JP4289858B2 - Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery - Google Patents

Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery Download PDF

Info

Publication number
JP4289858B2
JP4289858B2 JP2002285743A JP2002285743A JP4289858B2 JP 4289858 B2 JP4289858 B2 JP 4289858B2 JP 2002285743 A JP2002285743 A JP 2002285743A JP 2002285743 A JP2002285743 A JP 2002285743A JP 4289858 B2 JP4289858 B2 JP 4289858B2
Authority
JP
Japan
Prior art keywords
substrate
coating layer
secondary battery
nickel
sintered substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002285743A
Other languages
Japanese (ja)
Other versions
JP2004127536A (en
JP2004127536A5 (en
Inventor
集 今里
潤 石田
隆明 池町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002285743A priority Critical patent/JP4289858B2/en
Publication of JP2004127536A publication Critical patent/JP2004127536A/en
Publication of JP2004127536A5 publication Critical patent/JP2004127536A5/ja
Application granted granted Critical
Publication of JP4289858B2 publication Critical patent/JP4289858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル−カドミウム二次電池及びニッケル−水素二次電池などのアルカリ二次電池の電極に用いられる焼結式基板の製造方法及び焼結式基板に関するものである。
【0002】
【従来の技術】
アルカリ二次電池の電極に用いられる焼結式電極は、比較的安価であり堅牢であるため、近年、ハイパワー用途の電池に多く使用されている。この焼結式基板において、含浸により充填される活物質の充填量を高めるためには、焼結体の多孔度を上げる方法が考えられる。しかしながら、一般に焼結体の多孔度を上げると、焼結体における密着強度が低下し、含浸、電池構成の際に活物質の脱落が起こりやすいという問題や、サイクル特性等が悪くなるという問題があった。
【0003】
本発明者らは、焼結式基板において、多孔度を高め、かつ密着強度を向上させる方法として、磁力により金属粉末を配列させる方法を検討した。含浸によって活物質充填を行う焼結式基板においては、磁力を用いて金属粉末を配列させる方法は検討されておらず、非焼結式用の基板、すなわち多孔体に活物質粉末を直接充填するための基板として、以下のような技術が知られている。
【0004】
金属板上に磁力を用いて針状または円柱状等の金属物質を垂直に立たせることにより金属多孔体を製造する方法が提案されている(特許文献1)。この方法によれば、粉体の活物質を充填する際には、充填性が向上し、活物質の利用率を向上させることができるとともに、放電特性を向上させることができるとされている。しかしながら、焼結式基板として用いた場合には、活物質を含浸させる際に含浸液の保持性が悪いという問題がある。また、針状等の金属物質が絡みやすくなり、厚みの制御が困難であるという問題がある。
【0005】
針状の金属物質を磁界により立たせた後、これを結合剤を塗布した金属板に押し付け、金属板上に針状の金属物質を立たせて多孔体を製造する方法が提案されている(特許文献2)。この方法によれば、針状体の金属同士が絡みにくくなる。しかしながら、活物質を含浸する際、含浸液の保持性が悪いという問題が改善されない。
【0006】
また、磁界内において、下塗り層を塗布した金属板の上に、金属と樹脂の複合繊維を供給し、これを立てた状態で固定させ金属多孔体を製造する方法が提案されている(特許文献3)。しかしながら、この方法によれば、製造方法が複雑であり、また基板の面方向における強度が小さく、活物質を充填した後乾燥する際に、亀裂やひび割れが生じやすいという問題がある。
【0007】
【特許文献1】
特開平9−265991号公報
【特許文献2】
特開平9−320610号公報
【特許文献3】
特開2000−58071号公報
【0008】
【発明が解決しようとする課題】
従って、アルカリ二次電池用の焼結式基板においては、活物質の充填量が高く、かつ密着強度に優れた焼結式基板は製造されていないのが現状である。
【0009】
本発明の目的は、活物質の充填量が高く、かつ密着強度に優れたアルカリ二次電池用の焼結式基板を製造する方法及び該方法により製造された焼結式基板を提供することにある。
【0010】
【課題を解決するための手段】
本発明の製造方法は、金属粉末及び結着剤を含むスラリーを金属板上に塗布する工程と、金属板に対して垂直方向に磁力を印加することにより、スラリーの塗布層中の金属粉末を金属板に対し垂直方向に配列させる工程と、磁力を印加させたままの状態で塗布層を乾燥させて塗布層を厚み方向に収縮させる工程と、乾燥後の塗布層を還元性雰囲気中で加熱して焼結させるとともに結着剤を除去する工程とを備えることを特徴としている。
【0011】
本発明によれば、磁力を印加させたままの状態で塗布層を乾燥させて、塗布層を厚み方向に収縮させる。これにより、多孔度を高く保った状態のままで乾燥収縮させることができる。従って、活物質の充填量が高い焼結式基板とすることができる。
【0012】
また、金属粉末を配列させた状態から乾燥収縮するので、金属粉末間を密着させた状態で乾燥し、これを焼結することができる。このため、金属粉末間及び金属粉末と金属板との間の密着性を高めることができ、密着強度に優れた焼結式基板とすることができる。
【0013】
また、本発明においては、繊維状等の特殊な形状の金属粉末を用いていないので、厚みの制御が容易であり、また安価に製造することができる。また、金属粉末の焼結により製造されるものであるので、適当な3次元構造を有しており、含浸によって活物質充填を行うのに適した多孔体とすることができる。
【0014】
本発明において、塗布層を乾燥させて厚み方向に収縮させる際の収縮率は、30〜40%の範囲内であることが好ましい。このような範囲内とすることにより、特に多孔度が高く、密着強度に優れた焼結式基板とすることができる。
【0015】
本発明において用いる金属粉末は、磁力の印加により配列させることができる粉末であり、通常は磁性体の粉末が用いられる。このような磁性体の粉末としては、ニッケル粉末及びニッケル合金粉末などが好ましく用いられるが、これらの粉末に限定されるものではない。また、粉末の形状としては、粒子状の他、従来よりよく用いられる鎖状(粒子が連なった形状)の粉末を用いることができ、針状や繊維状などの特殊な形状の粉末を用いる必要がない。金属粉末の平均粒径としては、0.5〜5μmのものが好ましく用いられる。なお、この平均粒径は、フィッシャーサイズの平均粒径である。
【0016】
本発明において、スラリーに含有される結着剤としては、特に限定されるものではなく、従来から焼結式基板の製造において用いられる結着剤を用いることができる。例えば、メチルセルロース、カルボキシメチルセルロース、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルアルコール等が挙げられる。
【0017】
本発明において、スラリーを塗布する金属板としては、特に限定されるものではないが、例えば、ニッケル製穿孔板の他、ニッケルメッキ開孔鋼板(パンチングメタル)、板状、箔状、メッシュ状のニッケル等が挙げられる。
【0018】
本発明においては、金属粉末及び結着剤を含むスラリーを金属板上に塗布した後、塗布層に金属板に対して垂直方向の磁力を印加する。これにより、塗布層中の金属粉末を金属板に対して垂直方向に配列させる。すなわち、金属板に対し垂直方向の磁力線を与えることにより、この磁力線に沿うように金属粉末を配列させる。金属板に対し垂直方向の磁力線を与える方法としては、金属板の両側に永久磁石または電磁石を配置する方法が挙げられる。
【0019】
本発明においては、磁力を印加させたままの状態で、すなわち、金属粉末を金属板に対し垂直方向に配列させた状態で、塗布層を乾燥させて、塗布層を厚み方向に収縮させる。乾燥温度としては、特に限定されるものではないが、一般に、80〜900℃の範囲内の温度が挙げられる。一般に、乾燥温度を高くすることにより、塗布層の収縮率が小さくなる。従って、塗布層の収縮率は、乾燥温度を制御することにより調整することができる。
【0020】
本発明においては、乾燥後の塗布層を還元性雰囲気中で加熱することにより、塗布層内の金属粉末を焼結させるとともに、塗布層内の結着剤を除去する。還元性雰囲気としては、水素ガスが好ましい。
【0021】
また、加熱温度としては、800〜1200℃の範囲内の温度が好ましい。
本発明のアルカリ二次電池用焼結式基板は、上記本発明の製造方法により製造された焼結式基板である。
【0022】
【発明の実施の形態】
以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を逸脱しない範囲において適宜変更して実施することが可能なものである。
【0023】
<実施例1>
(スラリーの作製)
有機中空球体(松本油脂製薬社製、マイクロスフェアー、商品名「SBE−15」、平均粒径50μm)0.25重量部、カーボニルニッケル粉末(嵩密度0.55g・cm-3、フィッシャーサイズ(フィッシャーサブシーブサイザー(Fisher Sub-Sieve Sizer)で測定した平均粒径)2.4μm)40重量部と、結着剤としての3重量%のメチルセルロース水溶液60重量部とを真空引きしながら混練し、スラリーを作製した。
【0024】
(焼結基板の作製)
得られたスラリーを、導電性芯材となるニッケル製穿孔板(厚み0.08mm)の両面に塗布した。塗布した後、図1に示すように、芯材に対して垂直方向に磁力を印加しながら、乾燥させた。
【0025】
図1を参照して、芯材(金属板)1の両面に塗布層2及び3を形成した後、磁石4及び5の間に配置する。磁石4及び5の間には、点線で示すような磁力線が発生しており、この磁力線に沿って、塗布層2及び3内のニッケル粉末(金属粉末)10が配列する。塗布層2及び3内では、磁力線が金属板1に対して垂直方向に延びているので、ニッケル粉末10は金属板1に対して垂直方向に配列する。磁石4及び5の内側には、遮熱板6及び7が設けられており、この遮熱板6及び7の間を熱風8が通過している。この熱風8により、塗布層2及び3が乾燥し、塗布層2及び3が厚み方向に収縮する。なお、磁石4及び5により、基板1に対し垂直方向に25mTの磁力が印加されている。塗布層2及び3の収縮率を制御するため、表1に示すように、熱風による乾燥の温度を110〜350℃の範囲内で変化させて塗布層2及び3を乾燥した。
【0026】
乾燥後、還元性雰囲気としての水素ガス雰囲気中で、温度1000℃に加熱して、塗布層を焼結させるとともに、塗布層中の結着剤を除去した。
以上のようにして、ニッケル焼結基板を作製した。
【0027】
(電極の作製)
得られたニッケル焼結基板に対し、通常の化学含浸法により、水酸化ニッケル活物質粉末を含浸させた。具体的には、硝酸ニッケル水溶液中に基板を浸漬して基板孔中に硝酸ニッケルを充填した後、さらにこの基板を水酸化ナトリウム水溶液中に浸漬する作業を繰り返し、基板孔中に水酸化ニッケル活物質を形成させた。
含浸して水洗、乾燥した後、所定の大きさに切断して、アルカリ二次電池用正極板を作製した。
【0028】
(電池の作製)
得られた正極板を、セパレータを介してカドミウム負極板と重ねた後巻き付け、これを電池缶内に挿入し、アルカリ電解液を注入した。その後、封口し、充放電活性化等を行って、Sub−Cサイズの正極容量規制のニッケル−カドミウム二次電池(容量約1800mAh)を作製した。
【0029】
<比較例1>
上記実施例1の作製において、乾燥の際に磁力を印加しない以外は、上記実施例1と同様にして焼結基板を作製し、この焼結基板を用いて電極を作製し、得られた電極を用いて二次電池を作製した。
【0030】
<塗布層中のニッケル粉末の状態の観察>
図5は、塗布層に磁力を印加していない場合の塗布層中のニッケル粉末の状態を示す光学顕微鏡写真である。図6は、塗布層に磁力を印加している場合の塗布層中のニッケル粉末の状態を示す光学顕微鏡写真である。
【0031】
図5と図6の比較から明らかなように、塗布層に磁力が印加されている場合、塗布層中の金属粉末は磁力線の方向に沿って配列していることがわかる。
図7は、磁力を印加しながら乾燥させた後の塗布層中のニッケル粉末の状態を示す電子顕微鏡写真である。図7から明らかなように、乾燥により厚み方向に収縮したため、金属粉末の配列が若干崩れて孔が小さくなっていることがわかる。しかしながら、金属粉末間は配列により強固に結合しているものと思われる。このため、含浸における液の保持性に優れ、かつ密着強度に優れた構造になるものと思われる。
【0032】
〔乾燥時における基板の収縮率の測定〕
乾燥後の基板の厚みをマイクロメーターで測定し、次式により乾燥による収縮率を算出した。
【0033】
収縮率(%)=(乾燥前の基板の厚み−乾燥後の基板の厚み)/(乾燥前の基板の厚み−芯材の厚み)×100
なお、乾燥前の基板の厚みは、次式により算出した。
【0034】
乾燥前の基板の厚み={(塗布質量/スラリー密度)+塗布部分の芯材の体積}/塗布面積
【0035】
〔焼結基板の多孔度の測定〕
実施例1及び比較例1の焼結基板について、多孔度を測定した。それぞれの焼結基板を3cm×5cmの大きさに切り取ってサンプル基板とし、各サンプル基板の質量を測定した。また、同じ大きさの芯材を別途準備して質量を測定し、これを芯材質量とした。
【0036】
次に、各サンプル基板を水に浸漬した状態でデシケータ中に配置した後、デシケータ内を30分以上真空引きして、1kPa以下の真空状態にした。その後、デシケータ内に空気を導入して大気圧とし、サンプル基板に水を含ませた。水を含んだ各サンプル基板の質量をそれぞれ測定し、含水量を求めた。次式に基づいて、各サンプル基板の多孔度を算出した。なお、ニッケルの密度を8.9g・cm-3とし、水の密度を1g・cm-3とした。
【0037】
多孔度(%)=含水量/〔{(基板質量−芯材質量)/ニッケルの密度}+含水量〕×100
【0038】
〔焼結基板の密着強度の測定〕
図3に示すようなプルスタッド12を用い、焼結基板11の密着強度を測定した。
【0039】
図3に示すように、プルスタッド12は、接着部12aと、取っ手部12bからなる。接着面積が一定である接着部12aに接着剤を塗布した後、サンプル基板11に接着した。AdherenceTester(Quad Group社製、MODELNO.SEBASTIAN I)を用いて、プルスタッド12の取っ手部12bを、サンプル基板11に垂直な方向に引っ張って、プルスタッド12をサンプル基板11から引き剥がすテストを行った。プルスタッド12を引き剥がすために必要な力を測定し、この力を接着部12aの接着面積で割り、密着強度(N・cm-2)を求めた。なお、プルスタッドを引き剥がした際に、接着部の接着面で剥がれた場合や芯材と焼結体部の接合部で剥がれた場合には、密着強度の測定から除外した。
【0040】
〔活物質放電容量密度及び活物質利用率の測定〕
実施例1及び比較例1で作製した電池について、充放電試験を行った。180mAで15時間充電した後、360mAで1Vまで放電し、電池の放電容量を測定した。測定された放電容量と、基板の孔体積から、基板の孔体積あたりの活物質放電容量密度を、以下の式により算出した。
【0041】
活物質放電容量密度=電池の放電容量/基板の孔空間体積
なお、基板の孔空間体積は、多孔度の測定の際に求めた含水量の値を用いた。
また、次式により、活物質利用率を算出した。
【0042】
活物質利用率(%)=放電容量/理論容量×100
なお、ここで放電容量は電池容量とし、理論容量は単位質量あたりの水酸化ニッケルの理論容量(289mAh・g-1)と含浸により充填された活物質質量の積とした。
【0043】
乾燥温度を変えて作製した実施例1及び比較例1の各焼結基板について、乾燥温度、基板乾燥時の収縮率、多孔度、密着強度、活物質放電容量密度、及び活物質利用率を表1に示す。
【0044】
【表1】

Figure 0004289858
【0045】
表1から明らかなように、乾燥温度を高くすることにより、基板乾燥時における収縮率が小さくなっていることがわかる。従って、乾燥温度を変えることにより、収縮率を調整できることがわかる。
【0046】
図4は、実施例1及び比較例1の基板の多孔度と密着強度との関係を示す図である。図4から明らかなように、実施例1においては、比較例1に比べ、密着強度が高く、かつ多孔度が高くなっていることがわかる。従って、本発明によれば、活物質の充填量が高く、かつ密着強度に優れた焼結基板とすることができる。
【0047】
図4において、実施例1の各ポイントの横には括弧内に基板乾燥時の収縮率の値を示している。これらの値から明らかなように、収縮率が30%〜40%の範囲内において、特に密着強度及び多孔度をともに高くできることがわかる。従って、基板乾燥時における収縮率は30%〜40%の範囲内が好ましいことがわかる。
【0048】
本発明に従う実施例1において、多孔度と密着強度がともに高くなる理由としては、ニッケル粉末を配列させた状態で塗布層を収縮しているので、ニッケル粉末のネットワークが良好に形成され、粉末間の結合が強い状態で焼結されていることによるものと考えられる。
【0049】
〔電池寿命の評価〕
多孔度がほぼ同程度である基板として、実施例1において200℃で乾燥した基板(多孔度85.7%)及び比較例1において250℃で乾燥した基板(多孔度85.6%)を用いた各電池について、充放電試験を行い、サイクル寿命を評価した。充電は1800mAで1.2時間とし、放電は1800mAで1Vまで行った。初期放電容量の80%の容量に達した時のサイクル数を寿命として評価した。結果を表2に示す。
【0050】
【表2】
Figure 0004289858
【0051】
表2から明らかなように、本発明に従う方法で製造された基板を用いた電池は、サイクル寿命特性が良好であることがわかる。これは、密着強度が高いため、充放電に伴う活物質の膨張によっても活物質が基板から剥離しにくくなっていることによるものと考えれらる。
【0052】
<比較例2>
特開平9−320610号公報に記載の方法に従い、比較例2の基板を作製した。
【0053】
具体的には、直径70μm、平均長さ1mmの針状ニッケルを用いて焼結基板を作製した。厚さ0.9mmのアクリル板に約90mm角の穴を開け、スペーサーとした。厚さ8mmのアクリル板の上に、このスペーサーを載せた後、穴の部分に上記の針状ニッケルを約25g入れて適当に広げ、厚さ8mmのアクリル板で蓋をした。
【0054】
これを、25mTの磁力に調整したソレノイド磁石の上で振動し、針状ニッケルの絡みをほぐした後、針状ニッケルを磁力により垂直に立てた。この時の針状ニッケル同士の距離はおよそ100μmであった。
【0055】
次に、ソレノイド磁石の磁力をおよそ1mTまで小さくし、針状ニッケルが飛び出さないことを確認し、上側のアクリル板を取り除いて、垂直に立った針状ニッケルを露出させた。
【0056】
結着剤としてのポリビニルアセタール樹脂に、実施例1で用いたニッケル粉末を質量比で10:100の割合で混ぜ、これに水分量が60重量%となるように水を加えて分散し塗料を作製した。この塗料を厚さ50μmのニッケル板の上に厚み1mmになるように均一に塗布した後、塗布面を上記針状ニッケルに押し当て、その上から温風を吹き付けて乾燥させた。これにより、針状ニッケルを塗布層に立った状態で付着させた。次に、ニッケル板の反対側にも同様にして、針状ニッケルを立った状態で付着させた。
【0057】
次に、これを1000℃に加熱し、有機物成分を分解除去して焼結させ、比較例2の基板を作製した。
得られた比較例2の基板について、上記実施例と同様にして、多孔度の測定を試みた。しかしながら、比較例2で得られた基板は、保液性が悪く、水を含ませた後、質量測定のために水から引き上げると直ちに水が抜け落ちてしまい、多孔度の正確な測定は不可能であった。
【0058】
また、活物質を化学含浸法により充填する際にも、含浸液を保持できないため、活物質を十分に充填することは不可能であった。
【0059】
【発明の効果】
本発明によれば、活物質の充填量が高く、かつ密着強度に優れたアルカリ二次電池用焼結式基板を製造することができる。
【図面の簡単な説明】
【図1】本発明に従う実施例において、基板を乾燥させる際に用いた装置を示す模式的断面図。
【図2】塗布層に磁力を印加した時の金属粉末の状態を示す模式図。
【図3】本発明の実施例における密着強度の測定方法を説明するための斜視図。
【図4】実施例における多孔度と密着強度の関係を示す図。
【図5】塗布層に磁力を印加していない場合における金属粉末の状態を示す図。
【図6】塗布層に磁力を印加した場合における金属粉末の状態を示す図。
【図7】塗布層に磁力を印加した状態で乾燥させた後の塗布層中の金属粉末の状態を示す図。
【符号の説明】
1…金属板
2,3…塗布層
4,5…磁石
6,7…遮熱板
8…熱風
10…金属粉末[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sintered substrate used for an electrode of an alkaline secondary battery such as a nickel-cadmium secondary battery and a nickel-hydrogen secondary battery, and a sintered substrate.
[0002]
[Prior art]
Sintered electrodes used for electrodes of alkaline secondary batteries are relatively inexpensive and robust, and have recently been widely used in batteries for high power applications. In order to increase the filling amount of the active material filled by impregnation in this sintered substrate, a method of increasing the porosity of the sintered body can be considered. However, in general, when the porosity of the sintered body is increased, the adhesion strength in the sintered body is reduced, and there are problems that the active material is liable to fall off during impregnation and battery configuration, and that cycle characteristics and the like are deteriorated. there were.
[0003]
The present inventors examined a method of arranging metal powders by magnetic force as a method of increasing porosity and improving adhesion strength in a sintered substrate. In a sintered substrate that is filled with an active material by impregnation, a method for arranging metal powders using magnetic force has not been studied, and an active material powder is directly filled into a non-sintered substrate, that is, a porous body. The following technology is known as a substrate for this purpose.
[0004]
There has been proposed a method of manufacturing a porous metal body by causing a metallic material such as a needle shape or a columnar shape to stand vertically on a metal plate using magnetic force (Patent Document 1). According to this method, when filling an active material of powder, it is said that the filling property is improved, the utilization factor of the active material can be improved, and the discharge characteristics can be improved. However, when used as a sintered substrate, there is a problem that the retention of the impregnating liquid is poor when the active material is impregnated. In addition, there is a problem that metal materials such as needles are easily entangled and it is difficult to control the thickness.
[0005]
A method has been proposed in which a needle-shaped metal material is made to stand by a magnetic field and then pressed against a metal plate coated with a binder, and the needle-like metal material is made to stand on the metal plate to produce a porous body (Patent Document). 2). According to this method, the needle-shaped metal is less likely to be entangled. However, when impregnating the active material, the problem of poor retainability of the impregnating liquid is not improved.
[0006]
Further, a method has been proposed in which a metal-resin composite fiber is supplied onto a metal plate coated with an undercoat layer in a magnetic field and fixed in an upright state to produce a porous metal body (Patent Document). 3). However, according to this method, there is a problem that the manufacturing method is complicated, the strength in the surface direction of the substrate is small, and cracks and cracks are likely to occur when drying after filling with the active material.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-265991 [Patent Document 2]
JP-A-9-320610 [Patent Document 3]
JP 2000-58071 A
[Problems to be solved by the invention]
Therefore, the present situation is that a sintered substrate having a high active material filling amount and excellent adhesion strength is not manufactured in a sintered substrate for an alkaline secondary battery.
[0009]
An object of the present invention is to provide a method for producing a sintered substrate for an alkaline secondary battery having a high active material filling amount and excellent adhesion strength, and a sintered substrate produced by the method. is there.
[0010]
[Means for Solving the Problems]
The production method of the present invention includes a step of applying a slurry containing metal powder and a binder onto a metal plate, and applying a magnetic force in a direction perpendicular to the metal plate to thereby apply the metal powder in the slurry coating layer. A step of arranging the metal plate in a direction perpendicular to the metal plate, a step of drying the coating layer while applying a magnetic force, and shrinking the coating layer in the thickness direction, and heating the dried coating layer in a reducing atmosphere And a step of removing the binder while sintering.
[0011]
According to the present invention, the coating layer is dried while the magnetic force is applied, and the coating layer is contracted in the thickness direction. Thereby, drying shrinkage can be performed with the porosity kept high. Therefore, a sintered substrate having a high active material filling amount can be obtained.
[0012]
Moreover, since it shrinks by drying from the state in which the metal powders are arranged, it can be dried in a state in which the metal powders are in close contact with each other and sintered. For this reason, the adhesiveness between metal powder and between metal powder and a metal plate can be improved, and it can be set as the sintered type board | substrate excellent in adhesive strength.
[0013]
Further, in the present invention, since a metal powder having a special shape such as a fiber is not used, the thickness can be easily controlled and can be manufactured at low cost. Moreover, since it is manufactured by sintering metal powder, it has an appropriate three-dimensional structure and can be made into a porous body suitable for filling active material by impregnation.
[0014]
In this invention, it is preferable that the shrinkage rate at the time of drying an application layer and making it shrink | contract in a thickness direction is in the range of 30 to 40%. By setting it within such a range, a sintered substrate having particularly high porosity and excellent adhesion strength can be obtained.
[0015]
The metal powder used in the present invention is a powder that can be arranged by applying a magnetic force, and a magnetic powder is usually used. As such a magnetic powder, nickel powder, nickel alloy powder, and the like are preferably used, but are not limited to these powders. Moreover, as the shape of the powder, in addition to particles, it is possible to use chain-like powders (shapes in which particles are continuously used) that are often used conventionally, and it is necessary to use powders of special shapes such as needles and fibers There is no. The average particle diameter of the metal powder is preferably 0.5 to 5 μm. This average particle size is the average particle size of the Fisher size.
[0016]
In the present invention, the binder contained in the slurry is not particularly limited, and binders conventionally used in the production of sintered substrates can be used. For example, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol and the like can be mentioned.
[0017]
In the present invention, the metal plate to which the slurry is applied is not particularly limited. For example, in addition to a nickel perforated plate, a nickel-plated perforated steel plate (punching metal), a plate shape, a foil shape, and a mesh shape Nickel etc. are mentioned.
[0018]
In this invention, after apply | coating the slurry containing metal powder and a binder on a metal plate, the magnetic force of a perpendicular direction is applied with respect to a metal plate to an application layer. Thereby, the metal powder in the coating layer is arranged in a direction perpendicular to the metal plate. That is, by giving a magnetic force line in the vertical direction to the metal plate, the metal powder is arranged along the magnetic force line. As a method of giving a perpendicular magnetic field line to the metal plate, there is a method of arranging permanent magnets or electromagnets on both sides of the metal plate.
[0019]
In the present invention, with the magnetic force applied, that is, in a state where the metal powder is arranged in a direction perpendicular to the metal plate, the coating layer is dried to shrink the coating layer in the thickness direction. Although it does not specifically limit as drying temperature, Generally the temperature within the range of 80-900 degreeC is mentioned. In general, the shrinkage rate of the coating layer is reduced by increasing the drying temperature. Therefore, the shrinkage rate of the coating layer can be adjusted by controlling the drying temperature.
[0020]
In the present invention, by heating the dried coating layer in a reducing atmosphere, the metal powder in the coating layer is sintered and the binder in the coating layer is removed. As the reducing atmosphere, hydrogen gas is preferable.
[0021]
Moreover, as heating temperature, the temperature within the range of 800-1200 degreeC is preferable.
The sintered type substrate for an alkaline secondary battery of the present invention is a sintered type substrate manufactured by the manufacturing method of the present invention.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to specific examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .
[0023]
<Example 1>
(Preparation of slurry)
Organic hollow sphere (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., Microsphere, trade name “SBE-15”, average particle size 50 μm) 0.25 parts by weight, carbonyl nickel powder (bulk density 0.55 g · cm −3 , Fisher size ( 40 parts by weight of an average particle size (2.4 μm measured with a Fisher Sub-Sieve Sizer) and 60 parts by weight of a 3% by weight methylcellulose aqueous solution as a binder were kneaded while vacuuming, A slurry was prepared.
[0024]
(Preparation of sintered substrate)
The obtained slurry was applied to both surfaces of a nickel perforated plate (thickness 0.08 mm) serving as a conductive core material. After the application, as shown in FIG. 1, it was dried while applying a magnetic force in a direction perpendicular to the core material.
[0025]
Referring to FIG. 1, coating layers 2 and 3 are formed on both surfaces of a core material (metal plate) 1 and then disposed between magnets 4 and 5. Magnetic lines of force as indicated by dotted lines are generated between the magnets 4 and 5, and the nickel powder (metal powder) 10 in the coating layers 2 and 3 is arranged along the lines of magnetic force. In the coating layers 2 and 3, since the magnetic lines of force extend in the direction perpendicular to the metal plate 1, the nickel powder 10 is arranged in the direction perpendicular to the metal plate 1. Heat shield plates 6 and 7 are provided inside the magnets 4 and 5, and hot air 8 passes between the heat shield plates 6 and 7. By the hot air 8, the coating layers 2 and 3 are dried, and the coating layers 2 and 3 contract in the thickness direction. The magnets 4 and 5 apply a magnetic force of 25 mT in the direction perpendicular to the substrate 1. In order to control the shrinkage ratio of the coating layers 2 and 3, as shown in Table 1, the coating layers 2 and 3 were dried by changing the temperature of drying with hot air within a range of 110 to 350 ° C.
[0026]
After drying, it was heated to a temperature of 1000 ° C. in a hydrogen gas atmosphere as a reducing atmosphere to sinter the coating layer and remove the binder in the coating layer.
As described above, a nickel sintered substrate was produced.
[0027]
(Production of electrodes)
The obtained nickel sintered substrate was impregnated with a nickel hydroxide active material powder by an ordinary chemical impregnation method. Specifically, after immersing the substrate in an aqueous nickel nitrate solution and filling the substrate hole with nickel nitrate, the operation of further immersing the substrate in the aqueous sodium hydroxide solution was repeated, and the nickel hydroxide active solution was added to the substrate hole. Material was formed.
After impregnating, washing with water and drying, the substrate was cut into a predetermined size to produce a positive electrode plate for an alkaline secondary battery.
[0028]
(Production of battery)
The obtained positive electrode plate was overlapped with a cadmium negative electrode plate via a separator and then wound, inserted into a battery can, and an alkaline electrolyte was injected. Then, sealing and charge / discharge activation etc. were performed, and a Sub-C size positive electrode capacity regulation nickel-cadmium secondary battery (capacity about 1800 mAh) was produced.
[0029]
<Comparative Example 1>
In the production of Example 1, a sintered substrate was produced in the same manner as in Example 1 except that no magnetic force was applied during drying, and an electrode was produced using this sintered substrate. A secondary battery was fabricated using
[0030]
<Observation of the state of nickel powder in the coating layer>
FIG. 5 is an optical micrograph showing the state of nickel powder in the coating layer when no magnetic force is applied to the coating layer. FIG. 6 is an optical micrograph showing the state of nickel powder in the coating layer when a magnetic force is applied to the coating layer.
[0031]
As is clear from the comparison between FIG. 5 and FIG. 6, it can be seen that when a magnetic force is applied to the coating layer, the metal powder in the coating layer is arranged along the direction of the magnetic field lines.
FIG. 7 is an electron micrograph showing the state of nickel powder in the coating layer after drying while applying magnetic force. As is clear from FIG. 7, it can be seen that the arrangement of the metal powder is slightly collapsed and the pores are small because of shrinkage in the thickness direction due to drying. However, it seems that the metal powders are firmly bonded by arrangement. For this reason, it seems that it becomes the structure which was excellent in the holding | maintenance of the liquid in an impregnation, and was excellent in adhesive strength.
[0032]
[Measurement of shrinkage of substrate during drying]
The thickness of the dried substrate was measured with a micrometer, and the shrinkage due to drying was calculated by the following formula.
[0033]
Shrinkage ratio (%) = (thickness of substrate before drying−thickness of substrate after drying) / (thickness of substrate before drying−thickness of core material) × 100
In addition, the thickness of the board | substrate before drying was computed by following Formula.
[0034]
Substrate thickness before drying = {(application mass / slurry density) + volume of core material of application part} / application area
[Measurement of porosity of sintered substrate]
The porosity of the sintered substrates of Example 1 and Comparative Example 1 was measured. Each sintered substrate was cut into a size of 3 cm × 5 cm to be a sample substrate, and the mass of each sample substrate was measured. Moreover, the core material of the same magnitude | size was prepared separately, mass was measured, and this was made into the core material mass.
[0036]
Next, after each sample substrate was immersed in water and placed in a desiccator, the inside of the desiccator was evacuated for 30 minutes or more to obtain a vacuum state of 1 kPa or less. Thereafter, air was introduced into the desiccator to obtain atmospheric pressure, and water was contained in the sample substrate. The mass of each sample substrate containing water was measured, and the water content was determined. Based on the following formula, the porosity of each sample substrate was calculated. The density of nickel was 8.9 g · cm −3 and the density of water was 1 g · cm −3 .
[0037]
Porosity (%) = water content / [{(substrate mass−core material mass) / nickel density} + water content] × 100
[0038]
[Measurement of adhesion strength of sintered substrate]
The adhesion strength of the sintered substrate 11 was measured using a pull stud 12 as shown in FIG.
[0039]
As shown in FIG. 3, the pull stud 12 includes an adhesive portion 12a and a handle portion 12b. An adhesive was applied to the bonding portion 12a having a fixed bonding area, and then bonded to the sample substrate 11. Using AdherenceTester (Quad Group, MODELNO.SEBASTIAN I), the pull stud 12 was pulled from the sample substrate 11 by pulling the handle 12b of the pull stud 12 in the direction perpendicular to the sample substrate 11. . The force required to peel off the pull stud 12 was measured, and this force was divided by the bonding area of the bonding portion 12a to determine the adhesion strength (N · cm −2 ). In addition, when the pull stud was peeled off, it was excluded from the measurement of the adhesion strength when it was peeled off at the bonding surface of the bonding portion or when it was peeled off at the bonding portion between the core material and the sintered body portion.
[0040]
[Measurement of active material discharge capacity density and active material utilization]
The batteries produced in Example 1 and Comparative Example 1 were subjected to a charge / discharge test. After charging at 180 mA for 15 hours, the battery was discharged at 360 mA to 1 V, and the discharge capacity of the battery was measured. From the measured discharge capacity and the hole volume of the substrate, the active material discharge capacity density per hole volume of the substrate was calculated by the following equation.
[0041]
Active material discharge capacity density = battery discharge capacity / substrate pore space volume The value of the moisture content obtained when measuring the porosity was used as the substrate pore space volume.
Moreover, the active material utilization factor was computed by following Formula.
[0042]
Active material utilization rate (%) = discharge capacity / theoretical capacity × 100
Here, the discharge capacity is the battery capacity, and the theoretical capacity is the product of the theoretical capacity of nickel hydroxide per unit mass (289 mAh · g −1 ) and the mass of the active material filled by impregnation.
[0043]
For each of the sintered substrates of Example 1 and Comparative Example 1 produced by changing the drying temperature, the drying temperature, the shrinkage rate when drying the substrate, the porosity, the adhesion strength, the active material discharge capacity density, and the active material utilization rate are shown. It is shown in 1.
[0044]
[Table 1]
Figure 0004289858
[0045]
As is apparent from Table 1, it can be seen that by increasing the drying temperature, the shrinkage rate during substrate drying is reduced. Therefore, it can be seen that the shrinkage rate can be adjusted by changing the drying temperature.
[0046]
FIG. 4 is a diagram showing the relationship between the porosity and adhesion strength of the substrates of Example 1 and Comparative Example 1. As is clear from FIG. 4, it can be seen that Example 1 has higher adhesion strength and higher porosity than Comparative Example 1. Therefore, according to the present invention, a sintered substrate having a high active material filling amount and excellent adhesion strength can be obtained.
[0047]
In FIG. 4, the value of the shrinkage rate when the substrate is dried is shown in parentheses beside each point in Example 1. As is apparent from these values, it can be seen that both the adhesion strength and the porosity can be increased particularly when the shrinkage rate is in the range of 30% to 40%. Therefore, it can be seen that the shrinkage during drying of the substrate is preferably in the range of 30% to 40%.
[0048]
In Example 1 according to the present invention, the reason why both the porosity and the adhesion strength are high is that the coating layer is contracted in a state where the nickel powders are arranged, so that the network of nickel powders is well formed, This is thought to be due to the fact that the bonding is strong and sintered.
[0049]
[Evaluation of battery life]
As the substrates having substantially the same porosity, the substrate dried at 200 ° C. in Example 1 (porosity 85.7%) and the substrate dried at 250 ° C. in Comparative Example 1 (porosity 85.6%) were used. Each battery was subjected to a charge / discharge test to evaluate the cycle life. Charging was performed at 1800 mA for 1.2 hours, and discharging was performed at 1800 mA up to 1V. The number of cycles when the capacity reached 80% of the initial discharge capacity was evaluated as the life. The results are shown in Table 2.
[0050]
[Table 2]
Figure 0004289858
[0051]
As can be seen from Table 2, the battery using the substrate produced by the method according to the present invention has good cycle life characteristics. This is considered to be due to the fact that the active material is difficult to peel off from the substrate due to the expansion of the active material due to charge / discharge due to the high adhesion strength.
[0052]
<Comparative example 2>
A substrate of Comparative Example 2 was produced according to the method described in JP-A-9-320610.
[0053]
Specifically, a sintered substrate was produced using acicular nickel having a diameter of 70 μm and an average length of 1 mm. A 90 mm square hole was made in a 0.9 mm thick acrylic plate to make a spacer. After placing this spacer on an acrylic plate having a thickness of 8 mm, about 25 g of the above-mentioned needle-shaped nickel was put in the hole portion and appropriately spread, and the acrylic plate having a thickness of 8 mm was covered.
[0054]
This was vibrated on a solenoid magnet adjusted to a magnetic force of 25 mT to loosen the entanglement of the acicular nickel, and then the acicular nickel was erected vertically by the magnetic force. At this time, the distance between the acicular nickel was about 100 μm.
[0055]
Next, the magnetic force of the solenoid magnet was reduced to about 1 mT, and it was confirmed that acicular nickel did not jump out. The upper acrylic plate was removed to expose the acicular nickel standing vertically.
[0056]
The nickel acetal resin used in Example 1 is mixed with the polyvinyl acetal resin as the binder at a mass ratio of 10: 100, and water is added to this so that the water content becomes 60% by weight. Produced. This paint was uniformly applied on a nickel plate having a thickness of 50 μm so as to have a thickness of 1 mm, and then the coated surface was pressed against the needle-shaped nickel and dried by blowing hot air thereon. Thereby, acicular nickel was made to adhere in the state stood in the application layer. Next, in the same manner, acicular nickel was attached to the opposite side of the nickel plate in a standing state.
[0057]
Next, this was heated to 1000 ° C., the organic components were decomposed and removed, and sintered, and a substrate of Comparative Example 2 was produced.
With respect to the obtained substrate of Comparative Example 2, an attempt was made to measure the porosity in the same manner as in the above Example. However, the substrate obtained in Comparative Example 2 has poor liquid retention, and when water is included, when it is pulled out of the water for mass measurement, the water immediately falls off, and accurate measurement of porosity is impossible. Met.
[0058]
In addition, when the active material is filled by the chemical impregnation method, the impregnating liquid cannot be retained, so that the active material cannot be sufficiently filled.
[0059]
【The invention's effect】
According to the present invention, a sintered type substrate for an alkaline secondary battery having a high active material filling amount and excellent adhesion strength can be produced.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an apparatus used for drying a substrate in an embodiment according to the present invention.
FIG. 2 is a schematic view showing a state of metal powder when a magnetic force is applied to a coating layer.
FIG. 3 is a perspective view for explaining a method for measuring adhesion strength in an embodiment of the present invention.
FIG. 4 is a graph showing the relationship between porosity and adhesion strength in Examples.
FIG. 5 is a view showing a state of a metal powder when no magnetic force is applied to a coating layer.
FIG. 6 is a view showing a state of metal powder when a magnetic force is applied to a coating layer.
FIG. 7 is a view showing a state of the metal powder in the coating layer after being dried with a magnetic force applied to the coating layer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal plate 2, 3 ... Coating layer 4, 5 ... Magnet 6, 7 ... Heat shield plate 8 ... Hot air 10 ... Metal powder

Claims (4)

金属粉末及び結着剤を含むスラリーを金属板上に塗布する工程と、
前記金属板に対して垂直方向に磁力を印加することにより、前記スラリーの塗布層中の前記金属粉末を前記金属板に対し垂直方向に配列させる工程と、
前記磁力を印加させたままの状態で前記塗布層を乾燥させて前記塗布層を厚み方向に収縮させる工程と、
前記乾燥後の前記塗布層を還元性雰囲気中で加熱して焼結させるとともに前記結着剤を除去する工程とを備えることを特徴とするアルカリ二次電池用焼結式基板の製造方法。
Applying a slurry containing a metal powder and a binder onto a metal plate;
Arranging the metal powder in the slurry coating layer in a direction perpendicular to the metal plate by applying a magnetic force in a direction perpendicular to the metal plate;
Drying the coating layer while applying the magnetic force, and shrinking the coating layer in the thickness direction;
And a step of heating and sintering the coating layer after drying in a reducing atmosphere and removing the binder.
前記塗布層を厚み方向に収縮させる際の収縮率が30〜40%の範囲内であることを特徴とする請求項1に記載のアルカリ二次電池用焼結式基板の製造方法。  2. The method for producing a sintered substrate for an alkaline secondary battery according to claim 1, wherein the shrinkage rate when shrinking the coating layer in the thickness direction is in the range of 30 to 40%. 前記金属粉末がニッケル粉末であることを特徴とする請求項1または2に記載のアルカリ二次電池用焼結式基板の製造方法。  The method for producing a sintered substrate for an alkaline secondary battery according to claim 1 or 2, wherein the metal powder is nickel powder. 請求項1〜3のいずれか1項に記載の方法で製造されたことを特徴とするアルカリ二次電池用焼結式基板。  A sintered substrate for an alkaline secondary battery manufactured by the method according to any one of claims 1 to 3.
JP2002285743A 2002-09-30 2002-09-30 Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery Expired - Fee Related JP4289858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285743A JP4289858B2 (en) 2002-09-30 2002-09-30 Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285743A JP4289858B2 (en) 2002-09-30 2002-09-30 Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery

Publications (3)

Publication Number Publication Date
JP2004127536A JP2004127536A (en) 2004-04-22
JP2004127536A5 JP2004127536A5 (en) 2005-10-20
JP4289858B2 true JP4289858B2 (en) 2009-07-01

Family

ID=32278959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285743A Expired - Fee Related JP4289858B2 (en) 2002-09-30 2002-09-30 Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP4289858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295331A (en) * 2008-06-03 2009-12-17 Sony Corp Anode collector, its forming method, anode, and secondary battery

Also Published As

Publication number Publication date
JP2004127536A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP4289858B2 (en) Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery
US6150056A (en) Alkaline storage battery and method for producing an electrode used therefor
JP4534355B2 (en) Method for producing porous substrate for electrode
JP4079667B2 (en) Sintered substrate for alkaline storage battery and manufacturing method thereof
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3653441B2 (en) Method for producing negative electrode for alkaline storage battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP2981538B2 (en) Electrodes for alkaline batteries
JP3095235B2 (en) Paste nickel positive electrode
JPH0388270A (en) Electrode for nickel-cadmium storage battery
JP3095236B2 (en) Paste nickel positive electrode
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JPH01236578A (en) Electrode plate for battery and its manufacture
JP3145392B2 (en) Paste nickel positive electrode
JPH01302668A (en) Electrode for alkaline storage battery
JP5164335B2 (en) Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery
JPH11102698A (en) Alkaline storage battery and manufacture of electrode thereof
JPH0582027B2 (en)
JPS61110966A (en) Electrode for cell
JPH0562686A (en) Base plate for alkaline storage battery and its manufacture
JPH05314988A (en) Sintered substrate for square alkaline storage battery and manufacture thereof
JPH09320610A (en) Manufacture of metal pseudo-porous body and battery using the porous body
JP2001283863A (en) Non-sintering electrode for alkaline battery and manufacturing method
JPH0456066A (en) Electrode for sealed type nickel cadmium accumulator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees