JPH0992292A - Manufacture of metal porous body - Google Patents

Manufacture of metal porous body

Info

Publication number
JPH0992292A
JPH0992292A JP7244724A JP24472495A JPH0992292A JP H0992292 A JPH0992292 A JP H0992292A JP 7244724 A JP7244724 A JP 7244724A JP 24472495 A JP24472495 A JP 24472495A JP H0992292 A JPH0992292 A JP H0992292A
Authority
JP
Japan
Prior art keywords
powder
metal
porous
resin
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7244724A
Other languages
Japanese (ja)
Inventor
Keizo Harada
敬三 原田
Kenichi Watanabe
渡辺  賢一
Seisaku Yamanaka
正策 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7244724A priority Critical patent/JPH0992292A/en
Publication of JPH0992292A publication Critical patent/JPH0992292A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing the Fe material based metal porous body having the excellent sintering ability and the excellent strength characteristic. SOLUTION: After coating the surface of a frame of a porous resin core material with the binder resin, the mixture powder, which is formed of Fe powder and the second metal powder smaller than the mean grain diameter of the Fe powder and/or the metal oxide powder, is directly coated before the resin is dried for hardening. Thereafter, heating is performed in the non- oxidization atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主としてニッケル
−カドミウム電池、ニッケル−亜鉛電池、ニッケル−水
素電池などのアルカリ2次電池などの電極基板に用いる
金属多孔体の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous metal body mainly used for an electrode substrate of an alkaline secondary battery such as a nickel-cadmium battery, a nickel-zinc battery and a nickel-hydrogen battery.

【0002】[0002]

【従来の技術】各種の電源として使われる蓄電池として
鉛畜電池とアルカリ畜電池がある。このうちアルカリ蓄
電池は高信頼性が期待でき、小形軽量化も可能などの理
由で小型電池は各種ポータブル機器用に、大型は産業用
として広く使われてきた。このアルカリ蓄電池におい
て、負極としてはカドミウムの他に亜鉛、鉄、水素など
が対象となっている。しかし正極としては一部空気極や
酸化銀極なども取り上げられているがほとんどの場合ニ
ッケル極である。ポケット式から焼結式に代わって特性
が向上し、さらに密閉化が可能になるとともに用途も広
がった。
2. Description of the Related Art There are lead storage batteries and alkaline storage batteries as storage batteries used as various power sources. Among them, the alkaline storage battery has been widely used for various portable devices, and the large type for industrial purposes because it is expected to have high reliability and can be made compact and lightweight. In this alkaline storage battery, zinc, iron, hydrogen, etc. are targeted as the negative electrode in addition to cadmium. However, as the positive electrode, an air electrode, a silver oxide electrode, and the like are partially taken up, but in most cases, it is a nickel electrode. The characteristics have been improved from the pocket type to the sintering type, and the sealing has been made possible and the use has expanded.

【0003】しかし通常の粉末焼結式では基板の気孔率
を85%以上にすると強度が大幅に低下するので活物質
の充填に限界があり、したがって電池としての高容量化
に限界がある。そこで90%以上のような一層高気孔率
の基板として焼結基板に代えて発泡状基板や繊維状基板
が取り上げられ実用化されている。このような高気孔率
を有する金属多孔体基板の製造方法としては、特開昭5
7−174484号公報に開示されているメッキ法によ
るものと、特公昭38−17554号公報等に開示され
ている焼結法によるものがある。メッキ法ではウレタン
フォームなどの発泡樹脂の骨格表面にカーボン粉末等を
塗着する事により導電化処理を行い、その上に電気メッ
キ法によりNiを電析させ、その後発泡樹脂を及びカー
ボンを消失させ、金属多孔体を得るという方法である。
一方、焼結法ではスラリー化した金属粉末をウレタンフ
ォームなどの発泡樹脂の骨格表面に含浸塗布し、その後
加熱する事により金属粉末を焼結している。
However, in the ordinary powder sintering method, when the porosity of the substrate is 85% or more, the strength is significantly lowered, so that there is a limit to the filling of the active material, and therefore, there is a limit to increase the capacity of the battery. Therefore, as a substrate having a higher porosity of 90% or more, a foamed substrate or a fibrous substrate has been picked up and put into practical use instead of the sintered substrate. As a method for producing such a porous metal substrate having a high porosity, Japanese Patent Application Laid-Open No. S5-5200 is known.
There are a method by a plating method disclosed in JP-A-7-174484 and a method by a sintering method disclosed in JP-B-38-17554. In the plating method, carbon powder or the like is applied to the surface of the skeleton of a foamed resin such as urethane foam to perform a conductive treatment, and then Ni is electrodeposited by an electroplating method, and then the foamed resin and carbon are eliminated. The method is to obtain a metal porous body.
On the other hand, in the sintering method, slurry metal powder is impregnated onto the skeleton surface of foamed resin such as urethane foam and then heated to sinter the metal powder.

【0004】[0004]

【発明が解決しょうとしている課題】従来技術に示した
通り金属多孔体を電池用極板として適用することによ
り、電池の高容量化に果たした寄与は大きい。しかしな
がら、特開昭57−174484号公報のようなメッキ
法による金属多孔体の製造において、多孔性樹脂芯体に
電気メッキするための導電処理としてカーボン塗布を行
う必要があるが、これは、製造工程において必要なだけ
で最終的には焼失させるものであって金属多孔体として
は不要のものである。従って、導電処理のためのカーボ
ン塗布は、製品としてのコスト上昇をまねくだけでな
く、カーボン残留による品質面への影響も考えられるこ
とから、その改善が望まれている。また、特公昭38−
17554号公報のような、焼結法による金属多孔体の
製造においては、上記のような問題は無いが、金属粉末
をスラリー化して塗着する工程や、焼結工程などが煩雑
な工程であることや、所望の特性のものが得られにく
い。また製造コストも高くつく等の問題があった。ま
た、特開平7−6765公報では、三次元網目構造体の
骨格表面に粘着性を付与した後金属粉体を被着させ、金
属粉末を焼結させることにより金属多孔体を得る方法を
提案している。しかしながらこの方法そのままでは、焼
結性の悪いFeを多孔体形状において緻密に焼結するこ
とは困難であり、また金属粉末の付着量を厳密に制御す
ることも困難である。本発明は、以上の問題点を解決す
るため、焼結法による金属多孔体の製造方法において、
簡易な工程でかつ所望の電気的特性及び強度特性等を得
るための新規な方法を提案するものである。
As described in the prior art, the application of the metal porous body as the electrode plate for a battery makes a great contribution to the increase in the capacity of the battery. However, in the production of a metal porous body by a plating method as disclosed in JP-A-57-174484, it is necessary to apply carbon as a conductive treatment for electroplating a porous resin core, which is a production process. It is necessary only in the process and eventually burned out, and is not necessary as a porous metal body. Therefore, the application of carbon for the conductive treatment not only increases the cost of the product, but also may affect the quality due to the residual carbon, and therefore its improvement is desired. In addition, Japanese Examined Sho 38-
In the production of the porous metal body by the sintering method as disclosed in Japanese Patent No. 17554, there is no problem as described above, but the steps of slurrying and applying the metal powder and the sintering step are complicated steps. It is difficult to obtain the desired characteristics. There is also a problem that the manufacturing cost is high. Further, Japanese Patent Laid-Open No. 7-6765 proposes a method of obtaining a metal porous body by applying adhesiveness to the skeleton surface of a three-dimensional network structure, depositing metal powder thereon, and sintering the metal powder. ing. However, with this method as it is, it is difficult to densely sinter Fe having poor sinterability in the shape of a porous body, and it is also difficult to strictly control the amount of metal powder adhered. The present invention, in order to solve the above problems, in a method for producing a metal porous body by a sintering method,
It proposes a novel method for obtaining desired electrical characteristics and strength characteristics in a simple process.

【0005】[0005]

【課題を解決するための手段】本発明者は、鋭意検討し
た結果、Fe粉末とFe粉末より粒径の小さい第2の粉
末とを併用することにより、Feを緻密に焼結すること
ができ、またFeの樹脂芯体への付着量を制御すること
ができることを見出し、本発明に至った。すなわち、本
発明の金属多孔体の製造方法は、(1)多孔性の樹脂芯
体の骨格表面にバインダー樹脂を塗着した後、樹脂が乾
燥硬化する前にFe粉末と、該Fe粉末の平均粒径より
小さい第2の金属粉末および/または金属酸化物粉末か
らなる混合粉末を直接塗着し、非酸化性雰囲気において
熱処理を行うことを特徴とする金属多孔体の製造方法、
(2)多孔性の樹脂芯体の骨格表面にバインダー樹脂を
塗着した後、樹脂が乾燥硬化する前にFe粉末と、Fe
粉末の平均粒径より小さい第2の金属粉末および/また
は金属酸化物粉末からなる混合粉末を直接塗着し、非酸
化性雰囲気において熱処理を行い、ついで電気Niメッ
キを行うことを特徴とする金属多孔体の製造方法、に関
する。
Means for Solving the Problems As a result of intensive studies, the present inventor was able to densely sinter Fe by using a combination of Fe powder and a second powder having a particle size smaller than that of Fe powder. Further, they have found that the amount of Fe deposited on the resin core can be controlled, and have reached the present invention. That is, the method for producing a porous metal body of the present invention is (1) after applying a binder resin to the skeleton surface of a porous resin core body and before the resin is dried and cured, an Fe powder and an average of the Fe powder. A method for producing a porous metal body, which comprises directly applying a mixed powder composed of a second metal powder and / or a metal oxide powder having a particle size smaller than the particle size, and performing heat treatment in a non-oxidizing atmosphere,
(2) Fe powder and Fe powder after the binder resin is applied to the skeleton surface of the porous resin core and before the resin is dried and cured.
A metal characterized by directly applying a mixed powder of a second metal powder and / or a metal oxide powder having a particle size smaller than the average particle diameter of the powder, performing heat treatment in a non-oxidizing atmosphere, and then performing electric Ni plating. A method for manufacturing a porous body.

【0006】本発明に使用する多孔性樹脂芯体として
は、樹脂発泡体、樹脂不織布、樹脂フェルト、樹脂メッ
シュ体などが挙げられる。ここで、多孔性樹脂芯体への
バインダー樹脂の塗着方法としては、バインダー樹脂と
水もしくは有機溶剤等の希釈材を混合した液中に多孔性
樹脂芯体を含浸させ、その後ロール等により過剰に付着
したものを除去する等の方法や、多孔性樹脂芯体に上記
の混合液をスプレー等により吹き付けるなどの方法を用
いることができる。また、Fe粉末及び第二の金属粉末
からなる混合粉末の直接塗着方法としては、多孔性樹脂
にエアーガン等により混合粉末を吹き付ける方法や混合
粉末中で多孔性樹脂芯体を揺動させる方法などを用いる
ことができる。このように混合粉末を直接塗着させる方
法によると、従来用いられている、金属粉末とバインダ
ー樹脂とを混練させたスラリーによる塗着方法に比べ製
造工程が非常に簡略となる。本発明に使用するFe粉末
の粒径は、5〜100μmが好ましい。
Examples of the porous resin core used in the present invention include resin foam, resin nonwoven fabric, resin felt, resin mesh and the like. Here, as a method for applying the binder resin to the porous resin core, the porous resin core is impregnated in a liquid obtained by mixing the binder resin with a diluent such as water or an organic solvent, and then using a roll etc. It is possible to use a method of removing those adhering to the substrate, or a method of spraying the above mixed solution on the porous resin core body by a spray or the like. Further, as a method for directly applying the mixed powder composed of the Fe powder and the second metal powder, a method of spraying the mixed powder on the porous resin with an air gun or a method of rocking the porous resin core in the mixed powder, etc. Can be used. According to the method of directly applying the mixed powder as described above, the manufacturing process is significantly simplified as compared with the conventionally used method of applying the slurry in which the metal powder and the binder resin are kneaded. The particle size of the Fe powder used in the present invention is preferably 5 to 100 μm.

【0007】ここで、第2の金属粉末として、Fe,
P,Ge,Si,Ti,Ni単体もしくは2種以上を含
む合金粉末を用いることが好ましい。また、第2の金属
酸化物粉末としては、Fe,P,Ge,Si,Ti,N
iの少なくとも1種以上を含む酸化物であることが好ま
しい。これらの第2の粉末は、前記のFe粉末よりも粒
径が小さく、その粒径は0.5〜40μmが好ましい。
また、第2の粉末の粒径はFe粉末の粒径の1/2〜1
/200であることが好ましく、重量比でFe:第2粉
末=99.8:0.2〜0.2:99.8が好ましい。
これらの第2の金属粉末もしくは金属酸化物粉末及びそ
れらの混合粉末を用いることにより、多孔性樹脂上に図
1に示す様にFe粉末の空隙中を第二の粉末が埋めつく
すように塗着されることにより、粉末同士の接触面積
が増大するため焼結性が向上する、さらにP,Ge,S
i,Ti,Niあるいはそれらの酸化物は焼結助剤とし
ての作用効果により焼結性の向上に寄与する、第2の
金属粉末の添加量を調整することにより、Feの付着量
を制御することが可能となる。
As the second metal powder, Fe,
It is preferable to use P, Ge, Si, Ti, Ni simple substance or an alloy powder containing two or more kinds. The second metal oxide powder may be Fe, P, Ge, Si, Ti, N.
It is preferably an oxide containing at least one or more of i. These second powders have a smaller particle size than the Fe powder, and the particle size is preferably 0.5 to 40 μm.
The particle size of the second powder is 1/2 to 1 of the particle size of the Fe powder.
/ 200 is preferable, and the weight ratio of Fe: second powder = 99.8: 0.2 to 0.2: 99.8 is preferable.
By using these second metal powders or metal oxide powders and their mixed powders, it is possible to coat the porous resin with the second powder so as to fill the voids of the Fe powder as shown in FIG. By doing so, the contact area between the powders is increased, so that the sinterability is improved. Furthermore, P, Ge, S
i, Ti, Ni or oxides thereof contribute to the improvement of sinterability by the effect of acting as a sintering aid. By controlling the addition amount of the second metal powder, the adhesion amount of Fe is controlled. It becomes possible.

【0008】本発明の形態のように常圧でFe粉末の焼
結を行う際には、高温かつ長時間を要する焼結工程が、
本発明の方法によれば低温化及び短時間での焼結を可能
とし、焼結コストの低減に大きく寄与できる。さらに、
多孔体骨格部において極めて緻密な焼結体が得られるた
め、低電気抵抗及び優れた強度特性のものが得られる。
通常、本発明の金属多孔体はアルカリ電池等の電池電極
基板として用いられるが、その場合、金属多孔体の単位
面積当たりの重量は、電池性能に大きく影響を及ぼすこ
とから、精度良く制御されていることが重要となる。し
かしながら、Fe粉末単体で上記の方法により多孔性樹
脂芯体に付着させた場合、Fe粉末の粒径サイズにより
付着量はほぼ一義的に決定されてしまうため、付着量を
厳密に制御することはかなり困難となる。そこで、本発
明者らは、Fe粉末とFe粉末よりも平均粒径の小さい
第二の金属粉末の混合粉末を多孔性樹脂芯体に塗着した
場合、Fe粉末の付着量を制御できることを見いだした
ものである。すなわち、混合粉末中の第二の金属粉末粉
末の割合を調整することにより最終的に多孔性樹脂芯体
に付着するFeの量を調整することが可能となる。即
ち、第2の粉末の混合比を小さくすることによりFeの
付着量を多くすれば、得られる金属多孔体は気孔率の小
さい金属多孔体となり、また第2の粉末の混合比を大き
くすることによりFeの付着量を少なくすれば得られる
金属多孔体は気孔率の大きい金属多孔体となる。
When the Fe powder is sintered at atmospheric pressure as in the embodiment of the present invention, the sintering process that requires a high temperature and a long time is
According to the method of the present invention, it is possible to lower the temperature and sinter in a short time, which can greatly contribute to the reduction of the sintering cost. further,
Since an extremely dense sintered body can be obtained in the porous body skeleton, it has low electric resistance and excellent strength characteristics.
Usually, the metal porous body of the present invention is used as a battery electrode substrate of an alkaline battery or the like, but in that case, the weight per unit area of the metal porous body has a great influence on the battery performance, so that it can be controlled accurately. Is important. However, when the Fe powder alone is adhered to the porous resin core by the above method, the adhered amount is almost uniquely determined by the particle size of the Fe powder, and therefore the adhered amount cannot be strictly controlled. It will be quite difficult. Therefore, the present inventors have found that when a mixed powder of Fe powder and a second metal powder having an average particle size smaller than that of Fe powder is applied to the porous resin core, the amount of Fe powder deposited can be controlled. It is a thing. That is, by adjusting the ratio of the second metal powder powder in the mixed powder, it becomes possible to adjust the amount of Fe finally attached to the porous resin core. That is, if the amount of Fe deposited is increased by decreasing the mixing ratio of the second powder, the obtained porous metal becomes a porous metal having a low porosity, and the mixing ratio of the second powder is increased. Thus, if the amount of Fe deposited is reduced, the obtained metal porous body becomes a metal porous body having a high porosity.

【0009】次いで、こうして得られた混合粉末を塗着
した多孔性樹脂芯体を非酸化性雰囲気において熱処理を
行い、金属を焼結するとともに樹脂分を除去して金属多
孔体を得ることができる。前記の熱処理は900〜13
50℃が好ましい。900℃以下では十分な燒結ができ
ず、1350℃を越えると多孔体構造が維持できなくな
る。
Next, the porous resin core coated with the mixed powder thus obtained is heat-treated in a non-oxidizing atmosphere to sinter the metal and remove the resin component to obtain a metal porous body. . The heat treatment is 900 to 13
50 ° C. is preferred. If it is 900 ° C or lower, sufficient sintering cannot be achieved, and if it exceeds 1350 ° C, the porous structure cannot be maintained.

【0010】また、本発明においては別の態様として、
上記の方法により得られる金属多孔体に、さらに電気N
iメッキによりNi皮膜を形成することで、特にアルカ
リ二次電池中における強アルカリ溶液中での強固な耐食
性を持った金属多孔体が得られる。また、好ましくは電
気Niメッキの後、非酸化性雰囲気において熱処理を行
うことで、Ni皮膜の密着性の向上及びメッキによる残
留応力を緩和することが可能となる。ここで、熱処理温
度は600℃以下であることが好ましい。
As another aspect of the present invention,
The metal porous body obtained by the above method is further charged with electric N
By forming a Ni film by i-plating, a metal porous body having strong corrosion resistance particularly in a strong alkaline solution in an alkaline secondary battery can be obtained. Further, preferably, by performing the heat treatment in a non-oxidizing atmosphere after the electric Ni plating, it is possible to improve the adhesion of the Ni film and reduce the residual stress due to the plating. Here, the heat treatment temperature is preferably 600 ° C. or lower.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 厚さ2.5mmで1インチ当たりの空孔数が約50個の
ポリウレタンフォームをアクリル樹脂60wt%、水4
0wt%を混合したバインダー樹脂液中に含浸させた後
絞りロールにて過剰含浸塗着分を除去し、バインダーが
塗着された多孔性樹脂芯体を作製した。次に、平均粒径
80μmのFe粉末と平均粒径1μmのFe23粉末を
重量比(%)で95:5の割合で均一に混ぜ合わせた混
合粉末を用意した。
Example 1 Polyurethane foam having a thickness of 2.5 mm and about 50 pores per inch is made of acrylic resin 60 wt% and water 4
After impregnating the binder resin liquid mixed with 0 wt%, the excess impregnated coating component was removed with a squeeze roll to prepare a binder-coated porous resin core. Next, a mixed powder was prepared by uniformly mixing Fe powder having an average particle size of 80 μm and Fe 2 O 3 powder having an average particle size of 1 μm at a weight ratio (%) of 95: 5.

【0012】次に、エアーガンにより上記多孔性樹脂芯
体にこの混合粉末を直接吹き付けを行い、大気中150
℃で5分乾燥させた。次に、水素気流中で1250℃,
10分の熱処理を行うことにより焼結を行い、Fe多孔
体を作製した。また、比較例として、上記と同一手順に
おいて平均粒径80μmのFe粉末のみを用いたFe多
孔体も作製した。これらのFe多孔体の特性を評価した
結果を表1に示すように、本発明によるFe多孔体は優
れた特性を示すことが分かる。
Next, this mixed powder is directly sprayed onto the porous resin core body by an air gun, and the mixed powder is blown to 150 in the air.
It was dried at 0 ° C for 5 minutes. Next, in a hydrogen stream,
Sintering was performed by performing heat treatment for 10 minutes, and an Fe porous body was produced. In addition, as a comparative example, an Fe porous body using only Fe powder having an average particle size of 80 μm was also produced in the same procedure as above. As shown in Table 1 as a result of evaluating the properties of these Fe porous bodies, it is understood that the Fe porous body according to the present invention exhibits excellent properties.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例2 厚さ2.0mmで1インチ当たりの空孔数が約40個の
ポリウレタンフォームにフェノール樹脂60wt%、水
40wt%を混合したバインダー樹脂液をスプレー塗布
し、バインダーが塗着された多孔性樹脂芯体を作製し
た。次に、表2に示す各種の金属混合粉末中で、多孔性
樹脂芯体を揺動させて、金属粉末の塗着を行った後大気
中150℃にて10分乾燥させた。次に水素気流中12
50℃,10分の熱処理を行い金属多孔体を得た。
Example 2 A polyurethane resin foam having a thickness of 2.0 mm and about 40 pores per inch was spray-coated with a binder resin solution prepared by mixing 60 wt% of phenol resin and 40 wt% of water, and the binder was applied. A porous resin core body was produced. Next, the porous resin core was shaken in various metal mixed powders shown in Table 2 to apply the metal powder, and then dried at 150 ° C. in the atmosphere for 10 minutes. Next, in a hydrogen stream 12
Heat treatment was carried out at 50 ° C. for 10 minutes to obtain a porous metal body.

【0015】[0015]

【表2】 [Table 2]

【0016】得られた金属多孔体について、特性を評価
した結果を表3に示す。
Table 3 shows the results of evaluating the characteristics of the obtained porous metal body.

【0017】[0017]

【表3】 [Table 3]

【0018】実施例3 実施例2のサンプル9について、電気Niメッキ用ワッ
ト浴中で電流密度10A/dm2でNiメッキを実施し、
100g/m2のNi皮膜を形成した。また、Niメッ
キ後550℃で5分間、N2雰囲気中で熱処理を行っ
た。このサンプルの特性を表4に示す。
Example 3 Sample 9 of Example 2 was plated with Ni at a current density of 10 A / dm 2 in a watt bath for electric Ni plating,
A 100 g / m 2 Ni coating was formed. After Ni plating, heat treatment was performed at 550 ° C. for 5 minutes in an N 2 atmosphere. The characteristics of this sample are shown in Table 4.

【0019】[0019]

【表4】 [Table 4]

【0020】次にこのサンプルを、比重1.3のKOH
水溶液中での耐食性を調べるため、サイクリックボルタ
ンメトリー測定を行った。測定条件は下記のとおりであ
る。
Next, this sample was subjected to KOH having a specific gravity of 1.3.
Cyclic voltammetry measurements were performed to investigate the corrosion resistance in aqueous solution. The measurement conditions are as follows.

【0021】 作用極 :本サンプル 対極 :Ni板 参照極 :Hg/HgO 掃引電位 :0V(スタート)→−1.0V→0.5V 0.5V〜−1.0V(1000サイクル) 掃引速度 :10mV/sec 測定の結果、0.5V付近での酸素発生ピークを除き、
ほとんど酸化・還元による電流ピークは見られず、強ア
ルカリ液中で極めて安定であることが実証された。
Working electrode: This sample Counter electrode: Ni plate Reference electrode: Hg / HgO Sweeping potential: 0 V (start) → -1.0 V → 0.5 V 0.5 V to -1.0 V (1000 cycles) Sweeping speed: 10 mV / Sec As a result of the measurement, except for the oxygen generation peak near 0.5 V,
Almost no current peak due to oxidation / reduction was observed, demonstrating that it is extremely stable in a strong alkaline solution.

【0022】[0022]

【発明の効果】以上説明したように、本発明の製造方法
によれば焼結工程の低温化および短時間化が可能となり
生産コストの低減に寄与することができる。また、焼結
性が向上し緻密な焼結体からなる金属多孔体を形成する
ことができる。そしてこの金属多孔体は電気抵抗が低
く、強度特性も優れており、電気用電極基板として好適
である。さらにNiめっきを施した金属多孔体は強アル
カリ液中で安定であり、とくにアルカリ2次電池用電極
として有用である。
As described above, according to the manufacturing method of the present invention, the sintering process can be performed at a low temperature and in a short time, which can contribute to the reduction of the production cost. In addition, the sinterability is improved, and a metal porous body made of a dense sintered body can be formed. The porous metal body has low electric resistance and excellent strength characteristics, and is suitable as an electrode substrate for electricity. Furthermore, the metal porous body plated with Ni is stable in a strong alkaline solution, and is particularly useful as an electrode for alkaline secondary batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において多孔性樹脂芯体にFe粉末およ
び第2の粉末が付着される状態を模式的に説明する図。
FIG. 1 is a diagram schematically illustrating a state in which Fe powder and a second powder are attached to a porous resin core according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔性の樹脂芯体の骨格表面にバインダ
ー樹脂を塗着した後、樹脂が乾燥硬化する前にFe粉末
と、該Fe粉末の平均粒径より小さい第2の金属粉末お
よび/または金属酸化物粉末からなる混合粉末を直接塗
着し、非酸化性雰囲気において熱処理を行うことを特徴
とする金属多孔体の製造方法。
1. A Fe powder after a binder resin is applied to the skeleton surface of a porous resin core and before the resin is dried and hardened, and a second metal powder having a smaller average particle size than the Fe powder and / Alternatively, the method for producing a porous metal body is characterized in that a mixed powder of metal oxide powder is directly applied and heat treatment is performed in a non-oxidizing atmosphere.
【請求項2】 多孔性の樹脂芯体の骨格表面にバインダ
ー樹脂を塗着した後、樹脂が乾燥硬化する前にFe粉末
と、Fe粉末の平均粒径より小さい第2の金属粉末およ
び/または金属酸化物粉末からなる混合粉末を直接塗着
し、非酸化性雰囲気において熱処理を行い、ついで電気
Niメッキを行うことを特徴とする金属多孔体の製造方
法。
2. A Fe powder and a second metal powder having an average particle size smaller than that of the Fe powder after the binder resin is applied to the skeleton surface of the porous resin core and before the resin is dried and hardened. A method for producing a porous metal body, which comprises directly applying a mixed powder of metal oxide powder, performing heat treatment in a non-oxidizing atmosphere, and then performing electric Ni plating.
【請求項3】 第2の金属粉末がFe,P,Ge,S
i,Ti,Ni単体もしくは2種以上を含む合金粉末及
であることを特徴とする請求項1または2記載の金属多
孔体の製造方法。
3. The second metal powder is Fe, P, Ge, S.
The method for producing a metal porous body according to claim 1 or 2, which is a powder of i, Ti, or Ni alone or an alloy powder containing two or more kinds.
【請求項4】 第2の金属酸化物粉末がFe,P,G
e,Si,Ti,Niの少なくとも1種以上を含む酸化
物であることを特徴とする請求項1または2記載の金属
多孔体の製造方法。
4. The second metal oxide powder is Fe, P, G.
The method for producing a metal porous body according to claim 1 or 2, which is an oxide containing at least one of e, Si, Ti, and Ni.
JP7244724A 1995-09-22 1995-09-22 Manufacture of metal porous body Pending JPH0992292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7244724A JPH0992292A (en) 1995-09-22 1995-09-22 Manufacture of metal porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7244724A JPH0992292A (en) 1995-09-22 1995-09-22 Manufacture of metal porous body

Publications (1)

Publication Number Publication Date
JPH0992292A true JPH0992292A (en) 1997-04-04

Family

ID=17122965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7244724A Pending JPH0992292A (en) 1995-09-22 1995-09-22 Manufacture of metal porous body

Country Status (1)

Country Link
JP (1) JPH0992292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888658A (en) * 1995-09-28 1999-03-30 Sumitomo Electric Industries, Ltd. Battery electrode substrate and process for producing the same
CN100395057C (en) * 2005-03-05 2008-06-18 富准精密工业(深圳)有限公司 Production method of porous structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888658A (en) * 1995-09-28 1999-03-30 Sumitomo Electric Industries, Ltd. Battery electrode substrate and process for producing the same
CN100395057C (en) * 2005-03-05 2008-06-18 富准精密工业(深圳)有限公司 Production method of porous structure

Similar Documents

Publication Publication Date Title
KR100261258B1 (en) Battery electrode substrate and process for producing the same
US3926671A (en) Method of manufacturing positive nickel hydroxide electrodes
CA2179347C (en) Electrode substrate for battery and process for preparing the same
JPH0992292A (en) Manufacture of metal porous body
JPH0949037A (en) Production of metallic porous body
JPH097607A (en) Manufacture of metal porous body
JPH08302495A (en) Production of metallic porous body
JPH08193232A (en) Production of metallic porous body
JPH076765A (en) Manufacture of porous current collector for battery
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JPH08287917A (en) Manufacture of metallic porous body
JPH11329449A (en) Electrode substrate for battery and its manufacture
JPH09161807A (en) Electrode base for lithium ion battery
JPH07335210A (en) Electrode for alkaline battery
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH0388270A (en) Electrode for nickel-cadmium storage battery
JPH0917432A (en) Electrode substrate for battery and manufacture thereof
JPH0982334A (en) Electrode substrate for battery
JPH07335224A (en) Electrode substrate for alkaline battery
JPH08222226A (en) Manufacture of three-dimensional mesh electrode carrier
JPH0684519A (en) Porous metal body and its manufacture
JPH11102698A (en) Alkaline storage battery and manufacture of electrode thereof
JPH01302668A (en) Electrode for alkaline storage battery
JPH0773885A (en) Electrode for alkaline secondary battery