JPH0917432A - Electrode substrate for battery and manufacture thereof - Google Patents
Electrode substrate for battery and manufacture thereofInfo
- Publication number
- JPH0917432A JPH0917432A JP7163684A JP16368495A JPH0917432A JP H0917432 A JPH0917432 A JP H0917432A JP 7163684 A JP7163684 A JP 7163684A JP 16368495 A JP16368495 A JP 16368495A JP H0917432 A JPH0917432 A JP H0917432A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- electrode substrate
- battery
- skeleton
- batteries
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electroplating Methods And Accessories (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ニッケル−カドミウム
電池、ニッケル−亜鉛電池、ニッケル−水素電池などの
アルカリ二次電池などに用いる電極基板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode substrate used in alkaline secondary batteries such as nickel-cadmium batteries, nickel-zinc batteries and nickel-hydrogen batteries.
【0002】[0002]
【従来の技術】各種の電源として使われる蓄電池として
鉛蓄電池とアルカリ蓄電池がある。このうちアルカリ蓄
電池は高信頼性が期待でき、小形軽量化も可能などの理
由で小型電池は各種ポータブル機器用に、大型は産業用
として広く使われてきた。このアルカリ蓄電池において
負極としてはカドミウムの他に亜鉛、鉄、水素などが対
象となっている。しかし正極としては一部空気極や酸化
銀極なども取り上げられているがほとんどの場合ニッケ
ル極である。ポケット式から焼結式に代わって特性が向
上し、さらに密閉化が可能になるとともに用途も広がっ
た。2. Description of the Related Art Lead-acid batteries and alkaline batteries are used as storage batteries used as various power sources. Among them, the alkaline storage battery has been widely used for various portable devices, and the large type for industrial purposes because it is expected to have high reliability and can be made compact and lightweight. In addition to cadmium, zinc, iron, hydrogen, etc. are targeted as the negative electrode in this alkaline storage battery. However, as the positive electrode, an air electrode, a silver oxide electrode, and the like are partially taken up, but in most cases, it is a nickel electrode. The characteristics have been improved from the pocket type to the sintering type, and the sealing has been made possible and the use has expanded.
【0003】しかし通常の粉末焼結式では基板の気孔率
を85%以上にすると強度が大幅に低下するので活物質
の充填に限界があり、したがって電池としての高容量化
に限界がある。そこで90%以上のような一層高気孔率
の基板として焼結基板に代えて発泡状基板や繊維状基板
が取り上げられ実用化されている。このような高気孔率
を有する金属多孔体基板の製造方法としては、特開昭5
7−174484号公報に開示されているメッキ法によ
るものと、特公昭38−17554号公報等に開示され
ている焼結法によるものがある。メッキ法ではウレタン
フォームなどの発泡樹脂の骨格表面にカーボン粉末等を
塗着することにより導電化処理を行ない、その上に電気
メッキ法によりNiを電析させ、その後発泡樹脂及びカ
ーボンを消失させ、金属多孔体を得るという方法であ
る。一方、焼結法ではスラリー化した金属粉末をウレタ
ンフォームなどの発泡樹脂の骨格表面に含浸塗布し、そ
の後加熱することにより金属粉末を焼結している。これ
等の方法を用いた金属多孔体として、Ni金属よりなる
「セルメット」〔商品名:住友電気工業(株)製〕が既
に市販されており、アルカリ二次電池用極板として使用
されている。However, in the ordinary powder sintering method, when the porosity of the substrate is 85% or more, the strength is significantly lowered, so that there is a limit to the filling of the active material, and therefore, there is a limit to increase the capacity of the battery. Therefore, as a substrate having a higher porosity of 90% or more, a foamed substrate or a fibrous substrate has been picked up and put into practical use instead of the sintered substrate. As a method for producing such a porous metal substrate having a high porosity, Japanese Patent Application Laid-Open No. S5-5200 is known.
There are a method by a plating method disclosed in JP-A-7-174484 and a method by a sintering method disclosed in JP-B-38-17554. In the plating method, carbon powder or the like is applied to the skeleton surface of a foamed resin such as urethane foam to perform a conductive treatment, and Ni is electrodeposited thereon by an electroplating method, after which the foamed resin and carbon are eliminated, The method is to obtain a metal porous body. On the other hand, in the sintering method, slurry metal powder is impregnated and applied on the skeleton surface of foamed resin such as urethane foam, and then heated to sinter the metal powder. As a porous metal body using these methods, "Celmet" made of Ni metal [trade name: manufactured by Sumitomo Electric Industries, Ltd.] is already on the market and used as an electrode plate for an alkaline secondary battery. .
【0004】[0004]
【発明が解決しようとする課題】従来技術に示した通り
金属多孔体を電池用電極基板として適用することによ
り、電池の高容量化に果たした寄与は大きい。しかしな
がら、電気自動車などを目的とした大型アルカリ二次電
池においては、従来技術のNi多孔体を用いた電池用電
極基板ではその電極面積が大きくなることから電極基板
としての電気抵抗が高くなり、高率放電時での電圧低下
が大きく、電池として取り出せる出力に限界があり、ま
た電極基板面内での電位分布が生じ充電効率も低下す
る。本発明は、こうした実状の下に電気抵抗が低く、高
出力が可能であり、耐食性にも優れとくにアルカリ二次
電池に好適な電極基板およびその製造方法を提供するこ
とを目的とするものである。As described in the prior art, by applying the metal porous body as the battery electrode substrate, the contribution to the high capacity of the battery has been great. However, in a large alkaline secondary battery intended for an electric vehicle or the like, a battery electrode substrate using a conventional Ni porous body has a large electrode area, so that the electric resistance as the electrode substrate increases and There is a large voltage drop during rate discharge, there is a limit to the output that can be taken out as a battery, and a potential distribution occurs within the surface of the electrode substrate, and charging efficiency also drops. It is an object of the present invention to provide an electrode substrate having a low electric resistance, capable of high output, excellent in corrosion resistance, and particularly suitable for an alkaline secondary battery, and a method for producing the same, under these circumstances. .
【0005】[0005]
【課題を解決するための手段】本発明者らは、鋭意検討
した結果、特定の金属多孔体からなる電極基板により上
記課題を達成できることを見出し、本発明に至った。本
発明の第一は、電池用集電体として用いる活物質保持体
を形成する電池用電極基板において、骨格内部がCuま
たはCu合金で表面部がNiまたはNi合金からなる三
次元網目構造を有する金属多孔体から構成され、かつ部
分的に骨格内部および表面部がともにNiまたはNi合
金からなる領域を有することを特徴とする電池用電極基
板である。Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above problems can be achieved by an electrode substrate made of a specific metal porous body, and have completed the present invention. A first aspect of the present invention is a battery electrode substrate for forming an active material holder used as a current collector for a battery, which has a three-dimensional network structure in which the skeleton interior is Cu or Cu alloy and the surface portion is Ni or Ni alloy. An electrode substrate for a battery, which is composed of a porous metal body and partially has a region in which the skeleton is made of Ni or a Ni alloy both inside and outside thereof.
【0006】ここで骨格内部となるCuまたはCu合金
は、その比抵抗がNiの約1/4であることから、金属
多孔体としての電気抵抗を低減でき、電池用電極基板と
して用いた場合の上記問題点を解決できる。又、Cuま
たはCu合金は、電池内のアルカリ電解液中では容易に
溶出することからその表面にNiを被覆することにより
Cuの溶出を回避し電極基板としての耐食性を上げ、電
池としての寿命特性を向上させる。しかし、実際の電池
製造工程においては、金属多孔体を所定のサイズに切断
加工した後活物質等の充填がされるか、もしくは活物質
を充填した後所定のサイズに切断するかして電極基板が
作製されるが、いずれの場合においても切断端面にはC
uまたはCu合金の露出部が生じる。すなわち図2
(イ)に示す電極基板1を分割線Cに沿って切断する
と、多孔質網状構造の断面の一部を拡大して示した図2
(ロ)に示すようにNiメッキにより覆われていた骨格
内部のCu(又はCu合金)が露出することとなる。The specific resistance of Cu or Cu alloy, which is the inside of the skeleton, is about ¼ of that of Ni, so that the electric resistance of the porous metal body can be reduced, and when used as a battery electrode substrate. The above problems can be solved. Further, since Cu or Cu alloy easily elutes in the alkaline electrolyte in the battery, by coating the surface with Ni, Cu elution can be avoided, corrosion resistance as an electrode substrate can be improved, and life characteristics as a battery can be improved. Improve. However, in an actual battery manufacturing process, an electrode substrate is prepared by cutting a metal porous body into a predetermined size and then filling it with an active material or by filling the active material and then cutting it into a predetermined size. Is produced, but in either case, C is
An exposed portion of u or Cu alloy is produced. That is, FIG.
2 is an enlarged view of a part of the cross section of the porous network structure when the electrode substrate 1 shown in FIG.
As shown in (b), Cu (or Cu alloy) inside the skeleton covered with Ni plating is exposed.
【0007】本発明の構造によれば図1(イ)に示すよ
うに分割線Cに沿った部分は図1(ロ)に示すように骨
格がNi又はNi合金のみの領域とすることにより、切
断後の電極基板1の端面にはNi又はNi合金のみが露
出することとなり、耐食性を確保できる。したがってア
ルカリ二次電池に適用された場合、高出力かつ高効率の
充放電が可能となる。本発明の第二は上述の電池用電極
基板の製造方法である。すなわち、金属多孔体の骨格内
部のCuまたはCu合金及びNiまたはNi合金部分は
多孔性樹脂芯体上にCuまたはCu合金粉末を含んだス
ラリー及びNiまたはNi合金粉末を含んだスラリーを
領域ごとに順次塗布した後焼結することにより、あるい
は多孔性樹脂芯体表面にバインダー樹脂を塗着した後、
樹脂が乾燥固化する前にCuまたはCu合金粉末及びN
iまたはNi合金粉末を領域ごとに順次直接塗着し、樹
脂を固着処理した後焼結することにより形成し、表面部
のNiまたはNi合金は電気メッキにより形成する方法
である。According to the structure of the present invention, the portion along the dividing line C as shown in FIG. 1 (a) is a region where the skeleton is only Ni or Ni alloy as shown in FIG. 1 (b). Only Ni or a Ni alloy is exposed on the end surface of the electrode substrate 1 after cutting, so that corrosion resistance can be secured. Therefore, when applied to an alkaline secondary battery, high output and high efficiency charging / discharging becomes possible. A second aspect of the present invention is a method for manufacturing the above-mentioned battery electrode substrate. That is, the Cu or Cu alloy and the Ni or Ni alloy portion inside the skeleton of the metal porous body is divided into the slurry containing the Cu or Cu alloy powder and the slurry containing the Ni or Ni alloy powder on the porous resin core body for each region. By sequentially applying and then sintering, or after applying the binder resin to the surface of the porous resin core,
Cu or Cu alloy powder and N before the resin is dried and solidified
This is a method in which i or Ni alloy powder is directly applied to each region in order, the resin is fixed and then sintered, and the Ni or Ni alloy on the surface is formed by electroplating.
【0008】上記においてCuまたはCu合金層を排除
する領域は、CuまたはCu合金部分形成以外の部分を
金属マスクなどによりマスキングして、CuまたはCu
合金粉末を塗着または塗布し、ついでCuまたはCu合
金の形成部に金属マスクなどによりマスキングしてNi
またはNi合金粉末を塗着又は塗布することによって形
成する。これらの方法により骨格内部がCu表面部がN
iからなる積層構造、かつ切断加工部は骨格内部及び表
面部がともにNiより形成される金属多孔体が得られ
る。又、多孔性樹脂芯体としては、代表的にはポリウレ
タン発泡樹脂を用いる。他に樹脂繊維からなる織布及び
不織布を用いることもできる。In the above-mentioned region where the Cu or Cu alloy layer is excluded, a portion other than the Cu or Cu alloy portion formation is masked by a metal mask or the like to form Cu or Cu.
The alloy powder is applied or applied, and then the Cu or Cu alloy forming portion is masked with a metal mask or the like to form Ni.
Alternatively, it is formed by applying or applying Ni alloy powder. By these methods, the inside of the skeleton is N
It is possible to obtain a porous metal body in which the laminated structure of i and the cut and processed portion are both made of Ni in the skeleton and in the surface portion. A polyurethane foam resin is typically used as the porous resin core. Alternatively, woven or non-woven fabric made of resin fibers may be used.
【0009】[0009]
実施例1 重量%で平均粒径10μmのCu粉末および平均粒径6
μmのNi粉末にそれぞれ50%、アクリル樹脂10
%、カルボキシルメチルセルロース2%、水38%を配
合し、5時間混合してCuおよびNiスラリーを作製し
た。厚さ2.5mmで1インチ当たりの空孔数が約50
個のポリウレタンフォームにCu骨格形成部分以外を厚
み20μmのステンレス製金属マスクによるマスキング
を行い、Cu粉末スラリーを含浸させ、絞りロールにて
過剰含浸塗着分を除去した。次にCu粉末スラリー塗着
部を同様にマスキングし、Ni粉末スラリーを含浸さ
せ、絞りロールにて過剰含浸塗着分を除去した。室温中
1時間放置して乾燥させた後、この塗着物を水素気流中
で30℃/分の昇温速度で1050℃迄昇温し、105
0℃にて10分間熱処理を行うことで局部的にNi部分
のある三次元網目状構造のCu多孔体を得た。この金属
多孔体の平均面密度は450g/m2であった。ついで
この金属多孔体に電気Niメッキ用ワット浴中で電流密
度10A/dm2でNiメッキを100g/m2行った。
これをサンプルAとする。Example 1 Cu powder having an average particle size of 10 μm in weight% and an average particle size of 6
50% each for Ni powder of μm, acrylic resin 10
%, Carboxymethyl cellulose 2%, and water 38% were mixed and mixed for 5 hours to prepare Cu and Ni slurries. 2.5 mm thick with about 50 holes per inch
Each polyurethane foam was masked with a metal mask made of stainless steel having a thickness of 20 μm except for the Cu skeleton-forming portion, impregnated with Cu powder slurry, and excess impregnated coating was removed with a squeezing roll. Next, the Cu powder slurry coated portion was masked in the same manner to be impregnated with the Ni powder slurry, and the excess impregnated coating was removed with a squeezing roll. After being left to dry at room temperature for 1 hour, the coated product was heated to 1050 ° C. at a heating rate of 30 ° C./min in a hydrogen stream,
A heat treatment was performed at 0 ° C. for 10 minutes to obtain a Cu porous body having a three-dimensional network structure having a Ni portion locally. The average surface density of this porous metal body was 450 g / m 2 . Then, the metal porous body was plated with Ni at 100 g / m 2 at a current density of 10 A / dm 2 in a Watt bath for electric Ni plating.
This is designated as Sample A.
【0010】厚さ2.5mmで1インチ当たりの空孔数
が約50個のポリウレタンフォームをアクリル樹脂60
wt%、水40wt%を混合したバインダー樹脂液中に
含浸させた後絞りロールにて過剰塗着分を除去し、バイ
ンダーが塗着された多孔性樹脂芯体を作製した。次にこ
の多孔性樹脂芯体にCu骨格形成部分以外を厚み20μ
mのステンレス製金属マスクによるマスキングを行い、
平均粒径10μmのCu粉末をエアガンにより直接吹き
付け塗着させた。続いてCu粉末塗着部に同様にマスキ
ングを行い平均粒径6μmのNi粉末をエアガンにより
直接吹き付け塗着させた。室温中1時間放置して乾燥さ
せた後、この塗着物を水素気流中で30℃/分の昇温速
度で1050℃まで昇温し、1050℃にて10分間熱
処理を行うことで局部的にNi部分のある三次元網目状
構造のCu多孔体を得た。この金属多孔体の平均面密度
は450g/m2であった。ついでこの金属多孔体に電
気Niメッキ用ワット浴中で電流密度10A/dm2で
Niメッキを100g/m2行った。これをサンプルB
とする。Polyurethane foam having a thickness of 2.5 mm and about 50 pores per inch is made of acrylic resin 60.
After impregnating a binder resin liquid in which wt% and 40 wt% of water were mixed, the excess coating was removed with a squeeze roll to prepare a binder-coated porous resin core. Next, except for the Cu skeleton forming portion, the thickness of the porous resin core is 20 μm.
Masking with a stainless steel metal mask of m,
Cu powder having an average particle diameter of 10 μm was directly sprayed and applied by an air gun. Subsequently, the Cu powder coating portion was similarly masked, and Ni powder having an average particle diameter of 6 μm was directly sprayed and coated by an air gun. After being left to dry at room temperature for 1 hour, this coated material was heated in a hydrogen stream at a heating rate of 30 ° C./min to 1050 ° C. and heat-treated at 1050 ° C. for 10 minutes to locally A Cu porous body having a three-dimensional network structure having a Ni portion was obtained. The average surface density of this porous metal body was 450 g / m 2 . Then, the metal porous body was plated with Ni at 100 g / m 2 at a current density of 10 A / dm 2 in a Watt bath for electric Ni plating. This is sample B
And
【0011】比較例としてサンプルAのCuスラリーと
ウレタンフォームを用いて、Cu粉末スラリーを含浸さ
せ、絞りロールにて過剰含浸塗着分を除去し、室温中1
時間放置して乾燥させた後、この塗着物を水素気流中で
30℃/分の昇温速度で1050℃迄昇温し、1050
℃にて10分間熱処理を行うことで三次元網目状構造の
Cu多孔体を得た。この金属多孔体の平均面密度は45
0g/m2であった。ついでこの金属多孔体に電気Ni
メッキ用ワット浴中で電流密度10A/dm2でNiメ
ッキを100g/m2行った。これをサンプルCとす
る。さらに比較例としてNi単独の金属多孔体〔住友電
気工業(株)製セルメット〕をサンプルDとして用意し
た。As a comparative example, Cu slurry of Sample A and urethane foam were used to impregnate Cu powder slurry, and the excess impregnated coating was removed with a squeezing roll, and the mixture was kept at room temperature for 1 hour.
After being left to dry for a period of time, the coated product was heated to 1050 ° C. at a heating rate of 30 ° C./min in a hydrogen stream and heated to 1050 ° C.
A Cu porous body having a three-dimensional network structure was obtained by performing heat treatment at 10 ° C. for 10 minutes. The average surface density of this porous metal body is 45.
It was 0 g / m 2 . Then, the Ni metal
Ni plating was performed at 100 g / m 2 at a current density of 10 A / dm 2 in a plating watt bath. This is designated as Sample C. Further, as a comparative example, a porous metal body of Ni alone [Celmet manufactured by Sumitomo Electric Industries, Ltd.] was prepared as Sample D.
【0012】実施例2 実施例1のサンプルA,B,C,Dについて、電池用電
極基板として150mm×120mmのサイズに切断加
工を行った。ここでサンプルA,BはNi骨格部での切
断であるために切断端面でのCuの露出はなかったが、
サンプルCではCuが露出していた。サンプルA,B,
C,Dについて、電極基板長辺両端間で測定した電気抵
抗を表1に示す。Example 2 Samples A, B, C and D of Example 1 were cut into a size of 150 mm × 120 mm as a battery electrode substrate. Here, since the samples A and B were cut at the Ni skeleton, Cu was not exposed at the cut end surface,
In Sample C, Cu was exposed. Samples A, B,
Table 1 shows the electric resistance measured between both ends of the long side of the electrode substrate for C and D.
【0013】[0013]
【表1】 [Table 1]
【0014】実施例3 金属多孔体サンプルA,B,C,Dをそれぞれ集電体と
してNi−水素二次電池の正極を以下の手順で製造し
た。水酸化ニッケルを主とする活物質ペーストを金属多
孔体にプレス充填した後、平滑化し、その後120℃で
1時間乾燥し、得られた極板を1トン/cm2の圧力で
加圧して厚さ0.7mmに調整した。この正極10枚と
負極として公知のMmNi(ミッシュメタルニッケル)
系水素吸蔵合金極10枚、親水処理ポリプロピレン不織
布セパレータを用いて角型密閉形Ni−水素電池を構成
した。電解液として比重1.25の苛性カリ水溶液に2
5g/lの水酸化リチウムを溶解して用いた。以上の手
順で得られた電池を金属多孔体サンプルA,B,C,D
に対応してそれぞれA−D、B−D、C−D、D−Dと
する。Example 3 A positive electrode of a Ni-hydrogen secondary battery was manufactured by using the porous metal sample A, B, C and D as current collectors according to the following procedure. A porous metal material is press-filled with an active material paste mainly containing nickel hydroxide, smoothed, and then dried at 120 ° C. for 1 hour, and the obtained electrode plate is pressed at a pressure of 1 ton / cm 2 to a thickness. It was adjusted to 0.7 mm. This 10 positive electrodes and MmNi (Misch metal nickel) known as negative electrodes
A square sealed Ni-hydrogen battery was constructed by using 10 sheets of hydrogen storage alloy poles and a hydrophilic treated polypropylene nonwoven fabric separator. 2 in a caustic potash solution with a specific gravity of 1.25 as electrolyte
5 g / l of lithium hydroxide was dissolved and used. The battery obtained by the above procedure was used as a porous metal sample A, B, C, D.
Corresponding to A-D, B-D, C-D, and D-D, respectively.
【0015】各電池の放電電流10Aと150Aの際の
放電電圧と容量を調べた。また寿命試験として、10A
放電において500サイクル後の容量維持率を評価し
た。結果を表2に示す。なお、電池C−Dは正極板切断
加工端面から溶出したCuが負極に析出し、483サイ
クルで正極と負極が短絡した。The discharge voltage and the capacity of the batteries at discharge currents of 10 A and 150 A were examined. As a life test, 10A
The capacity retention rate after 500 cycles in discharge was evaluated. Table 2 shows the results. In the batteries C-D, Cu eluted from the cut end surface of the positive electrode plate was deposited on the negative electrode, and the positive electrode and the negative electrode were short-circuited in 483 cycles.
【0016】[0016]
【表2】 [Table 2]
【0017】この結果から明らかなように、本発明のA
−D、B−Dが優れた電池特性を示す。As is clear from these results, A of the present invention
-D and BD show excellent battery characteristics.
【0018】[0018]
【発明の効果】本発明によれば低抵抗かつ耐食性に優れ
た電池用電極基板が実現でき、アルカリ二次電池に適用
された場合、高出力かつ高効率で充放電が可能となる。According to the present invention, a battery electrode substrate having low resistance and excellent corrosion resistance can be realized, and when it is applied to an alkaline secondary battery, charging and discharging can be performed with high output and high efficiency.
【図1】本発明の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.
【図2】本発明の比較例の説明図である。FIG. 2 is an explanatory diagram of a comparative example of the present invention.
1 電極基板 1 electrode substrate
Claims (3)
を形成する電池用電極基板において、骨格内部がCuま
たはCu合金で表面部がNiまたはNi合金からなる三
次元網目構造を有する金属多孔体から構成され、かつ部
分的に骨格内部および表面部がともにNiまたはNi合
金からなる領域を有することを特徴とする電池用電極基
板。1. An electrode substrate for a battery, which forms an active material holder used as a current collector for a battery, having a three-dimensional network structure in which a skeleton has Cu or a Cu alloy and a surface has Ni or a Ni alloy. An electrode substrate for a battery, which is composed of a body, and partially has a skeleton inside and a surface portion both made of Ni or a Ni alloy.
合金部分およびNiまたはNi合金部分は、多孔性樹脂
芯体上にCuまたはCu合金粉末を含んだスラリー及び
NiまたはNi合金粉末を含んだスラリーを領域ごとに
順次塗布した後焼結することにより形成し、表面部のN
iまたはNi合金は電気メッキにより形成することを特
徴とする電池用電極基板の製造方法。2. Cu or Cu inside the skeleton of the metal porous body
The alloy part and the Ni or Ni alloy part are formed by sequentially applying a slurry containing Cu or Cu alloy powder and a slurry containing Ni or Ni alloy powder on a porous resin core body in each region and then sintering the slurry. The surface area N
The method for producing a battery electrode substrate, wherein the i or Ni alloy is formed by electroplating.
合金部分およびNiまたはNi合金部分は、多孔性樹脂
芯体表面にバインダー樹脂を塗着した後、樹脂が乾燥固
化する前にCuまたはCu合金粉末及びNiまたはNi
合金粉末を領域ごとに順次直接塗着し、樹脂を固着処理
した後焼結することにより形成し、表面部のNiまたは
Ni合金は電気メッキにより形成することを特徴とする
電池用電極基板の製造方法。3. Cu or Cu inside the skeleton of the metal porous body
The alloy part and the Ni or Ni alloy part are formed of Cu or Cu alloy powder and Ni or Ni after the binder resin is applied to the surface of the porous resin core and before the resin is dried and solidified.
Manufacture of a battery electrode substrate, characterized in that the alloy powder is directly applied to each region in order, the resin is fixed and then sintered, and the surface Ni or Ni alloy is formed by electroplating. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7163684A JPH0917432A (en) | 1995-06-29 | 1995-06-29 | Electrode substrate for battery and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7163684A JPH0917432A (en) | 1995-06-29 | 1995-06-29 | Electrode substrate for battery and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0917432A true JPH0917432A (en) | 1997-01-17 |
Family
ID=15778641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7163684A Pending JPH0917432A (en) | 1995-06-29 | 1995-06-29 | Electrode substrate for battery and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0917432A (en) |
-
1995
- 1995-06-29 JP JP7163684A patent/JPH0917432A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100218212B1 (en) | Method of preparing metallic porous body, electrode substrate for battery and process for preparing the same | |
JP4292436B2 (en) | Metal porous body, method for producing the same and battery current collector using the same | |
EP0750360B1 (en) | Electrode substrate for battery and process for preparing the same | |
US5840444A (en) | Electrode for storage battery and process for producing the same | |
JPH10241697A (en) | Alkaline storage battery electrode and manufacture thereof | |
EP0723307A1 (en) | Paste type electrode for storage battery and process for producing the same | |
JPH0917432A (en) | Electrode substrate for battery and manufacture thereof | |
JPH0982334A (en) | Electrode substrate for battery | |
JP3781058B2 (en) | Battery electrode substrate and manufacturing method thereof | |
JP4423442B2 (en) | Method for producing electrode substrate for alkaline secondary battery | |
EP0547998B1 (en) | Process for obtaining electrodes for alkaline batteries | |
JP2981538B2 (en) | Electrodes for alkaline batteries | |
JPH08273674A (en) | Electrode base plate for battery and its manufacture | |
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JPH01302668A (en) | Electrode for alkaline storage battery | |
JPH10112326A (en) | Electrode for alkaline secondary battery | |
JP3015455B2 (en) | Electrode plate for battery | |
JP2981537B2 (en) | Negative electrode for alkaline batteries | |
JPH10162835A (en) | Electrode for alkaline storage battery and manufacture thereof | |
JPH08193232A (en) | Production of metallic porous body | |
JPH1167194A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JPH10334898A (en) | Alkaline storage battery, its electrode and manufacture thereof | |
JPH09190823A (en) | Base board of battery electrode | |
JPH08287917A (en) | Manufacture of metallic porous body | |
JPH09161807A (en) | Electrode base for lithium ion battery |