JPH0388270A - Electrode for nickel-cadmium storage battery - Google Patents

Electrode for nickel-cadmium storage battery

Info

Publication number
JPH0388270A
JPH0388270A JP1221564A JP22156489A JPH0388270A JP H0388270 A JPH0388270 A JP H0388270A JP 1221564 A JP1221564 A JP 1221564A JP 22156489 A JP22156489 A JP 22156489A JP H0388270 A JPH0388270 A JP H0388270A
Authority
JP
Japan
Prior art keywords
active material
electrode
cadmium
paste
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1221564A
Other languages
Japanese (ja)
Inventor
Makoto Konishi
真 小西
Mitsuru Koseki
満 小関
Takao Ogura
孝夫 小倉
Atsuki Funada
厚樹 船田
Mitsunori Oda
光徳 織田
Kenichi Watanabe
健一 渡辺
Naoya Kobayashi
直哉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP1221564A priority Critical patent/JPH0388270A/en
Publication of JPH0388270A publication Critical patent/JPH0388270A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/124

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To restrain the separation and coming off of an active material during formation and other processes by applying a specific active material mix to a conductive, two-dimensional substrate whose surface is made uneven by metal thermal-spray. CONSTITUTION:A conductive two-dimensional substrate whose surface is made uneven by metal thermal-spray is used as an active material holding body. An active material mix containing at least one of cadmium oxide, cadmium hydroxide, and metallic cadmium bonded with polytetrafluoroethylene is applied to this substrate. The amount of solvent in the paste is capable of reducing, and high density paste necessary for high density filling can be obtained. Mechanical and electrical contact of the active material with the two-dimensional substrate is increased. The separation and coming off of the active material from the substrate can be avoided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ニッケル・カドミウム蓄電池用電極、特にカ
ドミウム極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to electrodes for nickel-cadmium storage batteries, particularly cadmium electrodes.

[従来の技術] 密閉型ニッケル・カドミウム蓄電池は高い信頼性と優れ
た充放電特性を有しているため、電気機器の可搬化に伴
って大きな需要の伸びを示している。なかでも電子機器
のコンパクト化に伴う電源である電池の高容量化が強く
求められている。
[Prior Art] Sealed nickel-cadmium storage batteries have high reliability and excellent charging and discharging characteristics, and as electrical equipment becomes more portable, demand for them is increasing significantly. In particular, as electronic devices become more compact, there is a strong demand for higher capacity batteries, which serve as power sources.

ニッケル・カドミウム蓄電池用電極の製法としては、カ
ーボニルニッケル粉末を焼結して得られたニッケル多孔
質体の細孔中に活物質を含浸保持する方式、いわゆる焼
結式電極が一般的であった。
The common method for manufacturing electrodes for nickel-cadmium storage batteries is the so-called sintered electrode method, in which the active material is impregnated into the pores of a porous nickel material obtained by sintering carbonyl nickel powder. .

該焼結式電極は、急速充放電が可能である等の優れた特
性を有しているものの、焼結体の形成する直径10μm
程度の微細孔中に活物質を均一かつ密に充填するには限
界があり、同一形状の電池からより多くの電気量を得た
いという高容量化の要求には十分対応できない問題点が
ある。
Although the sintered electrode has excellent characteristics such as being capable of rapid charging and discharging, the diameter of the sintered body formed is 10 μm.
There is a limit to the ability to uniformly and densely fill the active material into the pores of the same size, and there is a problem that it cannot sufficiently meet the demand for higher capacity, which is the desire to obtain more electricity from a battery of the same shape.

そこで、活物質の占める割合がより大きくなる電極をも
つ電池が必要となり、その要求に応じペースト式電極が
提案されている。このペースト式電極は、活物質粉末を
集電体に直接充填する構造であり、ニッケル焼結体を使
用しない分だけ活物質が多く充填できるばかりでなく、
焼結、含浸等の繁雑な操作を省略できるため、徐々に生
産量に占める量が増加してきている。
Therefore, there is a need for batteries with electrodes in which the active material accounts for a larger proportion, and paste-type electrodes have been proposed to meet this demand. This paste-type electrode has a structure in which the active material powder is directly filled into the current collector, and not only can it be filled with a large amount of active material since it does not use sintered nickel, but also
Since complicated operations such as sintering and impregnation can be omitted, the proportion of production is gradually increasing.

このペースト式電極は焼結式電極に比べて、活物質層の
強度が弱いこと及び活物質の導電性が劣るなどの理由に
より、主にカドミウム極に適用されている。このペース
ト式電極の製造方法としては、酸化カドミウム等のカド
ミウム化合物を主成分とする活物質合剤と、ポリビニル
アルコール(以下、PvAと称する。)やカルボキシメ
チルセルロース(以下、CMCと称する。)等の粘結剤
を水、エチレングリコール等の溶媒に溶解した溶液とを
混練してスラリ状とし、これを導電性を有する穿孔板や
金網等の2次元基体上に塗着、乾燥する方法(従来例1
・・・例えば特開昭63−86259号、特公昭56−
46668号)や、前記活物質合剤とポリテトラフルオ
ロエチレン(以下、PTFEと称する。)を水を分散媒
として混練した後、2次元基体上に塗着し、加熱プレス
等によりPTFEを繊維化、結着して電極とする方法(
従来例2・・・特公昭54−1894号)が提案されて
いる。
This paste type electrode is mainly applied to cadmium electrodes because the strength of the active material layer is weaker and the conductivity of the active material is poorer than that of the sintered type electrode. This paste-type electrode is manufactured using an active material mixture whose main component is a cadmium compound such as cadmium oxide, polyvinyl alcohol (hereinafter referred to as PvA), carboxymethyl cellulose (hereinafter referred to as CMC), etc. A method in which a solution of a binder dissolved in a solvent such as water or ethylene glycol is kneaded to form a slurry, and this is applied onto a two-dimensional conductive substrate such as a perforated plate or wire mesh and dried (conventional method) 1
...For example, JP-A-63-86259, JP-A No. 56-
No. 46668) or the active material mixture and polytetrafluoroethylene (hereinafter referred to as PTFE) are kneaded using water as a dispersion medium, and then applied onto a two-dimensional substrate, and the PTFE is made into fibers by hot pressing or the like. , a method of binding to form an electrode (
Conventional Example 2 (Japanese Patent Publication No. 54-1894) has been proposed.

[発明が解決しようとする課題] 一般にペースト式電極は、焼結式電極に比べて強度、導
電性の面で劣るという問題点を有している。
[Problems to be Solved by the Invention] Paste-type electrodes generally have a problem in that they are inferior to sintered-type electrodes in terms of strength and conductivity.

強度については、ニッケル焼結体を電極骨格とする焼結
式電極に比べて、ペースト式電極は活物質ペースト自体
が電極形状を維持するため、機械的強度が低く、高密度
化のためのロールプレス工程9円筒形電池を形成するた
めの電極の捲回工程等において、活物質の剥離・脱落が
生じ易い問題点がある。このため、ペースト式電極では
、歩留りが低下したり、或いは容器に充填した後にショ
ートなどが生じていた。
In terms of strength, compared to sintered electrodes that use nickel sintered bodies as the electrode framework, paste electrodes have lower mechanical strength because the active material paste itself maintains the electrode shape. Pressing Step 9 In the electrode winding step for forming a cylindrical battery, there is a problem in that the active material is likely to peel off or fall off. For this reason, with paste-type electrodes, the yield is reduced or short circuits occur after filling a container.

導電性については、ニッケル粒子の形成する微細孔中に
活物質を充填する焼結式電極に比べ、ペースト式電極で
は相対的に活物質の占める割合が大きくなるので、抵抗
が大きくなる傾向にあり、このため導電性が低下する問
題点がある。
Regarding conductivity, compared to a sintered electrode in which the active material is filled into the micropores formed by nickel particles, a paste electrode has a relatively larger proportion of the active material, so the resistance tends to be higher. Therefore, there is a problem that the conductivity decreases.

この問題を解決するために、ペースト式電極では、活物
質中にニッケル微粉末などの導電材を添加している。し
かし、このようなペースト式電極でも、活物質層と電極
基体との界面接触が焼結式電極に比べて不十分であり、
ミクロな接触面積を増加させる必要がある。
To solve this problem, in paste-type electrodes, a conductive material such as fine nickel powder is added to the active material. However, even with such paste-type electrodes, the interfacial contact between the active material layer and the electrode base is insufficient compared to sintered-type electrodes.
It is necessary to increase the microscopic contact area.

PVA等の溶液形結着材を用いる従来例1は、成形法と
して前述の活物質合剤を含んだスラリ中を保持体となる
穿孔板等を通すことによって該保持体に該スラリを塗着
し、その後スリット等を用い成形し、乾燥することによ
り、所望の活物質量を得るのが一般的である。このため
均一なものを得るにはスラリにある程度の流動性が要求
されることから、スラリ中の溶剤量は多くなるのが普通
である。このことは、活物質合剤の含有率を相対的に減
少させることになり、スラリひいては乾燥後の電極の充
填密度を低下させる原因となる。
Conventional Example 1 using a solution-type binder such as PVA is a molding method in which a slurry containing the above-mentioned active material mixture is passed through a perforated plate, etc., which serves as a holder, and the slurry is applied to the holder. Generally, the desired amount of active material is obtained by molding the material using a slit or the like and drying it. Therefore, in order to obtain a uniform slurry, a certain degree of fluidity is required of the slurry, and therefore the amount of solvent in the slurry is usually large. This results in a relative decrease in the content of the active material mixture, which causes a decrease in the packing density of the slurry and thus of the electrode after drying.

高容量化のためには、乾燥後の電極の充填密度をその後
の処理によって上げる必要があった。これらの充填密度
を上げる処決としては、半乾燥或いは乾燥後の電極をロ
ールプレス等によって高密度化するのが一般的であるが
、プレス時の剪断力による変形により、活物質粒子同志
の結着力が落ち、ショートし易くなったり、ペーストと
集電体の間の亀裂の発生等により集電性、活物質利用率
が低下したりする等の欠点があった。
In order to increase the capacity, it was necessary to increase the packing density of the dried electrode through subsequent processing. As a solution to increase the packing density, it is common to densify semi-dried or dried electrodes by roll pressing, etc., but deformation due to shearing force during pressing causes bonds between active material particles. There were drawbacks such as a decrease in adhesion, a tendency to short-circuit, and a decrease in current collection performance and active material utilization rate due to the occurrence of cracks between the paste and the current collector.

一方、従来例2では、のり状の溶液形結着剤とは異なる
PTFEを繊維状にのばしたネットワークによって、活
物質粒子間が結着されているので、ペースト状にするた
めに必要な溶剤量が半減できるため、ペースト及び乾燥
後の電極の充填密度を向上できる。しかも、万一ロール
プレス等による高密度化が必要な場合にも、溶液形結着
剤に比べ、ネットワーク状の結合が、プレスによる変形
に対して柔軟性が高いため、活物質粒子間の結合が損な
われることが少ないという利点がある。しかし、PTF
Eの性質上、これによって結着したペーストには、2次
元基体、特に穿孔板との結着性は乏しく、従来法1に比
べ塗着性が著しく劣るばかりでなく、苛性アルカリ中で
化成を施す場合、ロールプレス等による高密度化の有無
にかかわらず、活物質の2次元基体からの剥離・脱落が
著しく、電極としての形成が困難であるという欠点を有
していた。
On the other hand, in Conventional Example 2, the active material particles are bound by a network made of fibrous PTFE, which is different from the glue-like solution binder, so the solvent required to make it into a paste is Since the amount can be halved, the packing density of the paste and dried electrode can be improved. Furthermore, even in the event that it is necessary to increase the density by roll pressing, etc., the network-like bonds are more flexible against deformation due to pressing than solution-type binders, so the bonds between active material particles It has the advantage that it is less likely to be damaged. However, P.T.F.
Due to the nature of E, the paste bound by this has poor binding properties to two-dimensional substrates, especially perforated plates, and is not only significantly inferior in adhesiveness compared to conventional method 1, but also difficult to form in caustic alkali. When applied, regardless of whether or not densification is achieved by roll pressing or the like, the active material peels off and falls off from the two-dimensional substrate significantly, making it difficult to form an electrode.

[課題を解決するための手段] 本発明は、上記の如き問題点を解決するためになされた
もので、金属の溶射により表面に凹凸化処理が施されて
いる導電性2次元基体を活物質保持体として用い、これ
にPTFEで結着した陰極活物質合剤を塗着してなるも
のである。
[Means for Solving the Problems] The present invention has been made to solve the problems as described above. It is used as a holder and is coated with a cathode active material mixture bound with PTFE.

集電体である活物質保持体表面に凹凸をつける方法とし
ては、特開昭50−78840号に穿孔板をプレス成形
する方法が提案されている。この方法は、塗着性向上に
は効果があるものの、プレス加工による凹凸の形成には
、凹凸の数、形状等には限界があり、必ずしも活物質合
剤との間の結着が十分とは言えなかった。
As a method of forming irregularities on the surface of an active material holder, which is a current collector, a method of press-molding a perforated plate is proposed in JP-A-50-78840. Although this method is effective in improving adhesion, there are limits to the number and shape of unevenness when forming unevenness through press working, and the binding between the active material mixture and the active material mixture is not necessarily sufficient. I couldn't say it.

本発明で凹凸をつける方法として用いた金属溶射は、線
材或いは粉末等の金属を溶融して吹付ける方法であり、
一般には表面保護、均一化の目的で実施されることが多
い。しかしながら、表面粗化に適した条件を選ぶことに
より、材料によって異なるが50〜200μm程度まで
凹凸をつけることができることを見出だした。また、突
起部の形状をプレス加工に比べて複雑にすることが可能
なため、活物質合剤との接触表面積を飛躍的に増加させ
ることができる。
The metal spraying used in the present invention as a method of creating unevenness is a method of melting and spraying metal such as wire or powder.
Generally, this is often carried out for the purpose of surface protection and uniformity. However, it has been found that by selecting conditions suitable for surface roughening, it is possible to create irregularities of approximately 50 to 200 μm, although this varies depending on the material. Furthermore, since the shape of the protrusion can be made more complex than in press processing, the contact surface area with the active material mixture can be dramatically increased.

これらの溶射には、穿孔板、金網、エキスバンドメタル
などの導電性2次元基体が適している。
Conductive two-dimensional substrates such as perforated plates, wire meshes, and expanded metals are suitable for these thermal sprays.

特に穿孔板は、溶射の際の材料歩留り、効果の大きさか
らも最も適している。
In particular, perforated plates are the most suitable in terms of material yield and effectiveness during thermal spraying.

一方、従来の焼結式電極や金属短繊維を焼結したものや
発泡メタルのような3次元構造を有する基体と比較する
と、2次元基体は高密度化のために溶媒量の少ない高粘
性ペーストの塗着に適している。特に、粘弾性の強いP
TFEで結着したペーストにおいては、活物質の充填が
容易であり、高充填密度の電極が得やすい等、3次元基
体に比べ、製造上及び性能上効果がある。
On the other hand, compared to conventional sintered electrodes, sintered short metal fibers, or foamed metal substrates that have a three-dimensional structure, two-dimensional substrates are made of high-viscosity paste with a small amount of solvent to achieve high density. Suitable for painting. In particular, P with strong viscoelasticity
A paste bound with TFE is more effective in terms of manufacturing and performance than a three-dimensional substrate, as it is easy to fill with active material and it is easy to obtain electrodes with high packing density.

また、前述の理由により、溶射基体を用いた場合にも、
溶液形結着剤であるPVAを用いると、ロールプレス等
によるかなりの高密度化が必要であるため、従来法1同
様、活物質同志の結着力は落ちることになり、ショート
に対する対策とはなり得ない。しかし、PTFEを用い
た電極では、前に述べた理由により、活物質の結着力が
保持できるばかりでなく、基体近傍の活物質粒子が突起
によって移動しにくくなるため、ロールプレス等により
、表面近傍の活物質粒子との間には、PTFEの繊維化
を促進する“すり応力”がより一層働くことになり、溶
射による凹凸化処理のない基体を用いた場合に比べ、P
TFE樹脂による結着が一層強固となるため、電極強度
の著しい向上が可能である。
Furthermore, for the reasons mentioned above, even when using a thermally sprayed substrate,
If PVA, which is a solution type binder, is used, it is necessary to increase the density considerably by roll pressing, etc., so as with conventional method 1, the binding force between active materials will decrease, and there will be no countermeasure against short circuits. I don't get it. However, in electrodes using PTFE, for the reasons mentioned above, not only can the binding force of the active material be maintained, but also the active material particles near the substrate are difficult to move due to the protrusions, so it is difficult to move the active material particles near the surface by roll pressing etc. "Abrasion stress" that promotes fiberization of PTFE acts even more between the active material particles of
Since the binding by the TFE resin becomes even stronger, it is possible to significantly improve the electrode strength.

[作用コ 本発明により、ペースト中の溶媒量の低減が可能となり
、高密度充填に必要な高密度ペーストでなおかつ機械的
・電気的接触を向上させたことにより、高密度化に必要
な2次元基体と活物質との良好な接触を保つことができ
た。このことは、溶射による突起により2次元基体表面
に形成された凹凸と、PTFEによって結着された活物
質の可撓性が、活物質層と2次元基体間の良好な接触を
保ち続けていることによるものである。
[Function] The present invention makes it possible to reduce the amount of solvent in the paste, and to create a high-density paste necessary for high-density filling, while also improving mechanical and electrical contact. Good contact between the substrate and the active material could be maintained. This means that the irregularities formed on the surface of the two-dimensional substrate by the projections by thermal spraying and the flexibility of the active material bound by PTFE maintain good contact between the active material layer and the two-dimensional substrate. This is due to a number of reasons.

[実施例1] ニッケル線材をアーク溶射によって、ニッケルメッキ穿
孔鋼板(厚さ88μm1開孔率50%)、40メツシユ
・ニッケル金網(線径150μm)、厚さ10G、um
のニッケル板を加工することによって得たエキスバンド
メタル上に突起を形成した。アーク溶射にはメテコ社製
アーク溶射機を用い、溶射量は20mg/carの密度
で表裏両面から溶射した。このようにして得た突起は3
0〜100μmであった。
[Example 1] A nickel-plated perforated steel plate (thickness 88 μm 1 porosity 50%), a 40-mesh nickel wire mesh (wire diameter 150 μm), a thickness 10 G, um were prepared by arc spraying a nickel wire rod.
Protrusions were formed on the expanded metal obtained by processing a nickel plate. An arc spraying machine manufactured by Metco was used for arc spraying, and the spraying amount was 20 mg/car from both the front and back surfaces. The protrusions obtained in this way are 3
It was 0 to 100 μm.

これらの基板上に、酸化カドミウム100g 、 ファ
ーネスブラック1g、補強材(短繊維)  Ig、  
PTFE4 g、エチレングリコール15gからなるペ
ーストを塗着し、乾燥後充填量150mg/carの極
板を得た。ロールプレスによって厚み0.42mm(充
填密度3.8g/CC)の極板を得た。
On these substrates, 100 g of cadmium oxide, 1 g of furnace black, reinforcing material (short fiber) Ig,
A paste consisting of 4 g of PTFE and 15 g of ethylene glycol was applied, and after drying, an electrode plate with a filling amount of 150 mg/car was obtained. An electrode plate with a thickness of 0.42 mm (packing density 3.8 g/CC) was obtained by roll pressing.

これらの極板と、同様にして作製した未溶射基板を用い
た極板を20%KOH水溶液中で化成した。
These electrode plates and electrode plates using unsprayed substrates prepared in the same manner were chemically formed in a 20% KOH aqueous solution.

その時の活物質利用率を表1に示した。いずれも溶射に
より活物質利用率が向上している。この原因については
化成後の電極を調べたところ、利用率が低いものほど、
基板からの活物質の剥離・脱落が大きい傾向にあったこ
とから、基体の表面積に関係した活物質の保持力の影響
が大きいことが分かった。
Table 1 shows the active material utilization rate at that time. In both cases, thermal spraying improves the active material utilization rate. As for the cause of this, we investigated the electrodes after chemical formation and found that the lower the utilization rate, the more
Since there was a tendency for the active material to peel off and fall off from the substrate, it was found that the holding power of the active material, which is related to the surface area of the substrate, has a large influence.

また、溶射基板を用いて、PTFEの代りにPVAとエ
チレングチコールとを40g用いた以外は同一の組成の
ペーストを用い、同様の方法で電極を作製した。これら
の電極を用いて作製した電池のショート率を検査したと
ころ、PTFEo、27%。
Further, an electrode was produced in the same manner using a thermal sprayed substrate and using a paste with the same composition except that 40 g of PVA and ethylene glycol were used instead of PTFE. When the short-circuit rate of a battery made using these electrodes was examined, it was found to be PTFEo, 27%.

PVAI、3%と明らかにPTFEを用いた場合の方が
ショート率が改善されている。
PVAI is 3%, which clearly shows that the short rate is improved when PTFE is used.

[実施例2] ニッケル線と亜鉛線を対にして用いた以外実施例1と同
様にしてアーク溶射を行った。溶射量としては50mg
/carの密度で表面両面から溶射した。
[Example 2] Arc spraying was performed in the same manner as in Example 1 except that a nickel wire and a zinc wire were used as a pair. The amount of spraying is 50mg
Thermal spraying was carried out from both surfaces at a density of /car.

このようにして得た基板を10%硫酸カドミウム溶液中
に3br漬浸することによって、溶射された金属亜鉛を
還元剤として、溶液中のカドミウムイオンをイオン化傾
向の差を利用して、亜鉛の代りに基板上に金属カドミウ
ムとして析出させた。これら基板上に実施例1と同組成
のペーストを塗着乾燥して電極とした。比較のために実
施例1の電極及び実施例1の基体に、酸化カドミウム1
00g。
By immersing the thus obtained substrate in a 10% cadmium sulfate solution for 3 br, the thermally sprayed metal zinc is used as a reducing agent, and the cadmium ions in the solution are used as a substitute for zinc by utilizing the difference in ionization tendency. was deposited as metallic cadmium on the substrate. A paste having the same composition as in Example 1 was applied onto these substrates and dried to form electrodes. For comparison, cadmium oxide 1 was added to the electrode of Example 1 and the substrate of Example 1.
00g.

金属カドミウム25g、ファーネスブラック1.25g
Metal cadmium 25g, furnace black 1.25g
.

補強材1.25g、  PTFE 5g、エチレングリ
コール2Ggからなるペーストを用いた以外は同様の方
法で電極(実施例1′)を作製した。
An electrode (Example 1') was produced in the same manner except that a paste consisting of 1.25 g of reinforcing material, 5 g of PTFE, and 2 Gg of ethylene glycol was used.

これら電極を85mmX4Gmmに切断した後、化成を
行わずに、ナイロン不織布からなるセパレータを介して
70mmX40mmの焼結式陽極板と捲回して電池とし
た。 70mA、 15hr充電後、140mAで放電
する試験を数回繰返した後、35Aで放電した。
These electrodes were cut into pieces of 85 mm x 4 Gmm, and then wound with a sintered anode plate of 70 mm x 40 mm through a separator made of nylon nonwoven fabric without chemical conversion to form a battery. After charging at 70 mA for 15 hours, a test of discharging at 140 mA was repeated several times, and then discharging at 35 A.

初回の充電時の充電カーブを第1図に示した。Figure 1 shows the charging curve during the first charging.

実施N1.1’に比べ、実施例2では充電初期から、充
電電圧が低く抑えられており、良好な充電性能を示した
Compared to Example N1.1', in Example 2, the charging voltage was kept low from the initial stage of charging, and good charging performance was exhibited.

3.5A放電のカーブを第2図に示した。従来例1に比
べ、実施例1では良好な電圧特性を示している。実施例
1′は放電リザーブとしてペースト中に金属カドミウム
が添加されているため、実施例1に比べ良好な電圧特性
を示しているものの、亜鉛との置換で金属カドミウムを
析出させた実施例2の方が更に良好である。
The curve of 3.5A discharge is shown in FIG. Compared to Conventional Example 1, Example 1 shows better voltage characteristics. Example 1' has metal cadmium added to the paste as a discharge reserve, so it shows better voltage characteristics than Example 1, but Example 2, in which metal cadmium is precipitated by replacing zinc, is even better.

なお、溶射金属としては、前述したニッケル。In addition, the above-mentioned nickel is used as the sprayed metal.

ニッケルと他の金属との混合物以下に、ニッケルを主成
分とする合金でもよい。
In addition to a mixture of nickel and other metals, an alloy containing nickel as a main component may also be used.

[発明の効果] 以上説明したように、本発明のニッケル・カドミウム蓄
電池用電極では、金属溶射により表面を凹凸化処理した
導電性2次元基体に、PTFEを結着剤とした活物質合
剤を塗着させているので、化成時等の活物質の剥離・脱
落が抑制できるばかりでなく、塗着乾燥時のペースト密
度及びロールプレス等による高密度化後の電極強度もP
VAを用いた従来に比べ飛躍的に向上することができる
[Effects of the Invention] As explained above, in the electrode for a nickel-cadmium storage battery of the present invention, an active material mixture using PTFE as a binder is applied to a conductive two-dimensional substrate whose surface has been roughened by metal spraying. Because it is coated, it is not only possible to suppress the peeling and falling off of the active material during chemical formation, but also to improve the paste density when drying the coat and the electrode strength after increasing the density by roll pressing, etc.
This can be dramatically improved compared to the conventional method using VA.

このことは、従来例えば3.2g/cc程度が限界であ
った活物質の充填密度を例えば3.6〜4.1g/cc
程度まで向上できるばかりでなく、製造工程での歩留り
向上、或いは活物質利用率、電池の寿命、急速放電性能
の向上等にも効果がある等、工業的価値穴なるものであ
る。
This means that the packing density of the active material, which conventionally had a limit of about 3.2 g/cc, can be reduced to, for example, 3.6 to 4.1 g/cc.
It has great industrial value, as it not only improves the yield in the manufacturing process, but also improves the active material utilization rate, battery life, and rapid discharge performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は20%KOH水溶液中で化成した本実施例の電
極を用いた電池の充電曲線、第2図は3,5A(5cm
A)放電時の本実施例及び従来例の電極を用いた電池の
放電曲線図である。
Figure 1 shows the charging curve of a battery using the electrode of this example chemically formed in a 20% KOH aqueous solution, and Figure 2 shows the charging curve of a battery using a 3.5 A (5 cm
A) It is a discharge curve diagram of a battery using electrodes of the present example and a conventional example during discharge.

Claims (1)

【特許請求の範囲】 金属の溶射により表面に凹凸化処理が施されている導電
性2次元基体に、ポリテトラフルオロエチレンで結着さ
れた酸化カドミウム、水酸化カドミウム、金属カドミウ
ムの少なくとも一種を含む活物質合剤が塗着されてなる
ニッケル・カドミウム蓄電池用電極。 ウム蓄電池用電極。
[Scope of Claims] A conductive two-dimensional substrate whose surface has been roughened by metal spraying, containing at least one of cadmium oxide, cadmium hydroxide, and metal cadmium bonded with polytetrafluoroethylene. Electrodes for nickel-cadmium storage batteries coated with an active material mixture. Electrodes for storage batteries.
JP1221564A 1989-08-30 1989-08-30 Electrode for nickel-cadmium storage battery Pending JPH0388270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1221564A JPH0388270A (en) 1989-08-30 1989-08-30 Electrode for nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1221564A JPH0388270A (en) 1989-08-30 1989-08-30 Electrode for nickel-cadmium storage battery

Publications (1)

Publication Number Publication Date
JPH0388270A true JPH0388270A (en) 1991-04-12

Family

ID=16768709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1221564A Pending JPH0388270A (en) 1989-08-30 1989-08-30 Electrode for nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JPH0388270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536430A (en) * 2001-07-16 2004-12-02 ナイラー ヨーロッパ アーベー Method for manufacturing biplate laminate, biplate laminate, and bipolar battery
JP2007273416A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Alkaline storage battery non-sintering cadmium negative electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536430A (en) * 2001-07-16 2004-12-02 ナイラー ヨーロッパ アーベー Method for manufacturing biplate laminate, biplate laminate, and bipolar battery
JP4785342B2 (en) * 2001-07-16 2011-10-05 ナイラー インターナショナル アーベー Biplate laminate manufacturing method, biplate laminate and bipolar battery
US8053111B2 (en) 2001-07-16 2011-11-08 Nilar International Ab Method for manufacturing a biplate assembly, a biplate assembly and a bipolar battery
JP2007273416A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Alkaline storage battery non-sintering cadmium negative electrode

Similar Documents

Publication Publication Date Title
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JP2684707B2 (en) Paste type cadmium negative electrode
JPH0388270A (en) Electrode for nickel-cadmium storage battery
JP3269123B2 (en) Electrode substrate for alkaline storage battery, method for producing the same, and electrode for alkaline storage battery using the substrate
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JP2981538B2 (en) Electrodes for alkaline batteries
JPH01302668A (en) Electrode for alkaline storage battery
JPS61110966A (en) Electrode for cell
JPH0412455A (en) Electrode for alkaline storage battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP4289858B2 (en) Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery
JP2590437B2 (en) Electrode substrate for alkaline batteries
JPH05217584A (en) Manufacture of sintered substrate for alkaline battery
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JPH076765A (en) Manufacture of porous current collector for battery
JPH0434856A (en) Electrode for secondary battery
JPH02256162A (en) Paste type nickel positive electrode for alkaline battery
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JPH034448A (en) Alkaline battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH05314988A (en) Sintered substrate for square alkaline storage battery and manufacture thereof
JPH11102698A (en) Alkaline storage battery and manufacture of electrode thereof
JPH088101B2 (en) Method for manufacturing hydrogen storage electrode
JP2004179119A (en) Manufacturing method of positive electrode plate for alkaline storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery