JPH09161807A - Electrode base for lithium ion battery - Google Patents

Electrode base for lithium ion battery

Info

Publication number
JPH09161807A
JPH09161807A JP7348498A JP34849895A JPH09161807A JP H09161807 A JPH09161807 A JP H09161807A JP 7348498 A JP7348498 A JP 7348498A JP 34849895 A JP34849895 A JP 34849895A JP H09161807 A JPH09161807 A JP H09161807A
Authority
JP
Japan
Prior art keywords
ion battery
lithium ion
electrode base
sintered
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7348498A
Other languages
Japanese (ja)
Inventor
Shoichi Takahashi
昭一 高橋
Kenji Maruta
賢二 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKAMATSU NETSUREN KK
Original Assignee
WAKAMATSU NETSUREN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKAMATSU NETSUREN KK filed Critical WAKAMATSU NETSUREN KK
Priority to JP7348498A priority Critical patent/JPH09161807A/en
Publication of JPH09161807A publication Critical patent/JPH09161807A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a ragged electrode base, high in filling of an active material, by using a metallic fiber nonwoven fabric, having specific structure, as constitution material. SOLUTION: This electrode base is formed of the metallic fiber nonwoven fabric, having structure wherein the crossing portion of fibers is sintered. It is preferable that the diameter and length of a metallic fiber are 10-80microns and 10-100mm respectively, and that the thickness of a metallic base is 0.1-3mm. Also it is preferable that the metallic fiber is sintered by a pressure of 0.5g/cm<2> or more under a reducing and as non-oxidizing atmosphere, and that a sintering temperature in the range of 400-650 deg.C in Al, 1000-1300 deg.C in Ti, 600-900 deg.C in Cu, and 900-1150 deg.C in Ni.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムイオン電池の
電極基体に関するものである。
FIELD OF THE INVENTION The present invention relates to an electrode substrate for a lithium ion battery.

【0002】[0002]

【従来の技術】リチウムイオン電池の正極、陰極基体に
は通常金属箔が用られている。正極にあってはAL、あ
るいはTi箔に陽極活物質が塗布され、陰極にあって
は、Cu,Ni箔に炭素粉が塗布されている。 従来技術の問題点 箔を使用するために活物質の充填度が劣る。 裏表面でLiイオンの行き来ができない。 充墳度を上げるために、粉末多孔体あるいはメッキによ
る多孔体を使用する試みもあるが、骨格内部に活物質を
充填できない空間(死空間)の問題、あるいは強度が弱
い問題がある。
2. Description of the Related Art Metal foils are usually used for the positive electrode and negative electrode substrates of lithium ion batteries. For the positive electrode, the AL or Ti foil is coated with the positive electrode active material, and for the cathode, the Cu or Ni foil is coated with the carbon powder. Problems of the prior art Since the foil is used, the filling degree of the active material is poor. Li ions cannot pass back and forth on the back surface. Attempts have been made to use a powdered porous body or a plated porous body in order to increase the filling degree, but there is a problem of a space (dead space) where the active material cannot be filled in the skeleton, or a problem of weak strength.

【0003】[0003]

【発明が解決する課題】本発明は、かかる問題に鑑みて
なされたもので、その目的とするところは、活物質の充
填度が高く、強度も高い電極基体を提供せんとするもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide an electrode substrate having a high filling degree of an active material and a high strength.

【0004】[0004]

【課題を解決するための手段】本発明者は鋭意研究を行
った結果、次の知見を得た。すなわち、金属繊維の不
織布は気孔率が高く、しかも死空間が極めて少ないこ
と、そして金属不織布の繊維の交差部を焼結すると電
気導電性と強度に優れたものが得られ、さらに繊維の
直径は10〜80ミクロンの範囲が、長さは,10〜1
00mmの範囲が好ましいことを見いだした。本発明は
以上の知見によってなされたもので次の構成からなる。 1. 繊維の交差部分が焼結された構造の金属繊維不織
布で形成されてなることを特徴とするリチウムイオン電
池の電極基体。 2. 上記金属繊維の直径が10〜80ミクロン,長さ
が10〜100mmである1に記載のリチウムイオン電
池の電極基体。 3. 上記金属基体の厚さが0.1〜3mmである1あ
るいは2に記載のリチウムイオン電池の電極基体。
Means for Solving the Problems As a result of intensive studies, the present inventors have obtained the following findings. That is, the non-woven fabric of metal fibers has a high porosity and extremely few dead spaces, and by sintering the intersections of the fibers of the metal non-woven fabric, excellent electrical conductivity and strength can be obtained. The range is 10 to 80 microns and the length is 10 to 1
We have found that a range of 00 mm is preferred. The present invention has been made based on the above findings and has the following configuration. 1. An electrode substrate for a lithium-ion battery, which is formed of a metal fiber nonwoven fabric having a structure in which intersecting portions of fibers are sintered. 2. 2. The electrode substrate for a lithium ion battery according to 1, wherein the metal fiber has a diameter of 10 to 80 microns and a length of 10 to 100 mm. 3. 3. The electrode base for a lithium ion battery according to 1 or 2, wherein the metal base has a thickness of 0.1 to 3 mm.

【0005】[0005]

【発明の実施の形態】金属不織布の繊維の交差部を焼結
させることによって電気導電性と強度に優れた不織布が
得られることは本発明者等がすでに発明、出願してい
る。この不織布は平面上に一様に散布した金属繊維を加
圧しながら焼結してその交差部分を焼結するものであ
る。この方法によるとほぼ繊維の線径に近いものから任
意の厚さのものが自在に得られる。強度は繊維の集積密
度によって異なるが、同じ集積度で比較すると非焼結の
不織布の数百倍の引っ張り強度が得られる。陽極基体に
使用するアルミニウム繊維不織布の交差部を焼結したも
ので、5〜20kg/cmの引っ張り強度、Ti繊維
不織布の交差部を焼結したもので、60〜80kg/c
の引っ張り強度が得られ、電池の電極基板の強度と
して評価した場合、1.5mm厚さ、20mm幅で、A
Lで最高3〜8kgの強度、Tiで最高15〜28kg
の強度が得られ、リチウムイオン電池の陽極基板の強度
としては十分である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have already invented and filed that a nonwoven fabric having excellent electrical conductivity and strength can be obtained by sintering the intersection of fibers of a metal nonwoven fabric. This non-woven fabric is obtained by sintering metal fibers uniformly spread on a flat surface while applying pressure, and sintering the intersection. According to this method, a material having an arbitrary thickness from a material having a diameter substantially close to the fiber diameter can be freely obtained. Although the strength differs depending on the fiber accumulation density, a tensile strength several hundred times higher than that of a non-sintered nonwoven fabric can be obtained when compared at the same degree of accumulation. Aluminum fiber non-woven fabric used for the anode base is a sintered cross-section, tensile strength of 5 to 20 kg / cm 2 , Ti fiber non-woven fabric cross-section is sintered, 60 to 80 kg / c
A tensile strength of m 2 was obtained, and when evaluated as the strength of the electrode substrate of the battery, it was 1.5 mm thick and 20 mm wide, and A
Maximum strength of 3-8kg for L, maximum of 15-28kg for Ti
Is obtained, which is sufficient as the strength of the anode substrate of the lithium ion battery.

【0006】陰極基体に使用するCu繊維不織布の交差
部を焼結したもので、20〜50kg/cmの引っ張
り強度が、Ni繊維不織布の交差部を焼結したもので、
30〜60kg/cmの引っ張り強度が得られ、電池
の電極基板の強度として評価した場合、1.5mm厚
さ、20mm幅で、Cuで最高10〜18kgの強度、
Niで最高9〜18kgの強度が得られ、リチウムイオ
ン電池の陰極基板の強度としては十分である。
The intersection of the Cu fiber non-woven fabric used for the cathode substrate is sintered, and the tensile strength of 20 to 50 kg / cm 2 is obtained by sintering the intersection of the Ni fiber non-woven fabric.
A tensile strength of 30 to 60 kg / cm 2 was obtained, and when evaluated as the strength of the electrode substrate of the battery, the strength was 1.5 mm, the width was 20 mm, and the Cu was a maximum of 10 to 18 kg.
With Ni, a maximum strength of 9 to 18 kg is obtained, which is sufficient as the strength of the cathode substrate of a lithium ion battery.

【0007】使用する金属繊維の線径は10〜80ミク
ロン,長さが10〜100mmの範囲のものが最も好ま
しい。金属繊維の焼結は、還元、非酸化性雰囲気で0.
5g/cm以上の圧力で加圧しながら焼結するのが望
ましく、焼結温度は、ALでは400〜650℃の範
囲、Tiでは1000〜1300℃の範囲、Cuでは6
00〜900℃の範囲、Niでは900〜1150℃の
範囲で焼結するのが好ましい。
Most preferably, the metal fiber used has a wire diameter of 10 to 80 microns and a length of 10 to 100 mm. Sintering of metal fibers can be performed in a reducing, non-oxidizing atmosphere at 0.
It is desirable to sinter while pressurizing at a pressure of 5 g / cm 2 or more, and the sintering temperature is 400 to 650 ° C. for AL, 1000 to 1300 ° C. for Ti, and 6 for Cu.
It is preferable to sinter in the range of 00 to 900 ° C., and in the case of Ni in the range of 900 to 1150 ° C.

【0008】金属繊維の成分は、上記したように陽極で
はAL,TiあるいはAL,Tiを主成分にする合金
が、陰極では、Cu,Ni、あるいはCu,Niを主成
分にする合金を適宜選択できる。上記主成分以外の合金
成分は、陽極、陰極とも本来の耐蝕性が損なわれない範
囲であれば適宜てんかしてよい。
As described above, the metal fiber component is appropriately selected from AL, Ti or an alloy containing AL and Ti as a main component in the anode and Cu, Ni or an alloy containing Cu, Ni as a main component in the cathode. it can. Alloying components other than the above main components may be appropriately added to the anode and cathode as long as the original corrosion resistance is not impaired.

【0009】金属繊維の散布密度は、焼結後の気孔率に
関係し、本発明の目的のためには、ALにあっては,6
0〜300g/mの範囲が,Tiにあっては,100
〜500g/mの範囲が、Cuにあっては、200〜
700g/mの範囲が、Niにあっては、200〜7
00g/mの範囲が好ましく、最も好ましくは、A
L,2.0〜6.0g/225cmの範囲,Ti,
3.0〜8.0g/225cmの範囲,Cu,5.0
〜10.0g/225cmの範囲、Ni,5.0〜1
0.0g/225cmの範囲である。下限値未満、上
限を越えると共に活物質を十分に充填できない。
The distribution density of the metal fibers is related to the porosity after sintering, and for the purposes of the present invention, in AL it is 6
The range of 0 to 300 g / m 2 is 100 for Ti.
The range of ~ 500 g / m 2 is 200 ~ for Cu.
The range of 700 g / m 2 is 200 to 7 for Ni.
A range of 00 g / m 2 is preferred, most preferably A
L, the range of 2.0 to 6.0 g / 225 cm 2 , Ti,
Range of 3.0 to 8.0 g / 225 cm 2 , Cu, 5.0
~10.0g / 225cm 2 of range, Ni, 5.0~1
It is in the range of 0.0 g / 225 cm 2 . Below the lower limit and above the upper limit, the active material cannot be sufficiently filled.

【0010】[0010]

【実施例】実施例について本発明を説明する。 実施例1 直径50ミクロン、長さ25mmの下記組成のAL繊維
をセラミック板の上に散布密度200g/mで散布
し、これに20g/cmの割合で加圧して、水素雰囲
気630℃で焼結した。 AL繊維の組成(wt%) Si:0.2 Fe:0.25 cu:0.04 Mn:0.03 Mg:0.03 Zn:0.04 Ti:0.03 AL:99.7以上 得られた不織布の引張り強度は15kg/cm、厚さ
は0.8mmであった。多孔体の気孔率は、92vol
%であった。
EXAMPLES The present invention will be described with reference to examples. Example 1 An AL fiber having a diameter of 50 μm and a length of 25 mm and having the following composition was sprayed on a ceramic plate at a spraying density of 200 g / m 2 , and a pressure of 20 g / cm 2 was applied to this, and a hydrogen atmosphere at 630 ° C. Sintered. Composition of AL fiber (wt%) Si: 0.2 Fe: 0.25 cu: 0.04 Mn: 0.03 Mg: 0.03 Zn: 0.04 Ti: 0.03 AL: 99.7 or more Obtained The obtained nonwoven fabric had a tensile strength of 15 kg / cm 2 and a thickness of 0.8 mm. The porosity of the porous body is 92 vol.
%Met.

【0011】実施例2 直径30ミクロン、長さ25mmの下記組成のcu繊維
をセラミック板の上に散布密度400g/mで散布
し、これに20g/cmの割合で加圧して、水素雰囲
気780℃で焼結した。 Cu繊維の組成(wt%) Cu: 99.7以上 得られた不織布の引張り強度は38kg/cm、厚さ
は1.2mmであった。多孔体の気孔率は、94vol
%であった。
Example 2 Cu fibers having a diameter of 30 μm and a length of 25 mm and having the following composition were sprayed on a ceramic plate at a spraying density of 400 g / m 2 , and a pressure of 20 g / cm 2 was applied to this, and a hydrogen atmosphere was applied. Sintered at 780 ° C. Composition of Cu fiber (wt%) Cu: 99.7 or more The tensile strength of the obtained non-woven fabric was 38 kg / cm 2 , and the thickness was 1.2 mm. The porosity of the porous body is 94 vol.
%Met.

【0012】実施例3 実施例1,2で得られたAL,Cu不織布を縦40m
m,横110mmに裁断し、これを渦巻状に丸めて外径
8mmのLiイオン電池の陽極基板、陰極基板となし、
陽極には陽極活物質のLiCoOを含浸した。陰極に
は炭素紛を含浸した。含浸前後の陽極、陰極基板の重量
変化から含浸された量を計算し、含浸された材料の体積
を算出した。実施例1,2の気孔率から陽極活物質、お
よび炭素粉末の充填率を算出した。 実施例1の不織布は97% 実施例2の不織布は98%であった。したがって、死空
間は、実施例1は3%,実施例2は2%であった。本発
明の不織布電極では死空間が極めて少ないことが確認で
きた。
Example 3 The AL and Cu non-woven fabrics obtained in Examples 1 and 2 are 40 m in length.
m, 110 mm in width, and rolled into a spiral shape to form an anode substrate and a cathode substrate for a Li-ion battery having an outer diameter of 8 mm,
The anode was impregnated with LiCoO 2 as an anode active material. The cathode was impregnated with carbon powder. The impregnated amount was calculated from the weight change of the anode and cathode substrates before and after impregnation, and the volume of the impregnated material was calculated. The filling rate of the anode active material and the carbon powder was calculated from the porosities of Examples 1 and 2. The nonwoven fabric of Example 1 was 97% and the nonwoven fabric of Example 2 was 98%. Therefore, the dead space was 3% in Example 1 and 2% in Example 2. It was confirmed that the dead space was extremely small in the nonwoven fabric electrode of the present invention.

【0013】[0013]

【発明の効果】以上詳記したように本発明電極は、気孔
率、強度共に高く、しかも死空間が極めて少ない特徴を
有し、しかも素材が安価であり、Liイオン電池の機能
向上と製造コストの低減に多大の貢献をなすものであ
る。
As described in detail above, the electrode of the present invention has the features of high porosity and strength, and very few dead spaces, and the material is inexpensive, and the function and manufacturing cost of the Li-ion battery are improved. It greatly contributes to the reduction of

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】繊維の交差部分が焼結された構造の金属繊
維不織布で形成されてなることを特徴とするリチウムイ
オン電池の電極基体。
1. An electrode substrate for a lithium ion battery, which is formed of a metal fiber non-woven fabric having a structure in which intersecting portions of fibers are sintered.
【請求項2】上記金属繊維の直径が10〜80ミクロ
ン,長さが10〜100mmである請求項1に記載のリ
チウムイオン電池の電極基体。
2. The electrode substrate for a lithium ion battery according to claim 1, wherein the metal fiber has a diameter of 10 to 80 μm and a length of 10 to 100 mm.
【請求項3】上記金属基体の厚さが0.1〜3mmであ
る請求項1あるいは2に記載のリチウムイオン電池の電
極基体。
3. The electrode base for a lithium ion battery according to claim 1, wherein the metal base has a thickness of 0.1 to 3 mm.
JP7348498A 1995-12-06 1995-12-06 Electrode base for lithium ion battery Pending JPH09161807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7348498A JPH09161807A (en) 1995-12-06 1995-12-06 Electrode base for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7348498A JPH09161807A (en) 1995-12-06 1995-12-06 Electrode base for lithium ion battery

Publications (1)

Publication Number Publication Date
JPH09161807A true JPH09161807A (en) 1997-06-20

Family

ID=18397422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7348498A Pending JPH09161807A (en) 1995-12-06 1995-12-06 Electrode base for lithium ion battery

Country Status (1)

Country Link
JP (1) JPH09161807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000001A3 (en) * 1997-06-27 1999-09-30 Lg Chemical Ltd Lithium ion secondary battery and manufacturing method of the same
KR101088073B1 (en) * 2010-10-16 2011-12-01 주식회사 샤인 Battery having electrode structure with metal long fibers and method of fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000001A3 (en) * 1997-06-27 1999-09-30 Lg Chemical Ltd Lithium ion secondary battery and manufacturing method of the same
KR101088073B1 (en) * 2010-10-16 2011-12-01 주식회사 샤인 Battery having electrode structure with metal long fibers and method of fabricating the same
JP2013543231A (en) * 2010-10-16 2013-11-28 シャイン カンパニー リミテッド Battery having electrode structure including long metal fiber and method for manufacturing the same
CN103460463A (en) * 2010-10-16 2013-12-18 株式会社阳光 Battery having an electrode structure comprising long metal fibres and a production method therefor
US9680147B2 (en) 2010-10-16 2017-06-13 Jenax Inc. Battery having an electrode structure comprising long metal fibers and a production method therefor

Similar Documents

Publication Publication Date Title
JP6290520B1 (en) Magnesium-lithium alloy and magnesium-air battery
US6033805A (en) Nickel-hydrogen secondary battery and process for producing electrode therefor
JPWO2018021361A1 (en) Magnesium-lithium alloy and magnesium air battery
TW201108272A (en) Electrode material for aluminum electrolytic capacitor and method for manufacturing the material
KR20020064193A (en) Manufacturing method for sintered substrate of alkaline storage battery
EP0750360B1 (en) Electrode substrate for battery and process for preparing the same
JPH09504905A (en) Improved battery plate and method of making the same
JPH09161807A (en) Electrode base for lithium ion battery
JPH10241697A (en) Alkaline storage battery electrode and manufacture thereof
JP2013243063A (en) Method of manufacturing electrode using porous metal collector
US4121024A (en) Negative electrode for lead-acid storage battery
JP6122580B2 (en) Method for producing electrode using porous metal current collector
JP4423442B2 (en) Method for producing electrode substrate for alkaline secondary battery
JP2870125B2 (en) Manufacturing method of non-woven metal sintered sheet
JPH0982334A (en) Electrode substrate for battery
JP4952038B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery
CA1111495A (en) Negative electrode for lead-acid storage battery
JPH0917432A (en) Electrode substrate for battery and manufacture thereof
JPH0992292A (en) Manufacture of metal porous body
JPH11329449A (en) Electrode substrate for battery and its manufacture
JPH01302668A (en) Electrode for alkaline storage battery
JPH08287917A (en) Manufacture of metallic porous body
JP2019151900A (en) Porous metal body, collector, battery and method for producing porous metal body
JPS62229763A (en) Nonsintered nickel positive electrode
JPS60105172A (en) Paste type positive plate for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Effective date: 20071212

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Effective date: 20080404

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A02