしめる方法が特に好ましい。
In such a case, it is particularly preferable to treat an alloy in which components X, Y, and Z are uniformly blended in predetermined proportions with caustic alkali treatment to remove at least a portion of the metal component Y.

本発明の膜一電極接合体の場合、例えばアルカリ水溶液
を電解して水素を製造する場合には、必ずしも電解槽に
装着される前に苛性アルカリで処理する必要はなく、使
用される陽極液が苛性アルカリ条件であるため、電解中
に徐々に成分Yの金属が除去され、目的の陽極となりう
る。上記金属粒子の組成の組合せとしては各種のものが
使用でき、その代表的なものとしては、Ni一A1−T
i,Ni−Al−Sn,.Ni−Zn−Ti,Ni−Z
n−Sn,CO−Al−Ti,CO−Al−Sn,CO
−Zn−Ti,CO−Zn−Sn,Ni−Mg−Ti−
,Ni−Mg−Sn,CO−Mg−TipCO−Mg−
Snなど、さらにはTlをZrにかえたものが考えられ
る。この中でも特に好ましい組合せはNi−Al−Ti
,CO−AI−Ti,Ni−Al−Zr,CO−Al−
Zrである。
In the case of the membrane-electrode assembly of the present invention, for example, when producing hydrogen by electrolyzing an alkaline aqueous solution, it is not necessarily necessary to treat it with caustic alkali before installing it in an electrolytic cell, and the anolyte used is Because of the caustic alkaline conditions, the metal of component Y is gradually removed during electrolysis and can become the desired anode. Various combinations of compositions of the metal particles can be used, and typical examples include Ni-A1-T.
i, Ni-Al-Sn,. Ni-Zn-Ti, Ni-Z
n-Sn, CO-Al-Ti, CO-Al-Sn, CO
-Zn-Ti, CO-Zn-Sn, Ni-Mg-Ti-
, Ni-Mg-Sn, CO-Mg-TipCO-Mg-
Possible materials include Sn, and even those in which Tl is replaced with Zr. Among these, a particularly preferable combination is Ni-Al-Ti
, CO-AI-Ti, Ni-Al-Zr, CO-Al-
It is Zr.

本発明においては上記の如き合金粒子をイオン交換膜上
に接合するわけであるが、この接合については、特別に
限定されることは必要でなく、例えば特開昭54−11
2398号公報で開示されるような方法が好ましく用い
られる。
In the present invention, the alloy particles as described above are bonded onto an ion exchange membrane, but there is no need for this bonding to be particularly limited.
A method such as that disclosed in Japanese Patent No. 2398 is preferably used.

かような苛性アルカリ処理の条件は、出発金属粒子の組
成によつても異るが、後述するような組成の金属粒子の
場合、苛性アルカリ濃度(NaOH換算)10〜35重
量%の10〜100℃水溶液に0.5〜30時間浸漬す
ることが好ましい。
The conditions for such caustic alkali treatment vary depending on the composition of the starting metal particles, but in the case of metal particles having the composition described below, the caustic alkali concentration (NaOH equivalent) is 10 to 100% by weight (NaOH equivalent) of 10 to 35% by weight. It is preferable to immerse it in a ℃ aqueous solution for 0.5 to 30 hours.

この理由は、成分Yはなるべく除去しやすく、また成分
Zはなるべく除去されないことを条件として選定したも
のである。また、本発明の場合、金属粒子としては、ニ
ツケル及び/又はコバルトからなる成分X、アルミニウ
ム、亜鉛、マグネシウムから選ばれる成分Y及び周期律
表第族金属から選ばれる成分Zが第2図の点N,B′,
C,l)′及びE′で囲まれる範囲のの合金であること
が必要である。
The reason for this is that the component Y was selected on the condition that it should be removed as easily as possible, and the component Z should be removed as little as possible. In addition, in the case of the present invention, the metal particles include a component X consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, and magnesium, and a component Z selected from group metals of the periodic table. N, B',
It is necessary that the alloy be in the range surrounded by C, l)' and E'.

その理由は、この範囲からはずれると膜との接合工程で
の付着量を充分に確保できなかつたり、接合できても付
着強度が低かつたり、また、アルカリ易溶金属すなわち
成分Yの溶解佃出後の電極触媒としての活性が充分でな
いなどのためである。従つて、X−yで示される範囲か
ら若干ずれる場合には初期の酸素過電圧が若干高く後述
の耐久性が若干低下するが、大きくずれる場合は粒子自
体の低い機械的強度や高い初期化電圧のため、もはや実
用に供することはできないからである。かくして、得ら
れたイオン膜一電極触媒接合体はその後必要に応じ、苛
性アルカリ処理(例えば苛性アルカリ水溶液に浸漬する
)して、合金粒子中の成分Yの金属の少なくとも一部を
溶出除去せしめ、該粒子を多孔性にする。
The reason for this is that if it deviates from this range, it may not be possible to secure a sufficient amount of adhesion during the bonding process with the membrane, or even if bonding is possible, the adhesion strength may be low, or the alkali easily soluble metal, that is, the dissolution of component Y. This is because the subsequent activity as an electrode catalyst is not sufficient. Therefore, if there is a slight deviation from the range indicated by Therefore, it can no longer be put to practical use. The thus obtained ionic membrane-electrode catalyst assembly is then treated with caustic alkali (for example, immersed in an aqueous caustic solution) as necessary to elute and remove at least a portion of the metal of component Y in the alloy particles, The particles are rendered porous.

かかる場合の条件は前述の通りである。The conditions in such a case are as described above.

又、粒子として前述した成分X,Y,Zの合金を採用し
た場合、上述した様な苛性アルカリ処理を行うことが好
ましいが、か\る粒子を付着した電極を苛性アルカリ処
理をせず、そのままアルカリ水電解槽に取り付け、実際
に電解を行つてもよい。
In addition, when an alloy of components X, Y, and Z described above is used as particles, it is preferable to perform the caustic alkali treatment as described above, but it is preferable to perform the caustic alkali treatment as described above. It may be attached to an alkaline water electrolyzer to actually perform electrolysis.

か\る場合、電解の過程で成分Yの金属が溶出し、電極
の過電圧が低下する。
In this case, the metal of component Y is eluted during the electrolysis process, and the overvoltage of the electrode is reduced.

ただし、該溶出した成分Yの金属イオンによつて、生成
苛性アルカリ水溶液が若干汚染されるが、一般には問題
となることはない。尚 発明の場合、陰極として使用す
る電極触媒は、特に限定されることなく、陰極触媒とし
て有効である各種貴金属、例えばルテニウム、ロジウム
、イリジウム、白金などでよい。
However, although the aqueous caustic alkaline solution produced is slightly contaminated by the eluted metal ions of component Y, this generally does not pose a problem. In the case of the present invention, the electrode catalyst used as the cathode is not particularly limited, and may be any of various noble metals that are effective as cathode catalysts, such as ruthenium, rhodium, iridium, platinum, and the like.

さらにはニツケル系電極触媒でもよい。これらが膜に直
接接合されていてもよく、別の芯体上に各種の方法、た
とえば浸漬法、化学メツキ法、電気メツキ法、噴霧法な
どによつて結合された電極体を用いてもよい。これらは
本水電解法においては水素過電圧がなるべく低いことが
好ましいことはいうまでもない。また本発明に用いる陽
イオン交換膜としては公知の含フツ素系陽イオン交換膜
が使用されうるがなかでもイオン交換基としてカルボン
酸基を有するパーフルオロフツ化カーボス膜(例えば特
開昭51−140899号、特開昭52−48598号
に開示されるもの)が耐久性、低電解電圧の観点から特
に好ましい。つぎに本発明の実施例を説明する。
Furthermore, a nickel-based electrode catalyst may also be used. These may be directly bonded to the membrane, or an electrode body may be used that is bonded to another core body by various methods such as dipping, chemical plating, electroplating, spraying, etc. . It goes without saying that in this water electrolysis method, it is preferable that the hydrogen overvoltage is as low as possible. Further, as the cation exchange membrane used in the present invention, known fluorine-containing cation exchange membranes can be used, and among them, perfluorinated carbose membranes having carboxylic acid groups as ion exchange groups (e.g., JP-A-51-1989-1) 140899 and JP-A-52-48598) are particularly preferred from the viewpoint of durability and low electrolytic voltage. Next, embodiments of the present invention will be described.

実施例 1〜11 表1に示す組成の合金粉末(500メツシユパス)を調
製し、これの15gに対し、メチルセルロース259を
加え45分間混練し、更にシクロヘキサノール3CC1
シクロヘキサノン1CCを加え)15分間混練し、触媒
ペーストを得た。
Examples 1 to 11 An alloy powder (500 mesh passes) having the composition shown in Table 1 was prepared, and to 15 g of this, methylcellulose 259 was added and kneaded for 45 minutes, and further cyclohexanol 3CC1
1 CC of cyclohexanone was added) and kneaded for 15 minutes to obtain a catalyst paste.

CF2=CF2とCF2−CFO(CF2)3C00C
H3との共重合体でイオン交換容量1.9meq/9樹
脂、膜厚150μの陽イオン交換膜の片面に上記の合金
粉末をそれぞれ1.0η/CTilスクリーン印刷機で
塗布した。イオン膜の他の側には別に調製したルテニウ
ム黒を3my/Cril塗布した。
CF2=CF2 and CF2-CFO(CF2)3C00C
Each of the above alloy powders was coated on one side of a cation exchange membrane made of a copolymer with H3 and having an ion exchange capacity of 1.9 meq/9 resin and a film thickness of 150 µ using a 1.0 η/CTil screen printing machine. On the other side of the ion membrane, separately prepared ruthenium black was applied at 3 my/Cril.

つきにこれを150℃、250kg/CTilで10分
間プレスした。80℃、15%KOH水溶液で20時間
加水分解した。
This was then pressed at 150° C. and 250 kg/CTil for 10 minutes. Hydrolysis was carried out at 80°C for 20 hours with a 15% KOH aqueous solution.

ここで電極触媒の一部を剥離して組成分解した。つぎに
Niメツシユを集電体として用い、ルテニウム黒側を陰
極として150!)KOH,llO℃、100A/Dm
2の条件下に30日間電解を行つた。各電極触媒の初期
酸素過電圧と30日後の酸素過電圧ならびにイオン膜の
加水分解後の電極触媒組成を表1に示す。
Here, a part of the electrode catalyst was peeled off and its composition was decomposed. Next, a Ni mesh was used as a current collector, and the ruthenium black side was used as a cathode at 150°C. )KOH, 11O℃, 100A/Dm
Electrolysis was carried out under the conditions of 2 for 30 days. Table 1 shows the initial oxygen overvoltage of each electrode catalyst, the oxygen overvoltage after 30 days, and the composition of the electrode catalyst after hydrolysis of the ion membrane.

比較例 1〜2 N1−A1、およびCO−Al合金粉未を実施例1〜1
1に使用したと同様な方法でイオン膜に接合した。
Comparative Examples 1-2 N1-A1 and CO-Al alloy powder in Examples 1-1
It was bonded to the ionic membrane using the same method as used in 1.

得られた電極触媒−イオン膜接合体上の金属粒子を一部
剥離してその組成を調べた。実施例1〜11と同様の試
験を行つて性能を評価した。酸素過通電圧の変化を表2
に示す。比較例 3〜9 合金粉未の組成を表2の比較例3〜9に示したものに変
えたこと以外は実施例と同様に電極触媒−イオン膜接合
体を作製した。
A portion of the metal particles on the obtained electrode catalyst-ion membrane assembly was peeled off and its composition was investigated. The same tests as in Examples 1 to 11 were conducted to evaluate performance. Table 2 shows changes in oxygen overflow voltage.
Shown below. Comparative Examples 3 to 9 Electrocatalyst-ion membrane assemblies were produced in the same manner as in Examples except that the composition of the alloy powder was changed to those shown in Comparative Examples 3 to 9 in Table 2.

Claims (1)

【特許請求の範囲】 1 ニッケル及び/又はコバルトからなる成分X、アル
ミニウム、亜鉛、シリコン、マグネシウムから選ばれる
成分Y、及び周期律表第IV族金属から選ばれる成分Zが
、第1図の点A、B、C、D及びEで囲まれる範囲にあ
る合金からなる電極活性金属粒子が陽極としてイオン膜
に接合されてなるイオン交換膜、電極接合体。 2 ニッケル及び/又はコバルトからなる成分X、アル
ミニウム、亜鉛、マグネシウム、シリコンから選ばれる
成分Y及び周期律表第IV族金属から選ばれる成分Zが、
第2図の点A′、B′、C′、D′及びE′で囲まれる
範囲にある合金からなる該電極活性金属粒子を陽極とし
てイオン膜に圧着せしめて接合するイオン交換膜、電極
接合体の製造法。
[Scope of Claims] 1 Component X consisting of nickel and/or cobalt, component Y selected from aluminum, zinc, silicon, and magnesium, and component Z selected from Group IV metals of the periodic table are located at the points in FIG. An ion exchange membrane and an electrode assembly in which electrode active metal particles made of an alloy in the range surrounded by A, B, C, D, and E are bonded to an ion membrane as an anode. 2 Component X consisting of nickel and/or cobalt, component Y selected from aluminum, zinc, magnesium, silicon, and component Z selected from Group IV metals of the periodic table,
An ion exchange membrane, electrode bonding in which the electrode active metal particles made of an alloy in the range surrounded by points A', B', C', D' and E' in Fig. 2 are pressed and bonded to an ion membrane as an anode. How the body is manufactured.
JP57203641A 1982-11-22 1982-11-22 Ion exchange membrane, electrode assembly and manufacturing method thereof Expired JPS5943553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203641A JPS5943553B2 (en) 1982-11-22 1982-11-22 Ion exchange membrane, electrode assembly and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203641A JPS5943553B2 (en) 1982-11-22 1982-11-22 Ion exchange membrane, electrode assembly and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS5993892A JPS5993892A (en) 1984-05-30
JPS5943553B2 true JPS5943553B2 (en) 1984-10-23

Family

ID=16477404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203641A Expired JPS5943553B2 (en) 1982-11-22 1982-11-22 Ion exchange membrane, electrode assembly and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPS5943553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540130Y2 (en) * 1987-05-11 1993-10-12

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326397B2 (en) * 2015-11-20 2018-05-16 株式会社健明 Hydrogen generator and hot water supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540130Y2 (en) * 1987-05-11 1993-10-12

Also Published As

Publication number Publication date
JPS5993892A (en) 1984-05-30

Similar Documents

Publication Publication Date Title
KR910001140B1 (en) Electrode and method for preparing thereof
JPS6356316B2 (en)
SE447396B (en) ELECTRODES, IN PARTICULAR FOR ELECTROLYSIS OF WATER SOLUTIONS, PROCEDURE FOR MANUFACTURING THE ELECTRODES AND USE OF THEMSELVES
JPS6136591B2 (en)
EP0255099A2 (en) Cathode bonded to ion exchange membrane for use in electrolyzers for electrochemical processes and relevant method for conducting electrolysis
JPS627276B2 (en)
US4935110A (en) Electrode structure and process for fabricating the same
EP0046449A1 (en) Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture
EP0405559B1 (en) Highly durable cathode with low hydrogen overvoltage and method for producing the same
US4450056A (en) Raney alloy coated cathode for chlor-alkali cells
JPS60159184A (en) Anode for electrolyzing water
US4419208A (en) Raney alloy coated cathode for chlor-alkali cells
JPS5943553B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
US4871703A (en) Process for preparation of an electrocatalyst
US4877508A (en) Highly durable cathode of low hydrogen overvoltage and method for manufacturing the same
JPS5925985A (en) Low overvoltage cathode having high durability and its production
DE3036066A1 (en) Bonding electrode to fluorine contg. copolymer electrolysis membrane - by applying electrode powder to membrane and pressing opt. with heating
JPS5970785A (en) Joined body consisting of ion exchange membrane and electrode and its manufacture
JPS5943552B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JPS6012429B2 (en) How to electrolyze water
JPH0625879A (en) Production of alkali hydroxide
JPH0681182A (en) Production of alkali hydroxide
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
JPS6145713B2 (en)