JPH0482164A - Electrode plate for battery - Google Patents

Electrode plate for battery

Info

Publication number
JPH0482164A
JPH0482164A JP2196578A JP19657890A JPH0482164A JP H0482164 A JPH0482164 A JP H0482164A JP 2196578 A JP2196578 A JP 2196578A JP 19657890 A JP19657890 A JP 19657890A JP H0482164 A JPH0482164 A JP H0482164A
Authority
JP
Japan
Prior art keywords
substrate
electrode plate
battery
skeleton
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2196578A
Other languages
Japanese (ja)
Inventor
Kazuaki Ozaki
尾崎 和昭
Makoto Kanbayashi
誠 神林
Takuya Tamagawa
卓也 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2196578A priority Critical patent/JPH0482164A/en
Publication of JPH0482164A publication Critical patent/JPH0482164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To prevent breakage of a substrate and lowering of battery performance in winding the battery in a spiral shape by using a sponge-like metal porous body with a metal skeleton steppedly increasing in thickness in the thickness direction, and locating the thickened metal skeleton of the substrate on the outer peripheral side in forming a spiral electrode body. CONSTITUTION:A conductive coating maternal dispersed with graphite powders is coated on a foaming urethane resin thus providing conductivity to the foaming urethane resin. Ni is coated on the resin by electroplating. In this case, the thickness of the Ni coating film is steppedly changed, thereby forming a substrate. Subsequently, an electrode plate using the substrate is assembled to a Cd anode plate and a separator, which is wound in such a manner that the thickened skeleton of the electrode plate using the substrate is located on the outside with respect to the winding center, thus forming a battery.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、三次元的に連続した構造を有するスポンジ状
金属多孔体を基板とし、その多孔部に活物質を充填した
電極板に関するものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to an electrode plate in which the substrate is a sponge-like porous metal material having a three-dimensional continuous structure, and the pores are filled with an active material. It is.

(ロ)従来の技術 従来、密閉型ニッケルーカドミウム電池等のニッケル極
板は、一般に焼結式の電極板が広く用いられてきた。こ
の焼結式電極板は、ニッケル粉末を還元雰囲気中で焼結
して得た多孔度75〜80%の基板を用いる。さらに、
この基板をニッケル塩水溶液に浸漬した後、アルカリ水
溶液で処理することによりニッケル塩を活物質化して焼
結式電極板を得るものであった。この方法で得られた焼
結式電極板は、機械的強度が強く、高率放電特性に優れ
、長寿命であるという特徴を持っている。
(b) Prior Art Conventionally, sintered electrode plates have been widely used as nickel electrode plates for sealed nickel-cadmium batteries and the like. This sintered electrode plate uses a substrate with a porosity of 75 to 80% obtained by sintering nickel powder in a reducing atmosphere. moreover,
This substrate was immersed in a nickel salt aqueous solution and then treated with an alkaline aqueous solution to turn the nickel salt into an active material and obtain a sintered electrode plate. The sintered electrode plate obtained by this method has strong mechanical strength, excellent high-rate discharge characteristics, and long life.

しかし、焼結式電極板は多孔部の孔径が小さいため、所
定量の活物質を充填する場合、含浸回数を多くしなけれ
ばならない。従って製造工程が煩雑となりコストが高く
なるという欠点があった。
However, since the pore diameter of the sintered electrode plate is small, in order to fill it with a predetermined amount of active material, the number of impregnations must be increased. Therefore, there is a drawback that the manufacturing process becomes complicated and the cost becomes high.

このような欠点を解決するために、連続的に三次元構造
を有するスポンジ状金属多孔体を基板に用いる方法が提
案されている。このスポンジ状金属多孔体は、焼結基板
と比較して孔径が大きいため活物質をペースト状にして
直接充填することができ、工程が簡易化できる。又、多
孔度も95%以上と焼結式電極板に比して高いため、活
物質を多量に充填でき高容量化をはかることができる。
In order to solve these drawbacks, a method has been proposed in which a sponge-like porous metal material having a continuous three-dimensional structure is used as a substrate. Since this sponge-like metal porous body has a larger pore diameter than that of a sintered substrate, it is possible to directly fill the active material in the form of a paste, thereby simplifying the process. Furthermore, since the porosity is 95% or more, which is higher than that of a sintered electrode plate, a large amount of active material can be filled and a high capacity can be achieved.

特開昭56−102076号公報では、スポンジ状金属
シートを基板として用い、このシートの表面付近の格子
径を内部の格子径より太くすることにより1表面付近及
び中心部とも同じ格子径のシートを用いた場合より、高
密度に活物質を充填できることが提案されている。
In JP-A-56-102076, a sponge-like metal sheet is used as a substrate, and by making the lattice diameter near the surface of the sheet larger than the internal lattice diameter, a sheet having the same lattice diameter near one surface and at the center can be obtained. It has been proposed that the active material can be packed more densely than when using the active material.

しかしながら、」−記スポンジ状金属シートに活物質を
充填して得られる電極板は、表面付近は格子径が太く多
孔度も低いので活物質が充填しにくい。又、円筒形の密
閉型ニッケルーカドミウム電池のように渦巻状に持回し
て用いるときには、高多孔度である反面骨格が細いため
強度が弱く持回の際に破断することがある。又、完全に
破断しなくても金属骨格に深い亀裂が入っている場合が
多く、電導性が低下し、特に高率放電時に劣化が大きく
なる。
However, the electrode plate obtained by filling a sponge-like metal sheet with an active material has a large lattice diameter and low porosity near the surface, making it difficult to fill with the active material. Furthermore, when used while being carried around in a spiral like a cylindrical sealed nickel-cadmium battery, although it has high porosity, its skeleton is thin, so its strength is weak and it may break when being carried. Furthermore, even if the metal skeleton is not completely broken, there are often deep cracks in the metal skeleton, which lowers the conductivity and increases deterioration, especially during high rate discharge.

この欠点を解決するために、特開昭59−207560
号公報では、スポンジ状金属多孔体に活物質を充填した
後、プレスによって電池構成時捲回する方向に対して直
角なJj向に適当な間隔ですし目を形成し、極板の切断
を防止する方法が提案されている。
In order to solve this drawback, Japanese Patent Application Laid-Open No. 59-207560
In the publication, after a sponge-like porous metal material is filled with an active material, grooves are formed at appropriate intervals in the Jj direction perpendicular to the winding direction during battery construction using a press to prevent the electrode plates from being cut. A method has been proposed.

しかしながら、上記のようにプレスによりすじ目を形成
させる方法では、すし目部分の溝の体積が活用されない
。従って、電極のエネルギー密度が低下してしまう。又
、工程設備的にも煩雑となる。
However, in the method of forming the creases by pressing as described above, the volume of the grooves in the crease portions is not utilized. Therefore, the energy density of the electrode decreases. Furthermore, the process equipment becomes complicated.

(ハ)発明が解決しようとする課題 本発明は、スポンジ状金属多孔体を基板とし、渦巻き状
に持回する際に基板の破断及び電池性能の低下を防止し
得る電極板を提供しようとするものである。
(c) Problems to be Solved by the Invention The present invention seeks to provide an electrode plate that uses a sponge-like porous metal material as a substrate and can prevent breakage of the substrate and deterioration of battery performance when it is carried in a spiral manner. It is something.

(ニ)課題を解決するための手段 本発明の電極板は、三次元的に連続した構造を有し、ス
ポンジ状金属多孔体を基板とし、その多孔部に活物質を
充填した電極板において、前記基板として金属骨格を厚
み方向に対して段階的に太くしたスポンジ状金属多孔体
を用い、且つ渦巻電極体構成時に前記基板の金属骨格の
太い方が外周側に位置するものである。
(d) Means for Solving the Problems The electrode plate of the present invention has a three-dimensional continuous structure, uses a sponge-like porous metal material as a substrate, and has the porous portions filled with an active material. The substrate is a sponge-like metal porous body in which the metal skeleton is gradually thickened in the thickness direction, and the thicker metal skeleton of the substrate is located on the outer circumferential side when forming the spiral electrode body.

(ホ)作用 基板の厚み方向に骨格の太さが均一なスポンジ状金属多
孔体を基板とした極板を、実際に持回し観察してみると
、破断及び亀裂が入っている。しかも、掻回した極板の
外側の面で破断及び亀裂が多数見られる。これは巻き取
りの際に、巻き芯に近い面(内側)より遠い面(外側)
の方が、極板に対して引っ張り応力が強くなるため上記
のような現象が発生する。
(e) When an electrode plate made of a sponge-like metal porous material with a uniform skeleton thickness in the thickness direction of the working substrate is actually carried around and observed, it is found that it has fractures and cracks. Furthermore, many breaks and cracks were observed on the outer surface of the agitated electrode plate. When winding, this is the side that is closer to the winding core (inner side) than the side that is farther away from the core (outer side).
The above phenomenon occurs because the tensile stress on the electrode plate is stronger.

これを防止するには、全体的に骨格を太くすれば良いが
、これでは多孔部の孔径が小さくなり、活物質の充填量
が減少するので極板のエネルギー密度が低下してしまう
In order to prevent this, the entire skeleton may be made thicker, but this would reduce the pore diameter of the porous portion and reduce the amount of active material filled, resulting in a decrease in the energy density of the electrode plate.

しかし、本発明の構成によると、破断し易い外側の金属
骨格が太いため極板の破断が防止される。
However, according to the configuration of the present invention, the outer metal skeleton, which is easy to break, is thick, so that the electrode plate is prevented from breaking.

さらに、本発明では、金属骨格が一部太くなり電極板に
対する基板の占める体積も僅かに増加するため、活物質
充填量も若干少なくなるが、反対方向の金属骨格が細く
、多孔度の高い方からは活物質の充填は容易である。電
池としては、極板の破1祈及び亀裂の発生による放電容
量の低下がなくなるので、むしろ放電容量は増大する。
Furthermore, in the present invention, the metal skeleton is partly thicker and the volume occupied by the substrate relative to the electrode plate is also slightly increased, so the amount of active material filled is slightly smaller. It is easy to fill the active material. As a battery, there is no reduction in discharge capacity due to breakage or cracking of the electrode plates, so the discharge capacity increases.

又、本発明は、極板厚みが厚くなる程効果はより大きい
ものとなる。
Furthermore, the effect of the present invention becomes greater as the thickness of the electrode plate increases.

(へ)実施例 発泡状ウレタン間脂に、グラファイト粉末を有機糊料に
分散させた導電塗料を塗着することにより、発泡状ウレ
タン樹脂に導電性を与えた。次に、この導電性を有する
発泡状ウレタン樹脂をニッケルメッキ浴を用いて、金属
ニッケル被膜を電着させた。この電着時に対極であるニ
ッケル極板を発泡状ウレタン樹脂の片面だけに配し、故
意に発泡状ウレタン樹脂の厚み方向に対して電流密度を
段階的に減少(増加)させることにより、ニッケル被膜
の厚みを段階的に変化させ基板aを作成した。比較基板
として、ニッケル被膜の厚みを10μmで均一にメツキ
した基板すを作成した。
(f) Example A conductive paint containing graphite powder dispersed in an organic glue was applied to the foamed urethane resin to impart electrical conductivity to the foamed urethane resin. Next, a metallic nickel film was electrodeposited on this conductive foamed urethane resin using a nickel plating bath. During this electrodeposition, a nickel plate serving as a counter electrode is placed on only one side of the foamed urethane resin, and the current density is intentionally decreased (increased) in stages in the thickness direction of the foamed urethane resin to form a nickel coating. Substrate a was prepared by changing the thickness of the substrate in stages. As a comparison board, a board was prepared in which the nickel film was uniformly plated to a thickness of 10 μm.

次に、N i (OH)、 90重量%、金属Co 1
0重量%を混合した活物質粉末に対し50重量%の水な
らびに少量の糊、テフロンを加え均一になるように撹拌
を行いペースト状とし、上記基板a、bに充填し、乾燥
を行いローラプレスにより圧延し完成極板とした。基板
a、bの目付ならびに活物質量は同等である。
Next, N i (OH), 90% by weight, metallic Co
Add 50% by weight of water, a small amount of glue, and Teflon to the active material powder mixed with 0% by weight, stir to make it uniform, make a paste, fill it into the above substrates a and b, dry it, and press it with a roller press. It was rolled into a completed electrode plate. The basis weight and amount of active material of substrates a and b are the same.

次に基板aを用いた極板と、カドミウム陰極板及びセパ
レーターを組み合わせ、基板aを用いた極板の太い方の
骨格が巻芯に対して外側になるように持回し、公称容量
650mA/flの本発明電池(A)を作成した。
Next, combine the electrode plate using substrate a, the cadmium cathode plate, and the separator, and turn the electrode plate using substrate a so that the thicker skeleton is on the outside of the winding core, and the nominal capacity is 650 mA/fl. A battery (A) of the present invention was prepared.

同様に基板すを用いる以外は、」1記と同一条件で比較
電池(B)を作成した。
A comparative battery (B) was prepared under the same conditions as in Section 1 except that a substrate was used in the same manner.

これらの本発明電池(A)及び比較電池(B)の内部抵
抗を各々500個測定して、ショート発生率の結果を表
1に示す。
The internal resistances of 500 batteries of the present invention (A) and comparative batteries (B) were each measured, and the results of the short circuit occurrence rate are shown in Table 1.

表  1 次に本発明電池(A)と比較電池(B)を0.IC(6
5mA)の電流で16時間充電した後、I C(650
mA)、4C(2600mA)の電流で放電したときの
電池容量を表2に示す。
Table 1 Next, the present invention battery (A) and the comparative battery (B) were tested at 0. IC(6
After charging for 16 hours with a current of 5 mA), the IC (650
Table 2 shows the battery capacity when discharged at a current of 4C (2600mA).

表  2 表1.2より本発明電池は、比較電池に比して、極板持
回時の金属骨格の破断によるショート発生率が低下し、
且つ亀裂等による導電性の低下もなく、高率放電時の劣
化も小さいことがわかる。
Table 2 Table 1.2 shows that the battery of the present invention has a lower short circuit occurrence rate due to rupture of the metal skeleton during rotation of the electrode plate, compared to the comparative battery.
Moreover, it can be seen that there is no decrease in conductivity due to cracks, etc., and deterioration during high rate discharge is also small.

(ト)発明の効果 上述した如く、本発明の電極板によれば、基板の破断が
抑制され、且つ亀裂等による導電性の低下もなく、電池
性能の劣化も防止できるものでありその工業的価値は極
めて大である。
(G) Effects of the Invention As described above, the electrode plate of the present invention suppresses the breakage of the substrate, does not reduce conductivity due to cracks, etc., and prevents deterioration of battery performance. The value is extremely great.

Claims (1)

【特許請求の範囲】[Claims] (1)三次元的に連続した構造を有するスポンジ状金属
多孔体を基板とし、その多孔部に活物質を充填した電極
板において、前記基板として金属骨格を厚み方向に対し
て段階的に太くしたスポンジ状金属多孔体を用い、且つ
渦巻電極体構成時に前記基板の金属骨格の太い方が外周
側に位置することを特徴とする電池用電極板。
(1) In an electrode plate in which a sponge-like metal porous body having a three-dimensional continuous structure is used as a substrate and the porous portions are filled with an active material, the metal skeleton as the substrate is made thicker in stages in the thickness direction. 1. An electrode plate for a battery using a sponge-like metal porous body, and characterized in that the thicker side of the metal skeleton of the substrate is located on the outer peripheral side when forming a spiral electrode body.
JP2196578A 1990-07-24 1990-07-24 Electrode plate for battery Pending JPH0482164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196578A JPH0482164A (en) 1990-07-24 1990-07-24 Electrode plate for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196578A JPH0482164A (en) 1990-07-24 1990-07-24 Electrode plate for battery

Publications (1)

Publication Number Publication Date
JPH0482164A true JPH0482164A (en) 1992-03-16

Family

ID=16360076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196578A Pending JPH0482164A (en) 1990-07-24 1990-07-24 Electrode plate for battery

Country Status (1)

Country Link
JP (1) JPH0482164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265670A (en) * 2006-03-27 2007-10-11 Panasonic Ev Energy Co Ltd Battery
JP2010212244A (en) * 2005-01-14 2010-09-24 Sumitomo Electric Ind Ltd Collector, battery electrode substrate, and methods of producing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212244A (en) * 2005-01-14 2010-09-24 Sumitomo Electric Ind Ltd Collector, battery electrode substrate, and methods of producing them
JP2007265670A (en) * 2006-03-27 2007-10-11 Panasonic Ev Energy Co Ltd Battery

Similar Documents

Publication Publication Date Title
US5780186A (en) High performance zinc anode for battery applications
US6020089A (en) Electrode plate for battery
EP1054464A2 (en) Current collector substrate in electrode for use in alkaline secondary battery, electrode using the same, and alkaline secondary battery having incorporated thereinto the electrode
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
EP0727835A1 (en) Nickel active material for use in alkali storage cells and its manufacturing method
EP1478037A2 (en) Secondary battery using non-sintered thin electrode and process for same
EP0750360B1 (en) Electrode substrate for battery and process for preparing the same
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
US7588861B2 (en) Battery electrode producing method of filling active material into a metal coated fabric substrate
JP2000048823A (en) Non-sintering type electrode and manufacture thereof
JPH0482164A (en) Electrode plate for battery
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JPS6123706A (en) Production of sintered substrate for battery
JP3015455B2 (en) Electrode plate for battery
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
JP2002216771A (en) Electrolytic metal foil for secondary battery negative electrode collector and its production
JPH06314566A (en) Electrode for storage battery
JP3369783B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JPH10112326A (en) Electrode for alkaline secondary battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
KR20010095067A (en) Alkaline battery
JP2000208150A (en) Battery electrode substrate and its production
JPH05174831A (en) Sintered electrode for alkaline storage battery
JPH09219201A (en) Electrode for alkaline battery