JP5164335B2 - Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery - Google Patents

Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery Download PDF

Info

Publication number
JP5164335B2
JP5164335B2 JP2006098277A JP2006098277A JP5164335B2 JP 5164335 B2 JP5164335 B2 JP 5164335B2 JP 2006098277 A JP2006098277 A JP 2006098277A JP 2006098277 A JP2006098277 A JP 2006098277A JP 5164335 B2 JP5164335 B2 JP 5164335B2
Authority
JP
Japan
Prior art keywords
substrate
sintered
sintered substrate
nickel
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006098277A
Other languages
Japanese (ja)
Other versions
JP2007273293A (en
Inventor
和生 富本
敦哉 古市
千浩 藤澤
英次 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006098277A priority Critical patent/JP5164335B2/en
Publication of JP2007273293A publication Critical patent/JP2007273293A/en
Application granted granted Critical
Publication of JP5164335B2 publication Critical patent/JP5164335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、アルカリ蓄電池のニッケル電極やカドミウム電極などに用いる焼結基板に関する。   The present invention relates to a sintered substrate used for a nickel electrode or a cadmium electrode of an alkaline storage battery.

現在、種々のポータブル機器の電源として、アルカリ蓄電池が利用されている。特に大電流放電が要求されるアルカリ蓄電池においては、導電性能が良好な焼結式ニッケル正極や焼結式カドミウム負極が多く用いられている。焼結式電極の製造方法としては、導電性芯材に、メチルセルロースなどの増粘剤を溶解した水にニッケルパウダーを混練したスラリーを塗着し、還元性雰囲気下で焼結して多孔質焼結基板を作製し、これに活物質を充填する方法が一般にとられている。   Currently, alkaline storage batteries are used as power sources for various portable devices. Particularly in alkaline storage batteries that require a large current discharge, a sintered nickel positive electrode and a sintered cadmium negative electrode that have good electrical conductivity are often used. As a method for producing a sintered electrode, a slurry obtained by kneading nickel powder in water in which a thickener such as methylcellulose is dissolved is applied to a conductive core material, and sintered in a reducing atmosphere to sinter the porous core. A method is generally used in which a bonded substrate is produced and filled with an active material.

ところで、電池において一般的に、高容量化のために電極のエネルギー密度を高めることが要求されている。そのため、アルカリ蓄電池用の焼結基板においても、たくさんの活物質を充填できるように、その多孔度を向上させることが望まれている。焼結基板の多孔度を向上させる技術として、例えば特開昭58−169773号公報(特許文献1)には、スラリー中に有機中空体からなる造孔剤を含ませる方法が開示されている。この方法を用いれば、造孔剤の添加量を増やすにつれ孔の体積も増加するので基板の多孔度が向上する。
特開昭58−169773号
By the way, in a battery, it is generally required to increase the energy density of an electrode in order to increase the capacity. Therefore, it is desired to improve the porosity of a sintered substrate for an alkaline storage battery so that it can be filled with many active materials. As a technique for improving the porosity of a sintered substrate, for example, Japanese Patent Application Laid-Open No. 58-169773 (Patent Document 1) discloses a method of including a pore-forming agent composed of an organic hollow body in a slurry. If this method is used, the volume of the pores increases as the amount of pore-forming agent added increases, so that the porosity of the substrate is improved.
JP 58-169773 A

しかしながら、造孔剤の添加量を増やして多孔度を大きくするにつれて、基板強度が低下する傾向がある。基板強度が低下すると、活物質充填後に焼結基板の一部が剥がれたり、極板厚みが膨化したりして品質が低下するので好ましくない。よって、基板強度を維持しつつ、より高多孔度の焼結基板を作製しようとすると、特許文献1の方法のみでは不十分である。   However, the substrate strength tends to decrease as the porosity is increased by increasing the amount of pore-forming agent added. If the substrate strength is lowered, a part of the sintered substrate is peeled off after the active material is filled or the electrode plate thickness is expanded, which is not preferable. Therefore, when trying to produce a sintered substrate having a higher porosity while maintaining the substrate strength, the method of Patent Document 1 is not sufficient.

一方、特開平5−325978号公報(特許文献2)には、嵩密度が0.40〜0.65g/cm3 でフィッシャー粒子径が0.5〜1.5μm の第1のニッケル粉末と、嵩密度が0.30〜0.52g/cm3でフィッシャー粒子径が2.5〜4.0μmの第2のニッケル粉末とを混合した混合ニッケル粉末を含有するニッケルスラリーを用いる焼結基板の製造方法が提案されている。この方法によれば、基板強度を維持しつつ多孔度を向上させることができることが示されている。
特開平5−325978号
On the other hand, JP-A-5-325978 (Patent Document 2) discloses a first nickel powder having a bulk density of 0.40 to 0.65 g / cm 3 and a Fisher particle diameter of 0.5 to 1.5 μm, Production of sintered substrate using nickel slurry containing mixed nickel powder mixed with second nickel powder having a bulk density of 0.30 to 0.52 g / cm 3 and a Fischer particle diameter of 2.5 to 4.0 μm A method has been proposed. It has been shown that according to this method, the porosity can be improved while maintaining the substrate strength.
JP-A-5-325978

しかし、この特許文献2に示される方法でも、未だ十分な強度を持った焼結基板が得られるとは言い難い。焼結式極板では、極板中への活物質充填密度を高くすると、前記焼結基板の剥がれや極板厚みの膨化が顕著となる。従って、例えば多孔度85%以上の高多孔度焼結基板では、およそ250N/cm2以上の基板強度であるのが望ましいが、そこまでの強度を得るには至っていなかった。 However, even with the method disclosed in Patent Document 2, it is difficult to say that a sintered substrate having sufficient strength can still be obtained. In the sintered electrode plate, when the active material filling density in the electrode plate is increased, peeling of the sintered substrate and expansion of the electrode plate thickness become remarkable. Therefore, for example, in the case of a high-porosity sintered substrate having a porosity of 85% or more, it is desirable that the substrate strength is about 250 N / cm 2 or more, but the strength up to that point has not been obtained.

本発明は、このような課題に鑑みてなされたものであって、従来の焼結基板よりも高い基板強度を持ったアルカリ蓄電池用焼結基板を提供するものであり、特に250N/cm2以上の基板強度を有する多孔度85%以上の高多孔度焼結基板の製造方法を提供するものである。 The present invention has been made in view of such problems, and provides a sintered substrate for an alkaline storage battery having a higher substrate strength than that of a conventional sintered substrate, in particular 250 N / cm 2 or more. The present invention provides a method for producing a high-porosity sintered substrate having a substrate strength of 85% or more.

上記目的を達成するため、本発明はタップ密度が0.92g/cm3以下のみのニッケル粉末を含有するスラリーを導電性芯材に塗着後焼結して焼結基板を作製するようにしたものである。


In order to achieve the above object, in the present invention, a slurry containing nickel powder having a tap density of only 0.92 g / cm 3 or less is applied to a conductive core and then sintered to produce a sintered substrate. Is.


このようなニッケル粉末を用いて作製した焼結基板は、従来の焼結基板に比べ基板強度を高くすることができる。特に、このようにして作製した焼結基板の多孔度が85%程度の高多孔度であっても、250N/cm2以上の基板強度を有し、活物質の充填密度が高く、十分な品質を維持した焼結式電極を提供することができる。
本発明の発明者らは、ニッケル粉末の様々な特性と、出来上がった焼結基板の多孔度と基板強度との関係を評価した結果、特許文献2に記載されるようなニッケル粉末の粒子サイズや嵩密度よりも、タップ密度と基板強度の関係性が深いことを見出し、従来とは異なるニッケル粉末を用いることにより、本発明に係る焼結基板を作製することに成功したものである。
A sintered substrate manufactured using such nickel powder can have higher substrate strength than a conventional sintered substrate. In particular, even if the sintered substrate thus produced has a high porosity of about 85%, it has a substrate strength of 250 N / cm 2 or more, a high packing density of the active material, and sufficient quality. It is possible to provide a sintered electrode that maintains the above.
The inventors of the present invention evaluated the various characteristics of nickel powder and the relationship between the porosity and substrate strength of the finished sintered substrate, and as a result, the particle size of nickel powder as described in Patent Document 2 The inventors have found that the relationship between the tap density and the substrate strength is deeper than the bulk density, and succeeded in producing the sintered substrate according to the present invention by using a nickel powder different from the conventional one.

上記のようなニッケル粉末を用いることにより高強度の焼結基板を得られるのは、以下のような理由が考えられる。
従来、ニッケル粉末として、微視的には微小なニッケル粒子が多数連なった鎖状構造を有するものが用いられている。このニッケル粉末の微視的構造は焼結基板の強度や多孔度に影響を与えると思われるが、スラリー作製時の混練により、この微視的構造が一部破壊されると考えられる。
タップ密度は、このスラリー作製時の混練によって当初の構造から変化したスラリー中のニッケル粉末の構造を反映する指標で、タップ密度が小さいとニッケル粉末の鎖状構造が発達したまま残っており、従って強度を維持したまま多孔度の高い焼結基板が得られるものと考えられる。
The reason why a high-strength sintered substrate can be obtained by using the above nickel powder is considered as follows.
Conventionally, a nickel powder having a chain structure in which a large number of micro nickel particles are arranged microscopically has been used. Although the microscopic structure of the nickel powder seems to affect the strength and porosity of the sintered substrate, it is considered that the microscopic structure is partially destroyed by kneading during slurry preparation.
The tap density is an index that reflects the structure of the nickel powder in the slurry that has been changed from the original structure by kneading at the time of slurry preparation. When the tap density is small, the chain structure of the nickel powder remains developed. It is considered that a sintered substrate having a high porosity can be obtained while maintaining the strength.

以下、本発明の一実施の形態に係る焼結基板とその製造方法について説明するが、本発明は以下の実施例により何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
(焼結基板の製造)
増粘剤を水に溶解した水溶液に、ニッケル粉末と発泡有機中空体からなる造孔剤とを混練してスラリーを作製する。有機中空体の有機材料としては、造孔剤としての機能を果たすように、加熱によって消失する性質を持つ樹脂(例えばアクリル樹脂)を用いる。また、増粘剤としては、例えばメチルセルロースを用いることができる。
そして、ニッケルメッキをした有孔薄鋼板からなる導電性芯材に、上記スラリーを塗着した後、還元性雰囲気で約1000℃に熱した炉中で加熱して焼結処理を行い、ニッケル焼結基板を作製する。焼結基板の厚みは、通常0.5〜1.0mm程度である。
Hereinafter, a sintered substrate and a manufacturing method thereof according to an embodiment of the present invention will be described. However, the present invention is not limited to the following examples, and may be appropriately changed without changing the gist thereof. It is possible to implement.
(Manufacture of sintered substrates)
A slurry is prepared by kneading nickel powder and a pore-forming agent composed of a foamed organic hollow body in an aqueous solution in which a thickener is dissolved in water. As the organic material of the organic hollow body, a resin (for example, an acrylic resin) having a property of disappearing by heating is used so as to function as a pore forming agent. Moreover, as a thickener, methylcellulose can be used, for example.
Then, after the slurry is applied to a conductive core made of a nickel-plated perforated thin steel plate, the slurry is heated in a furnace heated to about 1000 ° C. in a reducing atmosphere, and subjected to a sintering process. A bonded substrate is produced. The thickness of the sintered substrate is usually about 0.5 to 1.0 mm.

図1は、上記のようにして作製するニッケル焼結基板の断面を摸式的に示す図である。本図に示すように、導電性芯材10には孔11が開設されており、導電性芯材10の表面上及び孔11の内部に、多孔質の焼結層12が形成されている。焼結層12の内部には、ニッケル粉末13が焼結され3次元的な網目構造が生ずるとともに細孔14が形成されている。   FIG. 1 is a diagram schematically showing a cross-section of a nickel sintered substrate manufactured as described above. As shown in this figure, holes 11 are formed in the conductive core material 10, and a porous sintered layer 12 is formed on the surface of the conductive core material 10 and inside the holes 11. Inside the sintered layer 12, nickel powder 13 is sintered to form a three-dimensional network structure, and pores 14 are formed.

詳しくは後述するが、本実施形態の焼結基板では、ニッケル粉末として、タップ密度が0.92g/cm3以下のものを用いている。このようなニッケル粉末を用いることにより、多孔度が85%程度の高多孔度であっても、250N/cm2以上の基板強度を有する焼結基板を得ることができる。 As will be described in detail later, in the sintered substrate of the present embodiment, nickel powder having a tap density of 0.92 g / cm 3 or less is used. By using such nickel powder, a sintered substrate having a substrate strength of 250 N / cm 2 or more can be obtained even if the porosity is as high as about 85%.

(活物質の充填)
作製したニッケル焼結基板を、硝酸ニッケルを溶解し加温した含浸液に浸漬することによって、焼結基板の孔に含浸液を含浸させる。
そして、温度80℃程度の熱風を短時間あてて、充填された含浸液を乾燥することによって、ニッケル焼結基板の孔内に硝酸ニッケルを定着させる。孔内に硝酸ニッケルが定着されたニッケル焼結基板を、例えば水酸化ナトリウム等のアルカリ水溶液に浸漬することによって、孔内の硝酸ニッケルを水酸化ニッケルに変化させる。これによって、ニッケル焼結基板の孔内には、水酸化ニッケル活物質が充填されることになる。
このような活物質充填操作を数回繰り返すことによって、ニッケル焼結基板の孔内にニッケル活物質が十分に充填され、焼結式ニッケル電極が完成する。
(Filling of active material)
The prepared nickel sintered substrate is immersed in an impregnating solution in which nickel nitrate is dissolved and heated, thereby impregnating the pores of the sintered substrate with the impregnating solution.
Then, hot nitrate at a temperature of about 80 ° C. is applied for a short time to dry the filled impregnating solution, thereby fixing nickel nitrate in the holes of the sintered nickel substrate. The nickel nitrate substrate in which nickel nitrate is fixed in the hole is immersed in an alkaline aqueous solution such as sodium hydroxide to change the nickel nitrate in the hole into nickel hydroxide. As a result, the nickel hydroxide active material is filled in the holes of the nickel sintered substrate.
By repeating such an active material filling operation several times, the nickel active material is sufficiently filled in the holes of the nickel sintered substrate, and a sintered nickel electrode is completed.

(電池の製造)
上述の完成した焼結式ニッケル電極と、例えばペースト式カドミウム電極とを、ポリアミド不織布等からなるセパレータを介して巻回して電極体を作製し、この電極体を外装缶に収納するとともにアルカリ水溶液による電解液を注入し、その後封口蓋で密閉することにより本発明に係るアルカリ蓄電池(不図示)が完成する。
(Manufacture of batteries)
The above-mentioned sintered nickel electrode and, for example, a paste-type cadmium electrode are wound through a separator made of a polyamide nonwoven fabric or the like to produce an electrode body. An alkaline storage battery (not shown) according to the present invention is completed by injecting an electrolytic solution and then sealing with a sealing lid.

上記で説明した本発明に係る焼結基板の従来の焼結基板に対する有効性を確認すべく実験を行った。実施例および比較例とともに以下に示す。なお、タップ密度の値は、ニッケル粉末を300μmの篩いにかけて容器内に入れ、その容器を100回タップした後の容器内のニッケル粉末の密度を密度測定機(SEISHIN TAPDENSER KYT−3000)を用いて測定することにより得た。また、フィッシャーサイズは、粒度計(Fisher Sub−seive Sizer)により測定した。
更に多孔度は、次のようにして得た。まず、焼結基板に水を含ませる前後の質量を計測し、その差分をとることにより焼結基板内の残孔体積(P)を測定する。また、水を含ませる前焼結基板の質量と焼結基板材料の真密度から、当該焼結基板材料の体積(M)を算出する。これらを用いて以下の式により多孔度を得た。
(数1)
多孔度(%)=100×P/(P+M)
An experiment was conducted to confirm the effectiveness of the sintered substrate according to the present invention described above with respect to a conventional sintered substrate. It shows below with an Example and a comparative example. The tap density value is determined by using a density measuring machine (SEISHIN TAPDENSER KYT-3000) to determine the density of nickel powder in the container after tapping the container 100 times with a 300 μm sieve through nickel powder. Obtained by measuring. In addition, the Fisher size was measured by a particle size meter (Fisher Sub-seize Sizer).
Furthermore, the porosity was obtained as follows. First, the mass before and after adding water to a sintered substrate is measured, and the residual hole volume (P) in the sintered substrate is measured by taking the difference. Further, the volume (M) of the sintered substrate material is calculated from the mass of the pre-sintered substrate containing water and the true density of the sintered substrate material. Using these, the porosity was obtained by the following formula.
(Equation 1)
Porosity (%) = 100 × P / (P + M)

(実施例1)
タップ密度0.85g/cm3のニッケル粉末(INCO社製、嵩密度0.39g/cm3、フィッシャーサイズ2.1μm)のニッケル粉末を準備した。これをニッケル粉末aとする。次いで3質量%メチルセルロース水溶液60質量部に、造孔剤としてメチルメタアクリレート−アクリロニトリル共重合体を主成分とする有機中空球体(松本油脂製、粒径50μm)を0.5質量部と、前記ニッケル粉末a40質量部を加え、真空ポンプにより脱気しながら混練することによってスラリーを作製した。
前記スラリーを導電性芯材(厚さ80μmのニッケルメッキ穿孔鋼板)の両面に塗布して乾燥し、還元雰囲気下において1000℃で加熱して適宜時間を調整することによって、多孔度86%、厚み0.6mmの焼結基板Aを作製した。
Example 1
A nickel powder having a tap density of 0.85 g / cm 3 (manufactured by INCO, bulk density of 0.39 g / cm 3 , Fisher size of 2.1 μm) was prepared. This is nickel powder a. Next, 60 parts by mass of a 3% by weight methylcellulose aqueous solution, 0.5 parts by mass of organic hollow spheres (made by Matsumoto Yushi, particle size 50 μm) mainly composed of methyl methacrylate-acrylonitrile copolymer as a pore-forming agent, and the nickel A slurry was prepared by adding 40 parts by mass of powder a and kneading while degassing with a vacuum pump.
The slurry is applied to both surfaces of a conductive core material (80 μm thick nickel plated perforated steel sheet), dried, heated at 1000 ° C. in a reducing atmosphere, and the time is adjusted appropriately to obtain a porosity of 86% and thickness. A 0.6 mm sintered substrate A was produced.

(実施例2)
タップ密度が0.77g/cm3のニッケル粉末(INCO社製、嵩密度0.39g/cm3、フィッシャーサイズ2.1μm)のニッケル粉末を準備した。これをニッケル粉末bとする。次いで3質量%メチルセルロース水溶液60質量部に、造孔剤としてメチルメタアクリレート−アクリロニトリル共重合体を主成分とする有機中空球体(松本油脂製、粒径50μm)を0.5質量部と、前記ニッケル粉末b40質量部を加え、真空ポンプにより脱気しながら混練することによってスラリーを作製した。
前記スラリーを導電性芯材(厚さ80μmのニッケルメッキ穿孔鋼板)の両面に塗布して乾燥し、還元雰囲気下において1000℃で加熱して適宜時間を調整することによって、多孔度86%、厚み0.6mmの焼結基板Bを作製した。
(Example 2)
A nickel powder having a tap density of 0.77 g / cm 3 (INCO, bulk density 0.39 g / cm 3 , Fisher size 2.1 μm) was prepared. This is nickel powder b. Next, 60 parts by mass of a 3% by weight methylcellulose aqueous solution, 0.5 parts by mass of organic hollow spheres (made by Matsumoto Yushi, particle size 50 μm) mainly composed of methyl methacrylate-acrylonitrile copolymer as a pore-forming agent, and the nickel A slurry was prepared by adding 40 parts by mass of powder b and kneading while degassing with a vacuum pump.
The slurry is applied to both surfaces of a conductive core material (80 μm thick nickel plated perforated steel sheet), dried, heated at 1000 ° C. in a reducing atmosphere, and the time is adjusted appropriately to obtain a porosity of 86% and thickness. A 0.6 mm sintered substrate B was produced.

(比較例)
タップ密度が1.15g/cm3のニッケル粉末(INCO社製、嵩密度0.57g/cm3、フィッシャーサイズ2.1μm)のニッケル粉末を準備した。これをニッケル粉末zとする。次いで3質量%メチルセルロース水溶液60質量部に、造孔剤としてメチルメタアクリレート−アクリロニトリル共重合体を主成分とする有機中空球体(松本油脂製、粒径50μm)を0.5質量部と、前記ニッケル粉末z40質量部を加え、真空ポンプにより脱気しながら混練することによってスラリーを作製した。
前記スラリーを導電性芯材(厚さ80μmのニッケルメッキ穿孔鋼板)の両面に塗布して乾燥し、還元雰囲気下において1000℃で加熱して適宜時間を調整することによって、多孔度86%、厚み0.6mmの焼結基板Zを作製した。
(Comparative example)
A nickel powder having a tap density of 1.15 g / cm 3 (manufactured by INCO, bulk density of 0.57 g / cm 3 , Fisher size of 2.1 μm) was prepared. This is nickel powder z. Next, 60 parts by mass of a 3% by weight methylcellulose aqueous solution, 0.5 parts by mass of organic hollow spheres (made by Matsumoto Yushi, particle size 50 μm) mainly composed of methyl methacrylate-acrylonitrile copolymer as a pore-forming agent, and the nickel A slurry was prepared by adding 40 parts by mass of powder z and kneading while degassing with a vacuum pump.
The slurry is applied to both surfaces of a conductive core material (80 μm thick nickel plated perforated steel sheet), dried, heated at 1000 ° C. in a reducing atmosphere, and the time is adjusted appropriately to obtain a porosity of 86% and thickness. A 0.6 mm sintered substrate Z was produced.

(確認実験1)
以上作製した焼結基板A、B、Zの基板強度を接合強度測定機(Quad Group製SEBASTIANV強度テスター)を用いて、以下のようにして測定した。図を用いて説明する。
図2に示すような一定の接着面積(0.7cm2)を有するプルスタット20の接着部21に接着剤を塗布し、焼結基板(A、B、Z)に前記接着部21を接着した後、接合強度測定機を使用してプルスタット20の取手部22を基板に垂直な方向(図2のF方向)に引っ張り、プルスタット20を引き剥がす為に必要な力を測定し、この力を接着部21の接着面積で割って、基板強度を求めた。なお、プルスタット20を引き剥がしたときに、接着面や焼結体と導電芯材との接合部が剥がれた場合は、基板強度の測定から除外した。
(Confirmation experiment 1)
The substrate strength of the sintered substrates A, B, and Z produced as described above was measured as follows using a bonding strength measuring device (SEBASTIANV strength tester manufactured by Quad Group). This will be described with reference to the drawings.
After an adhesive is applied to the adhesive portion 21 of the pullstat 20 having a constant adhesion area (0.7 cm 2 ) as shown in FIG. 2 and the adhesive portion 21 is adhered to the sintered substrate (A, B, Z). Using a bonding strength measuring machine, pull the handle portion 22 of the pullstat 20 in the direction perpendicular to the substrate (direction F in FIG. 2), measure the force required to peel off the pullstat 20, and apply this force to the bonding portion. The substrate strength was determined by dividing by 21 adhesion area. It should be noted that when the pull-stat 20 was peeled off, the bonded surface or the joint between the sintered body and the conductive core material was removed from the measurement of the substrate strength.

(確認実験2)
焼結基板A、B、Zに対して、硝酸ニッケルを主成分とする溶液とアルカリ液に交互に一定回数繰り返して浸漬し活物質を含浸することによって、ニッケル正極板α、β、ζを作製した。この含浸前後の焼結基板およびニッケル正極板の厚みを測定し、含浸による膨化の有無を確認した。なお、前記極板中の活物質充填密度(焼結基板の残孔(P)に対する充填活物質の質量)は3g/cm3であった。
(Confirmation experiment 2)
Nickel positive electrode plates α, β, and ζ are produced by dipping a sintered substrate A, B, and Z alternately and repeatedly in a solution containing alkali-based nickel nitrate and an alkaline solution repeatedly and impregnating the active material. did. The thicknesses of the sintered substrate and the nickel positive electrode plate before and after the impregnation were measured to confirm the presence or absence of expansion due to the impregnation. The active material filling density (mass of the filling active material with respect to the remaining holes (P) of the sintered substrate) in the electrode plate was 3 g / cm 3 .

確認実験1、2の測定結果を以下の表1に示す。

Figure 0005164335
The measurement results of Confirmation Experiments 1 and 2 are shown in Table 1 below.
Figure 0005164335

実施例1、実施例2、比較例の基板強度の測定結果から、タップ密度が0.92g/cm3以下のニッケル粉末を用いた実施例1、実施例2は250N/cm2以上であるのに対し、タップ密度が0.92g/cm3より大きいニッケル粉末を用いた比較例は実施例1及び実施例2に比べ基板強度が小さく、250N/cm2以下であった。よって、実施例1、実施例2においては基板に活物質を含浸した後の極板の膨化が見られなかった一方、比較例では極板の膨化が確認された。 From the measurement results of the substrate strengths of Example 1, Example 2, and Comparative Example, Example 1 and Example 2 using a nickel powder having a tap density of 0.92 g / cm 3 or less are 250 N / cm 2 or more. On the other hand, the comparative example using nickel powder having a tap density greater than 0.92 g / cm 3 had a lower substrate strength than Example 1 and Example 2, and was 250 N / cm 2 or less. Therefore, in Example 1 and Example 2, expansion of the electrode plate after impregnating the substrate with the active material was not observed, whereas in the comparative example, expansion of the electrode plate was confirmed.

また、実施例1と実施例2を比較した場合、フィッシャーサイズと嵩密度が同じであっても、タップ密度が異なることにより、同一多孔度での基板強度に差が見られた。
ここで実施例1、実施例2、比較例のタップ密度と基板強度の関係を図3に示す。図3に示されるように、タップ密度と基板強度の間には高い相関性が見られ、この図より多孔度85%以上で250N/cm2以上の基板強度を得るには、0.92g/cm3以下のタップ密度を有するニッケル粉末を用いればよいことが分かる。
Moreover, when Example 1 and Example 2 were compared, even if the Fisher size and the bulk density were the same, there was a difference in the substrate strength at the same porosity due to the different tap densities.
Here, FIG. 3 shows the relationship between the tap density and the substrate strength in Example 1, Example 2, and Comparative Example. As shown in FIG. 3, there is a high correlation between the tap density and the substrate strength. From this figure, 0.92 g / cm2 is required to obtain a substrate strength of 250 N / cm 2 or more at a porosity of 85% or more. It can be seen that nickel powder having a tap density of cm 3 or less may be used.

実施の形態に係る焼結基板の断面を模式的に示す図である。It is a figure which shows typically the cross section of the sintered substrate which concerns on embodiment. 焼結基板の強度測定に用いた測定具の使用状態を模式的に示す斜視図である。It is a perspective view which shows typically the use condition of the measuring tool used for the intensity | strength measurement of a sintered substrate. ニッケル粉末のタップ密度と基板強度の関係を表す図である。It is a figure showing the relationship between the tap density of nickel powder, and board | substrate intensity | strength.

符号の説明Explanation of symbols

10・・・導電性芯材、11・・・孔、12・・・焼結層、13・・・ニッケル粒子、14・・・細孔
20・・・プルスタット、21・・・接着部、22・・・取手部
DESCRIPTION OF SYMBOLS 10 ... Conductive core material, 11 ... Hole, 12 ... Sintered layer, 13 ... Nickel particle, 14 ... Fine pore 20 ... Pullstat, 21 ... Adhesion part, 22 ... Handle part

Claims (3)

タップ密度が0.92g/cm3以下のみのニッケル粉末を含有するスラリーを導電性芯材に塗着後焼結することを特徴とするアルカリ蓄電池用焼結基板の製造方法。 A method for producing a sintered substrate for an alkaline storage battery, comprising applying a slurry containing nickel powder having a tap density of only 0.92 g / cm 3 or less to a conductive core and then sintering the slurry. 前記焼結基板の多孔度が85%以上であり、基板強度が250N/cm2以上であることを特徴とする請求項1に記載のアルカリ蓄電池用焼結基板の製造方法。 The method for producing a sintered substrate for an alkaline storage battery according to claim 1, wherein the porosity of the sintered substrate is 85% or more and the substrate strength is 250 N / cm 2 or more. タップ密度が0.92g/cm3以下のみのニッケル粉末を含有するスラリーを導電性芯材に塗着後焼結して焼結基板を製造する工程と、前記焼結基板に活物質を充填して電極を製造する工程と、前記電極を用いて電池を組み立てる工程を備えたアルカリ蓄電池の製造方法。
Applying a slurry containing nickel powder having a tap density of only 0.92 g / cm 3 or less to a conductive core and then sintering to produce a sintered substrate; and filling the sintered substrate with an active material The manufacturing method of an alkaline storage battery provided with the process of manufacturing an electrode, and the process of assembling a battery using the said electrode.
JP2006098277A 2006-03-31 2006-03-31 Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery Expired - Fee Related JP5164335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098277A JP5164335B2 (en) 2006-03-31 2006-03-31 Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098277A JP5164335B2 (en) 2006-03-31 2006-03-31 Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2007273293A JP2007273293A (en) 2007-10-18
JP5164335B2 true JP5164335B2 (en) 2013-03-21

Family

ID=38675877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098277A Expired - Fee Related JP5164335B2 (en) 2006-03-31 2006-03-31 Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5164335B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562686A (en) * 1991-02-25 1993-03-12 Shin Kobe Electric Mach Co Ltd Base plate for alkaline storage battery and its manufacture
JPH05325978A (en) * 1992-05-20 1993-12-10 Shin Kobe Electric Mach Co Ltd Nickel sintered substrate and manufacture thereof for alkaline storage battery
JP2002203567A (en) * 2000-12-28 2002-07-19 Sanyo Electric Co Ltd Method for manufacturing sintered board for alkali storage battery
JP4079667B2 (en) * 2002-03-29 2008-04-23 三洋電機株式会社 Sintered substrate for alkaline storage battery and manufacturing method thereof
JP4400044B2 (en) * 2002-12-12 2010-01-20 パナソニック株式会社 Method for producing nickel positive electrode for alkaline storage battery and alkaline storage battery

Also Published As

Publication number Publication date
JP2007273293A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP2000323137A (en) Manufacture of electrode for battery
US6849361B2 (en) Manufacturing method for sintered substrate of alkaline storage battery
JP5164335B2 (en) Method for producing sintered substrate for alkaline storage battery and method for producing alkaline storage battery
JP4079667B2 (en) Sintered substrate for alkaline storage battery and manufacturing method thereof
JP4534355B2 (en) Method for producing porous substrate for electrode
JP5164412B2 (en) Alkaline storage battery and method for manufacturing sintered substrate
JP3759589B2 (en) Method for producing alkaline storage battery
JP3668481B2 (en) Method for manufacturing battery electrode
JP2022108573A (en) Manufacturing method for positive electrode plate of alkali storage battery
JP4423442B2 (en) Method for producing electrode substrate for alkaline secondary battery
JP3408047B2 (en) Alkaline storage battery
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JP4289858B2 (en) Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery
JP2011026628A (en) Conductive porous body using spherical metal powder
JPS59143275A (en) Base plate for alkaline storage battery
JP2003288901A (en) Manufacturing method of sintered substrate for alkaline storage battery
TW488110B (en) Three dimensional chemical cell
JPH06251771A (en) Manufacture of electrode substrate
JP2000021416A (en) Electrode active material holding board and manufacture thereof, and positive electrode for alkaline secondary battery using the board
JPH1140148A (en) Alkaline storage battery and manufacture of electrode thereof
JP5064792B2 (en) Sintered nickel positive electrode for alkaline storage battery and alkaline storage battery
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JPH11269506A (en) Manufacture of high strength spongy porous nickel metal sheet
JPH0325899B2 (en)
JPH0482164A (en) Electrode plate for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees