JP2010212244A - Collector, battery electrode substrate, and methods of producing them - Google Patents

Collector, battery electrode substrate, and methods of producing them Download PDF

Info

Publication number
JP2010212244A
JP2010212244A JP2010086057A JP2010086057A JP2010212244A JP 2010212244 A JP2010212244 A JP 2010212244A JP 2010086057 A JP2010086057 A JP 2010086057A JP 2010086057 A JP2010086057 A JP 2010086057A JP 2010212244 A JP2010212244 A JP 2010212244A
Authority
JP
Japan
Prior art keywords
density region
nickel
battery
thickness
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010086057A
Other languages
Japanese (ja)
Other versions
JP5285014B2 (en
Inventor
Keizo Harada
敬三 原田
Masahiro Kato
真博 加藤
Hidetoshi Saito
英敏 斉藤
Hitoshi Tsuchida
斉 土田
Tadashi Omura
忠司 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Toyama Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010086057A priority Critical patent/JP5285014B2/en
Publication of JP2010212244A publication Critical patent/JP2010212244A/en
Application granted granted Critical
Publication of JP5285014B2 publication Critical patent/JP5285014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive battery electrode substrate that exhibits excellent high-rate charge/discharge performance, and to provide a battery electrode substrate which exhibits low electrical resistance and avoids a decline in cycle characteristics caused by repetitive charging/discharging. <P>SOLUTION: The collector is a metallic porous body, which has a structure in which a nickel film of an average coverage ratio 85% or higher is coated on a surface of a woven or unwoven resin fiber, and includes two or more layers of a low density region and a high density region having different densities of nickel amounts in a thickness direction wherein a thickness of the low density region is 1.5 times or more of that of the high density region. The battery electrode substrate is formed by filling a battery active material in the collector. The battery electrode substrate has a structure in which the nickel film is overlaid on the surface of the unwoven resin fiber, and uses the metallic porus body in which a transverse-to-longitudinal ratio of the electrical resistance is anisotropic. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルカリ二次電池などに用いられる集電体及びそれを用いた電池用電極基板に関する。   The present invention relates to a current collector used for an alkaline secondary battery or the like and a battery electrode substrate using the current collector.

これまで開発されてきた、アルカリ二次電池などに用いられる集電体としては、以下のようなものがある。
例えば、特許文献1では、金属繊維を3次元的に絡ませた金属多孔体をアルカリ二次電池用集電体に適用している。ここでは、集電体として最適な金属繊維径、孔径、多孔度、密度を規定している。また、特許文献2では、多孔質金属構造の製造方法として、不織布等の樹脂芯材にスパッタリング等の気相法により導電層を形成した後電気メッキにより金属層を形成する方法を開示している。特許文献3では、スルホン化処理等の表面処理を施した不織布材にニッケルメッキ膜を形成したものをアルカリ二次電池用集電体に適用している。樹脂製不織布を芯材として残す事で柔軟性と強度を確保することが述べられている。また、特許文献4では、不織布表面のメッキ量を断面積で規定することで高容量かつハイレート充放電が可能な集電体を開示している。特許文献5では、不織布材の厚み及び製法を規定することで、ハイレート充放電可能な集電体を開示している。
Examples of current collectors that have been developed so far are used for alkaline secondary batteries and the like.
For example, in Patent Document 1, a metal porous body in which metal fibers are entangled three-dimensionally is applied to a current collector for an alkaline secondary battery. Here, the optimum metal fiber diameter, pore diameter, porosity, and density for the current collector are defined. Patent Document 2 discloses a method of forming a metal layer by electroplating after forming a conductive layer on a resin core material such as a nonwoven fabric by a vapor phase method such as sputtering as a method for producing a porous metal structure. . In patent document 3, what formed the nickel plating film in the nonwoven fabric material which performed surface treatments, such as a sulfonation process, is applied to the collector for alkaline secondary batteries. It is stated that flexibility and strength are ensured by leaving a resin nonwoven fabric as a core material. Patent Document 4 discloses a current collector capable of high capacity and high rate charge / discharge by defining the amount of plating on the surface of the nonwoven fabric by a cross-sectional area. Patent Document 5 discloses a current collector that can be charged and discharged at a high rate by defining the thickness and manufacturing method of the nonwoven fabric material.

しかしながら、上記の特許文献1及び2に記載の集電体は、その集電体の強度及び柔軟性が十分ではなかった。また、Ni量を多く使用するため、コスト高であった。上記特許文献1及び2の従来技術は、金属繊維のみからなるため、強度を確保するためには金属量を増やす必要があるが、金属量を増やすと柔軟性が失われ金属繊維がセパレータを突き破って短絡の原因となる。また高価なNi金属を多く使用することでコスト高となる。しかし、コスト低下を狙って金属量を減らすと、強度が不足するだけでなく電気抵抗も上昇しハイレート充放電性能が低下する。   However, the current collectors described in Patent Documents 1 and 2 have not been sufficient in strength and flexibility. Further, since a large amount of Ni is used, the cost is high. Since the prior arts of Patent Documents 1 and 2 are composed of only metal fibers, it is necessary to increase the amount of metal in order to ensure strength. However, if the amount of metal is increased, flexibility is lost and the metal fibers break through the separator. Cause a short circuit. Further, the use of a lot of expensive Ni metal increases the cost. However, if the amount of metal is reduced in order to reduce the cost, not only the strength is insufficient, but also the electrical resistance is increased and the high rate charge / discharge performance is lowered.

また、上記特許文献3〜5に記載の従来技術は、まず電気抵抗が高いことが問題であった。さらに、膜の密着性が不十分なためサイクル寿命が低下していた。これらの従来技術においては、繊維表面への金属膜の被覆が不十分であるため電気抵抗が高くなっていると考えられる。不織布表面のNiめっき量は少ない方が、安価な基板が得られる。しかし、その一方で、不織布の表面のNi量が少ないので電流が流れにくく、電気抵抗が増大し、出力特性が低下する問題が発生する。また、充放電の繰り返しによる膨張収縮により膜の剥離が発生して集電性が低下するため電池サイクル特性が低下する。さらには、捲回することにより基板の抵抗が大きく増大すると言う問題もあった。すなわち、捲回することにより不織布が折れ、これにより表面にめっきされた金属の層が剥離し、電気抵抗が増大するのである。   In addition, the conventional techniques described in Patent Documents 3 to 5 have a problem in that electrical resistance is high. Furthermore, the cycle life was reduced due to insufficient film adhesion. In these prior arts, it is considered that the electrical resistance is high because the fiber surface is not sufficiently coated with the metal film. If the amount of Ni plating on the nonwoven fabric surface is smaller, an inexpensive substrate can be obtained. However, on the other hand, since the amount of Ni on the surface of the nonwoven fabric is small, there is a problem that current does not flow easily, electrical resistance increases, and output characteristics deteriorate. In addition, due to expansion and contraction due to repeated charge and discharge, the film is peeled off and the current collecting property is lowered, so that the battery cycle characteristics are lowered. Further, there is a problem that the resistance of the substrate is greatly increased by winding. That is, by winding, the nonwoven fabric breaks, thereby peeling the metal layer plated on the surface and increasing the electrical resistance.

特開平2−216766号公報JP-A-2-216766 特開昭61−76686号公報JP-A-61-76686 特開2001−313038号公報JP 2001-313038 A 特開2003−109600号公報JP 2003-109600 A 特開2003−282066号公報JP 2003-282066 A

したがって、上記従来技術の難点を解消することが本発明の目的であり、すなわち、強度及び柔軟性が十分な電池用電極基板を提供することである。さらに、本発明の別の目的は、コストが低くしかしながらハイレート充放電性能の優れた電池用電極基板を提供することである。本発明の今ひとつの目的は、電気抵抗が低く、充放電の繰り返しによるサイクル特性の低下が解消できる電池用電極基板を提供することである。また、本発明は、Niめっき量を減らし、かつ基板の電気抵抗を低くできる電池用電極基板を提供することを別の目的とする。   Accordingly, it is an object of the present invention to eliminate the above-mentioned problems of the prior art, that is, to provide a battery electrode substrate having sufficient strength and flexibility. Furthermore, another object of the present invention is to provide a battery electrode substrate with low cost but excellent high-rate charge / discharge performance. Another object of the present invention is to provide a battery electrode substrate that has a low electrical resistance and can eliminate deterioration in cycle characteristics due to repeated charge and discharge. Another object of the present invention is to provide a battery electrode substrate capable of reducing the Ni plating amount and reducing the electric resistance of the substrate.

本発明者らは、鋭意検討の結果、下記(1)〜(3)の集電体、(4)の電極基板、(5)及び(6)の製造方法による集電体、(7)及び(8)の製造方法による電極基板が、上記の目的を達成することを見出した。   As a result of intensive studies, the inventors have made current collectors of the following (1) to (3), electrode substrates of (4), current collectors by the production methods of (5) and (6), (7) and It has been found that the electrode substrate according to the production method of (8) achieves the above object.

(1)織布もしくは不織布の樹脂繊維表面に平均被覆率が85%以上のニッケル膜を被覆した構造を有する金属多孔体であって、厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、低密度領域の厚みが高密度領域の厚みの1.5倍以上である金属多孔体であることを特徴とする集電体である。
(2)上記樹脂繊維がポリプロピレン(PP)を芯、ポリエチレン(PE)を鞘とした芯鞘複合繊維構造であり、PP/PEの芯鞘比率は2/1〜1/4の範囲であることを特徴とする前記(1)に記載の集電体である。
(3)高密度領域のニッケル量の密度が0.8g/cc以上4g/cc以下、低密度領域のニッケル量の密度が0.1g/cc以上0.8g/cc未満であることを特徴とする前記(1)又は(2)に記載の集電体である。
(4)前記(1)〜(3)のいずれか一に記載の集電体に電池活物質を充填してなることを特徴とする電池用電極基板である。
(5)厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、かつ、低密度領域の厚みが高密度領域の厚みの1.5倍以上である樹脂繊維からなる織布もしくは不織布を基材とし、樹脂繊維表面にスパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法により、面密度0.3g/m〜10g/mのニッケル膜を形成した後、電気メッキ法によりニッケル膜を被覆することにより作製された金属多孔体を使用することを特徴とする前記(1)〜(5)のいずれか一に記載の集電体の製造方法である。
(6)織布もしくは不織布の樹脂繊維表面にスパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法により、面密度0.3g/m〜10g/mのニッケル膜を形成した後、傾斜電気メッキ法により、厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、低密度領域の厚みが高密度領域の厚みの1.5倍以上となるようにニッケル膜を被覆することにより作製された金属多孔体を使用することを特徴とする前記(1)〜(5)のいずれか一に記載の集電体の製造方法である。
(7)厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、かつ、低密度領域の厚みが高密度領域の厚みの1.5倍以上である樹脂繊維からなる織布もしくは不織布を基材とし、樹脂繊維表面にスパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法により、面密度0.3g/m〜10g/mのニッケル膜を形成した後、電気メッキ法によりニッケル膜を被覆することにより作製された金属多孔体を用いて集電体を作製し、該集電体に電池活物質を充填することを特徴とする前記(4)に記載の電池用電極基板の製造方法である。
(8)織布もしくは不織布の樹脂繊維表面にスパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法により、面密度0.3g/m〜10g/mのニッケル膜を形成した後、傾斜電気メッキ法により、厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、低密度領域の厚みが高密度領域の厚みの1.5倍以上となるようにニッケル膜を被覆することにより作製された金属多孔体を用いて集電体を作製し、該集電体に電池活物質を充填することを特徴とする前記(4)に記載の電池用電極基板の製造方法である。
(1) A porous metal body having a structure in which a nickel fiber having an average coverage of 85% or more is coated on the surface of a woven or non-woven resin fiber, and the density of nickel in the low density region and the high density region in the thickness direction The current collector is a porous metal body composed of two or more layers having different thicknesses, and the thickness of the low density region is 1.5 times or more the thickness of the high density region.
(2) The resin fiber has a core-sheath composite fiber structure in which polypropylene (PP) is the core and polyethylene (PE) is the sheath, and the core-sheath ratio of PP / PE is in the range of 2/1 to 1/4. It is a collector as described in said (1) characterized by these.
(3) The density of the nickel amount in the high density region is 0.8 g / cc or more and 4 g / cc or less, and the density of the nickel amount in the low density region is 0.1 g / cc or more and less than 0.8 g / cc. The current collector according to (1) or (2).
(4) A battery electrode substrate, wherein the current collector according to any one of (1) to (3) is filled with a battery active material.
(5) A resin comprising two or more layers having different nickel density densities in the low density region and the high density region in the thickness direction, and the thickness of the low density region is 1.5 times or more the thickness of the high density region the woven or nonwoven fabric made of fibers as a base material, a sputtering method on the resin fiber surface, by any of the vapor-phase vacuum deposition and ion plating method, the surface density 0.3g / m 2 ~10g / m 2 The current collector according to any one of (1) to (5) above, wherein a metal porous body produced by forming a nickel film and then coating the nickel film by electroplating is used. It is a manufacturing method.
(6) sputtering resin fiber surface of the woven or nonwoven fabric, by any of the vapor-phase vacuum deposition or ion plating, a nickel film is formed of a surface density 0.3g / m 2 ~10g / m 2 Then, by gradient electroplating, it consists of two or more layers with different nickel density densities in the low density region and the high density region in the thickness direction, and the thickness of the low density region is 1.5 times the thickness of the high density region. The method for producing a current collector according to any one of (1) to (5) above, wherein a metal porous body produced by coating a nickel film so as to have the above is used.
(7) Resin comprising two or more layers having different nickel density densities in the low density region and the high density region in the thickness direction, and the thickness of the low density region is 1.5 times or more the thickness of the high density region the woven or nonwoven fabric made of fibers as a base material, a sputtering method on the resin fiber surface, by any of the vapor-phase vacuum deposition and ion plating method, the surface density 0.3g / m 2 ~10g / m 2 After forming a nickel film, a current collector is produced using a porous metal body produced by coating the nickel film by electroplating, and the current collector is filled with a battery active material. It is a manufacturing method of the electrode substrate for batteries given in the above (4).
(8) sputtering resin fiber surface of the woven or nonwoven fabric, by any of the vapor-phase vacuum deposition or ion plating, a nickel film is formed of a surface density 0.3g / m 2 ~10g / m 2 Then, by gradient electroplating, it consists of two or more layers with different nickel density densities in the low density region and the high density region in the thickness direction, and the thickness of the low density region is 1.5 times the thickness of the high density region. (4), wherein a current collector is produced by using a metal porous body produced by coating a nickel film as described above, and the current collector is filled with a battery active material. It is the manufacturing method of the electrode substrate for batteries.

さらに、本発明者らは検討の結果、本発明の別の態様として下記(9)〜(13)の電池用電極基板によっても上記の課題が解決できることを見出した。
(9)不織布樹脂繊維の表面にニッケル膜を被覆した構造を有する電池用電極基板において、電気抵抗の縦横比に異方性がある金属多孔体を用いたことを特徴とする電池用電極基板である。
(10)上記電気抵抗の縦横比が2倍以上である金属多孔体を用いたことを特徴とする前記(9)に記載の電池用電極基板である。
ここで電気抵抗の縦横比に異方性を持たせることにより、電気抵抗を低減する必要がある方向の抵抗を下げ、抵抗を下げる必要がない方向の抵抗を上げることにより、少ないニッケル量で低い電気抵抗をもつ電池用基板を得ることができる。更に、電気抵抗の縦横比を2倍以上とすることにより、ニッケル被覆量を大幅に減少させても、所望の電気特性が得られる。
(11)上記不織布樹脂繊維が、複数層のウェブを積層することにより構成され、当該複数層のウェブが進行方向の軸で12°以下で交差するように形成されたことを特徴とする前記(9)又は(10)に記載の電池用電極基板である。
ウェブ形成時における接触する各ウェブ同士の進行方向の軸を12°以下とすることにより、不織布繊維が一方向に揃い、ウェブ形成時の進行方向の電気抵抗を小さくすることができ、2倍以上の電気抵抗縦横比をもつ基板が得られる。
(12)上記不織布樹脂繊維が、ポリプロピレン(PP)を芯とし、ポリエチレン(PE)を鞘とした芯鞘複合繊維構造であり、PP/PEの芯鞘比率が0.8以下であることを特徴とする前記(9)〜(11)のいずれか一に記載の電池用電極基板である。
ウェブの進行方向を揃えて不織布を製造すると、不織布繊維の交差点の結合角度が小さくなり、縦横方向の平均電気抵抗が高くなる問題が生じるが、PP/PE比を0.8以下とすることにより繊維交差点の結合が高まり、交差角度が30°以上の場合と同等の平均電気抵抗が得られる。これにより本発明の不織布構造の特徴がより明確に現われる。
(13)上記不織布樹脂繊維が、円筒型電池に組みこむために金属多孔体の電気抵抗の小さな方向を軸として捲回されたことを特徴とする前記(9)〜(12のいずれか一に記載の電池用電極基板である。
不織布ウェブの進行方向に対し平行となる軸を中心に捲回することにより、繊維の折れがほとんど無くなり抵抗の増大を抑制することができ、小さな抵抗値が維持されるので、本発明の不織布構造の特徴がより明確に現われる。
Furthermore, as a result of investigations, the present inventors have found that the above-described problems can be solved by the following battery electrode substrates (9) to (13) as another aspect of the present invention.
(9) A battery electrode substrate having a structure in which a surface of a nonwoven fabric resin fiber is coated with a nickel film, wherein a metal porous body having an anisotropic aspect ratio of electrical resistance is used. is there.
(10) The battery electrode substrate according to (9), wherein a metal porous body having an aspect ratio of the electrical resistance of 2 times or more is used.
Here, by providing anisotropy in the aspect ratio of the electrical resistance, the resistance in the direction in which the electrical resistance needs to be reduced is lowered, and the resistance in the direction in which the resistance does not need to be lowered is increased, so that the amount of nickel is low. A battery substrate having electrical resistance can be obtained. Furthermore, by setting the aspect ratio of electrical resistance to 2 times or more, desired electrical characteristics can be obtained even if the nickel coating amount is greatly reduced.
(11) The nonwoven fabric resin fiber is formed by laminating a plurality of layers of webs, and the plurality of layers of webs are formed so as to intersect at an angle of 12 ° or less on the axis in the traveling direction. The battery electrode substrate according to 9) or (10).
By setting the axis in the direction of travel between the webs in contact with each other at the time of web formation to 12 ° or less, the nonwoven fabric fibers are aligned in one direction, and the electrical resistance in the direction of travel at the time of web formation can be reduced. A substrate having an electrical resistance aspect ratio of
(12) The nonwoven fabric resin fiber has a core-sheath composite fiber structure in which polypropylene (PP) is a core and polyethylene (PE) is a sheath, and the core-sheath ratio of PP / PE is 0.8 or less. The battery electrode substrate according to any one of (9) to (11).
When the nonwoven fabric is manufactured by aligning the web traveling direction, there is a problem that the bonding angle at the intersection of the nonwoven fabric fibers becomes small and the average electrical resistance in the vertical and horizontal directions increases, but by making the PP / PE ratio 0.8 or less. Bonding at the fiber intersection is enhanced, and an average electrical resistance equivalent to that when the intersection angle is 30 ° or more is obtained. Thereby, the characteristic of the nonwoven fabric structure of this invention appears more clearly.
(13) The nonwoven fabric resin fiber is wound around a small direction of electrical resistance of a metal porous body so as to be incorporated into a cylindrical battery, as described in any one of (9) to (12) This is an electrode substrate for a battery.
By winding around an axis parallel to the direction of travel of the nonwoven web, there is almost no folds in the fiber, and an increase in resistance can be suppressed, and a small resistance value is maintained. The features of this appear more clearly.

本発明によって得られる技術的な効果について以下にまとめる。
本発明の集電体を用いた電池用電極基板によれば、電極基板としての強度及び導電性を確保しつつ、電池の高性能化と低コスト化が可能となる。加えて、本発明によれば、樹脂繊維を芯材として残しているので、強度及び柔軟性に優れた電極基板が得られる。さらに、電子の集電と活物質の保持に適した粗密構造を有することから、高容量かつハイレート充放電性能に優れた電池を実現できる。
また、特に電極を巻回する円筒型電池における製造工程において、本発明の厚み方向の粗密構造により、活物質の充填性の改善及び巻回時の短絡不良の低減が可能となり電池製造コストの低減が可能となる。
The technical effects obtained by the present invention are summarized below.
According to the electrode substrate for a battery using the current collector of the present invention, it is possible to improve the performance and cost of the battery while ensuring the strength and conductivity as the electrode substrate. In addition, according to the present invention, since the resin fiber is left as a core material, an electrode substrate excellent in strength and flexibility can be obtained. Furthermore, since it has a density structure suitable for collecting current and retaining active materials, it is possible to realize a battery with high capacity and excellent high-rate charge / discharge performance.
In addition, especially in the manufacturing process of a cylindrical battery in which an electrode is wound, the density structure in the thickness direction of the present invention makes it possible to improve the filling of the active material and reduce short-circuit failure during winding, thereby reducing the battery manufacturing cost. Is possible.

また、本発明によれば、電気抵抗比を高くすることにより、電気抵抗を低減する必要がある方向の抵抗を下げ、抵抗を下げる必要がない方向の抵抗を上げることにより、少ないニッケル量で低い電気抵抗をもつ電池用基板を得ることができる。
またウェブ形成時の進行方向の軸を12°以下とすることにより、不織布繊維が一方向に揃い、ウェブ形成時の進行方向の電気抵抗が小さくなり、より少ないニッケル量で低い電気抵抗をもつ電池用基板を得ることができる。
またウェブの進行方向を揃えて不織布を製造すると、不織布繊維の交差点の結合角度が小さくなり、電気抵抗が高くなる問題が生じるが、PP/PE比を0.8以下とすることにより繊維交差点の結合が高まり、電気抵抗を小さくすることができる。
Further, according to the present invention, by increasing the electric resistance ratio, the resistance in the direction in which the electric resistance needs to be reduced is lowered, and the resistance in the direction in which the resistance does not need to be lowered is increased, so that the amount of nickel is low. A battery substrate having electrical resistance can be obtained.
Further, by setting the axis of the traveling direction at the time of web formation to 12 ° or less, the nonwoven fabric fibers are aligned in one direction, the electrical resistance in the traveling direction at the time of web formation is reduced, and a battery having a low nickel resistance with a smaller amount of nickel A substrate can be obtained.
In addition, when the nonwoven fabric is produced by aligning the traveling direction of the web, there arises a problem that the bonding angle at the intersection of the nonwoven fabric fibers is reduced and the electrical resistance is increased. However, by setting the PP / PE ratio to 0.8 or less, Coupling is increased and electric resistance can be reduced.

また不織布ウェブの進行方法に対し直角となる軸を中心に捲回すると不織布繊維が捲回工程で折れることにより、電気抵抗が増大する。一方、平行となる軸を中心に捲回すると繊維の折れがほとんど無くなり抵抗の増大を抑制することができる。
さらに捲回の軸とウェブの進行方向が一致するので、電池の集電方向の抵抗が低下するので、良好な電池の出力特性が得られる。
In addition, if the nonwoven fabric web is wound around an axis that is perpendicular to the method of progressing the nonwoven fabric web, the nonwoven fabric fibers are broken in the winding process, thereby increasing the electrical resistance. On the other hand, when the wire is wound around a parallel axis, there is almost no fiber bending, and an increase in resistance can be suppressed.
In addition, since the winding axis and the traveling direction of the web coincide with each other, the resistance in the current collecting direction of the battery is reduced, so that favorable battery output characteristics can be obtained.

本発明の電池用電極の金属多孔体を観察した断面像である。It is the cross-sectional image which observed the metal porous body of the battery electrode of this invention. 本発明の電池用電極の金属多孔体の観察像である。It is an observation image of the metal porous body of the battery electrode of this invention. バブルポイント法を説明するための図である。It is a figure for demonstrating the bubble point method. 本発明の集電体の金属多孔体の断面模式図である。Aは2層構造で、Bは高密度層を低密度層で挟んだ3層構造の例である。It is a cross-sectional schematic diagram of the metal porous body of the collector of this invention. A is a two-layer structure, and B is an example of a three-layer structure in which a high-density layer is sandwiched between low-density layers.

樹脂繊維を用いた金属多孔体を使用して電池用電極基板を製造した場合に、繊維表面にニッケル膜が被覆されない部分があると、基板の電気抵抗が高くなる。その上、この電極基板を用いて製造した電池では、電池充放電による基板の膨張収縮により、膜の脱落剥離が発生する。このことによって、さらに電気抵抗が高くなり、電池性能がサイクルを追うごとに劣化する。本発明者らは、樹脂繊維の金属被覆率と電気抵抗及びサイクル特性の相関を詳細に調べた結果、繊維が85%以上の平均被覆率であれば、電極基板の初期抵抗は低く、サイクル後の電気抵抗上昇も小さく、優れた電池性能が得られることが分かった。本発明の電池用電極基板は、これを実現したものである。   When a battery electrode substrate is manufactured using a metal porous body using resin fibers, if there is a portion where the nickel film is not coated on the fiber surface, the electrical resistance of the substrate is increased. In addition, in a battery manufactured using this electrode substrate, the film is peeled off due to expansion and contraction of the substrate due to battery charging and discharging. This further increases the electrical resistance, and the battery performance degrades with each cycle. As a result of examining the correlation between the metal coverage of the resin fiber, the electrical resistance, and the cycle characteristics in detail, the inventors of the present invention have a low initial resistance of the electrode substrate when the fiber has an average coverage of 85% or more, and after the cycle. It was found that the increase in electrical resistance was small, and excellent battery performance was obtained. The battery electrode substrate of the present invention realizes this.

また、電池用電極基板に要求される機能は、電池反応を起こす活物質材料の保持と電子の集電が主要機能であるが、各々の機能は均一な不織布構造でも実現できるが、活物質材料の保持を主目的とした低密度領域層とリードへの電子集電を主目的とした高密度領域層の複数領域からなる粗密構造を有する織布又は不織布構造体を用いることで、より性能向上が実現できる。このとき、電池容量を確保するためにはより多くの活物質材料を充填することが必要であることから、低密度領域層は活物質の充填量が少ない高密度領域層の1.5倍以上の厚みがあればよい。なお、本発明の金属多孔体の粗密構造例を図4−A、Bに示す。   In addition, the functions required for the electrode substrate for the battery are the main functions of holding the active material that causes the battery reaction and collecting the electrons, but each function can be realized even with a uniform nonwoven fabric structure. Performance is improved by using a woven or non-woven fabric structure with a dense structure consisting of multiple regions of a low-density region layer that is mainly used to maintain the current and a high-density region layer that is mainly used to collect electrons to the leads. Can be realized. At this time, since it is necessary to fill more active material in order to secure battery capacity, the low density region layer is 1.5 times or more of the high density region layer with a small amount of active material filling. If there is thickness of. An example of the dense and dense structure of the porous metal body of the present invention is shown in FIGS.

樹脂繊維のニッケル膜による被覆率を85%以上とするためには、樹脂繊維が、ポリプロピレン(PP)を芯、ポリエチレン(PE)を鞘とした芯鞘複合繊維構造であることが好ましい。同時に、PP/PEの芯鞘比率は、2/1〜1/4の範囲であることが望ましい。このような樹脂繊維を用いることによって、繊維間の強固な結合による導電性向上を図ることができ、ニッケル膜の被覆率を85%以上とすることが確実となる。加えて、電池に使用する際に、電池中の強アルカリ中で溶出や分解の無い材質が必要であるため、この樹脂繊維は好適である。   In order to set the coverage of the resin fiber by the nickel film to 85% or more, it is preferable that the resin fiber has a core-sheath composite fiber structure in which polypropylene (PP) is a core and polyethylene (PE) is a sheath. At the same time, the core / sheath ratio of PP / PE is desirably in the range of 2/1 to 1/4. By using such a resin fiber, it is possible to improve conductivity by a strong bond between the fibers, and it is ensured that the coverage of the nickel film is 85% or more. In addition, when used in a battery, this resin fiber is suitable because a material that does not dissolve or decompose in a strong alkali in the battery is required.

このような芯鞘複合繊維構造の樹脂繊維では、樹脂繊維間が強固に接着しているため、強度特性が良好である。さらに、ニッケル膜を被覆した時の繊維間の導電パスが十分に確保されるため電気抵抗が小さくできる。従来のように繊維間が接着せずに単に接触しているだけの場合では、電気メッキによるニッケル膜被覆が不均一になり、最悪の場合にはニッケル膜が被覆されない繊維が生じることで基板としての電気抵抗が高くなる。これに対して、PP/PE芯鞘複合繊維構造であれば、鞘部分のPEは芯部のPPより低融点であるため、織布もしくは不織布を熱処理することにより、多孔体構造を保持した状態で表層のPE層を融解させることができ、繊維間の接着を強固にできる。   In the resin fiber having such a core-sheath composite fiber structure, since the resin fibers are firmly bonded, the strength characteristics are good. Furthermore, since the conductive path between the fibers when the nickel film is coated is sufficiently secured, the electric resistance can be reduced. In the case where the fibers are merely in contact with each other without being bonded as in the conventional case, the nickel film coating by electroplating becomes non-uniform, and in the worst case, a fiber that is not coated with the nickel film is generated, resulting in a substrate. The electrical resistance of becomes higher. In contrast, in the case of a PP / PE core-sheath composite fiber structure, PE in the sheath part has a lower melting point than PP in the core part, so that the porous body structure is maintained by heat treating the woven or non-woven fabric. Thus, the surface PE layer can be melted and adhesion between fibers can be strengthened.

本発明の電極基板において、ニッケル膜の面密度は、50g/m以上300g/m以下であることが望ましい。本発明者らの実験によると、実際に電池に用いた場合のニッケル膜の面密度には最適量があり、50g/m未満では電極の強度及び電気抵抗が不十分となる可能性がある。一方300g/mを超えると、ニッケル膜が硬いため柔軟性が失われ、繊維が電池セパレータを突き破り短絡不良を生じる恐れがあるためである。ニッケル膜の面密度をこの範囲に収まるように製造すれば、ニッケル量を少なくできることで柔軟性を保持し電池の短絡を防止できる。また高価なニッケル量を減らせるのでコスト低減も可能である。また、ニッケル膜の面密度に対して、樹脂繊維の面密度は20g/m以上150g/m以下が適当である。 In the electrode substrate of the present invention, the surface density of the nickel film is desirably 50 g / m 2 or more and 300 g / m 2 or less. According to the experiments by the present inventors, there is an optimum amount of surface density of the nickel film when actually used in a battery, and if it is less than 50 g / m 2 , the strength and electric resistance of the electrode may be insufficient. . On the other hand, if it exceeds 300 g / m 2 , the nickel film is hard, so the flexibility is lost, and the fibers may break through the battery separator and cause a short circuit failure. If the nickel film is manufactured so that the surface density falls within this range, the amount of nickel can be reduced, so that flexibility can be maintained and a short circuit of the battery can be prevented. Further, since the amount of expensive nickel can be reduced, the cost can be reduced. Further, the surface density of the resin fiber is suitably 20 g / m 2 or more and 150 g / m 2 or less with respect to the surface density of the nickel film.

本発明の電極基板では、金属多孔体の孔径が、バブルポイント法による細孔径測定において30%累積孔径(D30)が20μm以上100μm以下を示すものであることが好ましい。この電極基板を電池に使用した際に、孔径に最適範囲があるためであり、D30が20μm未満では電池活物質の充填性が著しく低下する。一方D30が100μmを超えると、集電性能が低下し電池容量低下及びハイレート特性が低下する。   In the electrode substrate of the present invention, the pore diameter of the metal porous body is preferably such that the 30% cumulative pore diameter (D30) is 20 μm or more and 100 μm or less in the pore diameter measurement by the bubble point method. This is because when this electrode substrate is used in a battery, there is an optimum range of pore diameters, and when D30 is less than 20 μm, the filling property of the battery active material is significantly lowered. On the other hand, when D30 exceeds 100 μm, the current collecting performance is lowered, the battery capacity is lowered, and the high rate characteristic is lowered.

ここで、バブルポイント法とは、次のような方法である。多孔体をよく濡らす液体(水またはアルコール)をあらかじめ細孔内に吸収させておき、図3のような器具に設置する。膜の裏側から空気圧をかけて、膜表面に気泡の発生が観察できる圧力を測定する。これをバブルポイントと呼ぶ。以下に示す、液体の表面張力とこの圧力との関係式から細孔径が推算できる。式中、d[m]は細孔径、θは膜素材と溶媒の接触角、γ[N/m]は溶媒の表面張力、ΔP[Pa]はバブルポイント圧力である。   Here, the bubble point method is the following method. A liquid (water or alcohol) that wets the porous body is absorbed in the pores in advance, and installed in an instrument as shown in FIG. Air pressure is applied from the back side of the membrane to measure the pressure at which bubbles can be observed on the membrane surface. This is called a bubble point. The pore diameter can be estimated from the relational expression between the surface tension of the liquid and the pressure shown below. In the formula, d [m] is the pore diameter, θ is the contact angle between the membrane material and the solvent, γ [N / m] is the surface tension of the solvent, and ΔP [Pa] is the bubble point pressure.

本発明の電極基板を製造するには、次のような方法が好適である。まず、上記のような樹脂繊維よりなる織布もしくは不織布に、スパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法で面密度0.3g/m以上10g/m以下のニッケル膜を形成する。続けて電気メッキ法によりニッケル膜をさらに形成し、金属多孔体を作製する。気相法によれば、高エネルギーを有したニッケル粒子を繊維表面に衝突させるため密着性に優れかつ均一な導電層が形成できる。さらに、上記のような芯鞘複合繊維構造の効果により、その後の電気メッキにより85%以上の被覆率のニッケル膜が形成できる。 The following method is suitable for producing the electrode substrate of the present invention. First, a surface density of 0.3 g / m 2 or more and 10 g / m 2 or less is applied to a woven or non-woven fabric made of resin fibers as described above by a gas phase method of sputtering, vacuum deposition, or ion plating. A nickel film is formed. Subsequently, a nickel film is further formed by electroplating to produce a metal porous body. According to the vapor phase method, since nickel particles having high energy collide with the fiber surface, a uniform conductive layer having excellent adhesion can be formed. Furthermore, due to the effect of the core-sheath composite fiber structure as described above, a nickel film having a coverage of 85% or more can be formed by subsequent electroplating.

上記のような芯鞘複合繊維構造の樹脂繊維では、樹脂繊維間が強固に接着しているため、強度特性が良好である。さらに、ニッケル膜を被覆した時の繊維間の導電パスが十分に確保されるため電気抵抗が小さくできる。従来のように繊維間が接着せずに単に接触しているだけの場合では、電気メッキによるニッケル膜被覆が不均一になり、最悪の場合にはニッケル膜が被覆されない繊維が生じることで基板としての電気抵抗が高くなる。これに対して、PP/PE芯鞘複合繊維構造であれば、鞘部分のPEは芯部のPPより低融点であるため、織布もしくは不織布を熱処理することにより、多孔体構造を保持した状態で表層のPE層を融解させることができ、繊維間の接着を強固にできる。   In the resin fiber having the core-sheath composite fiber structure as described above, since the resin fibers are firmly bonded, the strength characteristics are good. Furthermore, since the conductive path between the fibers when the nickel film is coated is sufficiently secured, the electric resistance can be reduced. In the case where the fibers are merely in contact with each other without being bonded as in the conventional case, the nickel film coating by electroplating becomes non-uniform, and in the worst case, a fiber that is not coated with the nickel film is generated, resulting in a substrate. The electrical resistance of becomes higher. In contrast, in the case of a PP / PE core-sheath composite fiber structure, PE in the sheath part has a lower melting point than PP in the core part, so that the porous body structure is maintained by heat treating the woven or non-woven fabric. Thus, the surface PE layer can be melted and adhesion between fibers can be strengthened.

本発明の集電体において、高密度領域の密度は0.8g/cc以上4g/cc以下、低密度領域の密度は0.1g/cc以上0.8g/cc未満であることが望ましい。
本発明者らの実験によると、本発明の集電体を実際に電池に用いた場合の高密度領域と低密度領域の密度には最適量があり、高密度領域のニッケル量の密度が0.8g/cc未満では電子の集電性に格別な効果が見られないこと、4g/cc以上では充填できる活物質量が少なくなり電池容量が低下することとニッケル膜が硬いため柔軟性が失われ繊維が電池セパレータを突き破り短絡不良を生じる恐れがあるためである。さらに、低密度領域のニッケル量の密度が0.1g/cc未満では繊維全面に均一なニッケル膜が形成できないこと、0.8g/cc以上では活物質の充填量が少なくなり電池容量が低下することとニッケル膜が硬くなるため繊維の破断等が生じ長期サイクルにより集電性が低下し電池容量の低下を来たすためである。
In the current collector of the present invention, it is desirable that the density of the high density region is 0.8 g / cc or more and 4 g / cc or less, and the density of the low density region is 0.1 g / cc or more and less than 0.8 g / cc.
According to the experiments by the present inventors, there is an optimum amount of density in the high density region and the low density region when the current collector of the present invention is actually used in a battery, and the density of the nickel amount in the high density region is 0. If it is less than 8 g / cc, there is no particular effect on the current collection of electrons. If it is 4 g / cc or more, the amount of active material that can be filled decreases, the battery capacity decreases, and the nickel film is hard, so the flexibility is lost. This is because crack fibers may break through the battery separator and cause a short circuit failure. Furthermore, when the density of the nickel amount in the low density region is less than 0.1 g / cc, a uniform nickel film cannot be formed on the entire surface of the fiber, and when the density is 0.8 g / cc or more, the amount of active material filling decreases and the battery capacity decreases. This is because the nickel film becomes hard, resulting in fiber breakage and the like, resulting in a decrease in current collection and a reduction in battery capacity due to a long-term cycle.

本発明の集電体あるいは電極基板を製造するには、次のような方法が好適である。
まず、厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、低密度領域の厚みが高密度領域の厚みの1.5倍以上である樹脂繊維からなる織布もしくは不織布を基材として、スパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法で面密度0.3g/m以上10g/m以下のニッケル膜を形成する。続けて電気メッキ法によりニッケル膜をさらに形成し、金属多孔体を作製する。気相法によれば、高エネルギーを有したニッケル粒子を繊維表面に衝突させるため、密着性に優れかつ均一な導電層が形成できる。さらに、上記のような芯鞘複合繊維構造の効果により、その後の電気メッキにより85%以上の被覆率のニッケル膜が形成できる。また、粗密構造を有する織布もしくは不織布は、湿式法、乾式法問わず、用いる樹脂繊維の繊維径や繊維密度を調整することで層状にニッケル量の密度の異なる構造を作製することができる。
The following method is suitable for producing the current collector or electrode substrate of the present invention.
First, it consists of two or more layers having different nickel density densities in the low density region and the high density region in the thickness direction, and the resin layer has a thickness of the low density region that is 1.5 times or more the thickness of the high density region. A nickel film having a surface density of 0.3 g / m 2 or more and 10 g / m 2 or less is formed using a woven fabric or a nonwoven fabric as a base material by any one of a sputtering method, a vacuum deposition method, and an ion plating method. Subsequently, a nickel film is further formed by electroplating to produce a metal porous body. According to the vapor phase method, nickel particles having high energy are collided with the fiber surface, so that a uniform conductive layer having excellent adhesion can be formed. Furthermore, due to the effect of the core-sheath composite fiber structure as described above, a nickel film having a coverage of 85% or more can be formed by subsequent electroplating. In addition, a woven fabric or a nonwoven fabric having a coarse / dense structure can be prepared in a layered structure having different density of nickel by adjusting the fiber diameter and fiber density of the resin fiber to be used regardless of a wet method or a dry method.

ニッケル膜の平均被覆率が85%以上である金属多孔体を使用する本発明の電極基板の例について、観察した金属多孔体構造を図1及び図2に示す。図1は、本発明の電極基板の金属多孔体をエポキシ樹脂で埋め込んだ後に研磨加工することにより厚み方向の断面組織を光学顕微鏡にて観察した結果である。ほぼ一定の厚さのニッケル膜が白い幅のある線となって現れており、この膜で包まれているのが樹脂繊維である。樹脂繊維のニッケル膜に覆われていない部分は、白い線が途切れた部分として認識できる。この断面図から、樹脂繊維の表面の85%以上がニッケル膜で被覆されていることが確認される。ここで被覆率の評価方法は、図1に示す断面組織から無作為抽出した繊維20本について樹脂繊維外周のNiで覆われた白い部分の長さを分母、途切れた部分の長さを分子とした割合を算出し、1から該割合を引いた値を百分率として算出することにより行った。
図2は、本発明の電極基板の金属多孔体構造を拡大したSEM観察像である。繊維同士が強固に結合している様子が見て取れる。
また、本発明の集電体の例について、金属多孔体構造の断面模式図を図4に示す。
FIGS. 1 and 2 show the observed porous metal structure of an example of the electrode substrate of the present invention using a porous metal body having an average nickel film coverage of 85% or more. FIG. 1 shows the result of observing a cross-sectional structure in the thickness direction with an optical microscope by embedding a metal porous body of an electrode substrate of the present invention with an epoxy resin and then polishing it. A nickel film having a substantially constant thickness appears as a white line, and the resin fiber is surrounded by this film. A portion of the resin fiber not covered with the nickel film can be recognized as a portion where the white line is interrupted. From this cross-sectional view, it is confirmed that 85% or more of the surface of the resin fiber is covered with the nickel film. Here, the evaluation method of the coverage is as follows. For the 20 fibers randomly extracted from the cross-sectional structure shown in FIG. 1, the length of the white portion covered with Ni on the outer periphery of the resin fiber is the denominator, and the length of the discontinuous portion is the numerator. The ratio was calculated, and the value obtained by subtracting the ratio from 1 was calculated as a percentage.
FIG. 2 is an SEM observation image in which the porous metal structure of the electrode substrate of the present invention is enlarged. You can see how the fibers are tightly bonded.
Moreover, about the example of the electrical power collector of this invention, the cross-sectional schematic diagram of a metal porous body structure is shown in FIG.

電気抵抗の縦横比が2倍以上である金属多孔体を使用する、本発明の電極基板を製造する際には、次のような方法を用いることができる。まず、不織布樹脂繊維の製造工程において、カード機などでウェブを形成した後、形成された複数のウェブ層を重ね合わせる時にウェブの進行方向の水平軸が30°未満と成るように積層させる。また、好ましくはこの角度を12°以内になるように積層させる。より好ましくはこの角度を10°以内になるように積層させる。その後、このウェブを加熱・加圧し、熱癒着させることにより巻取りフープ状の不織布を製造する。
その後、真空蒸着、スパッタリング等の真空成膜法、または無電解めっきにより不織布表面に導電性金属の層を形成することにより導電処理を行う。最後にニッケルを電気めっき法により、50g/mから300g/mのニッケル膜を被覆形成し、金属多孔体を作製する。
When manufacturing the electrode substrate of the present invention using a metal porous body having an aspect ratio of electrical resistance of 2 times or more, the following method can be used. First, in the manufacturing process of nonwoven resin fibers, after forming a web with a card machine or the like, the webs are laminated so that the horizontal axis in the traveling direction of the web is less than 30 ° when the formed web layers are overlapped. In addition, the layers are preferably laminated so that the angle is within 12 °. More preferably, lamination is performed so that this angle is within 10 °. Thereafter, the web is heated and pressurized and heat-sealed to produce a wound hoop-like nonwoven fabric.
Thereafter, the conductive treatment is performed by forming a conductive metal layer on the surface of the nonwoven fabric by a vacuum film formation method such as vacuum deposition or sputtering, or electroless plating. Finally by electroplating nickel on a nickel film of 300 g / m 2 to form a coating 50 g / m 2, to produce a metallic porous body.

以下、実施例及び比較例によって本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例1
樹脂繊維として、繊維径が0.8dtexで芯鞘比が3/7のPP/PE複合繊維を用いて厚み0.1mmで目付け40g/mの高密度層、繊維径が3.6dtexで芯鞘比が5/5のPP/PE複合繊維を用いて厚み0.7mmで目付け35g/mの低密度層の2層構造からなる不織布を作製した。次いで、この不織布に、スパッタリング法により1.8g/mのニッケル膜を形成し導電処理を行った。その後、電気メッキ法により繊維表面をニッケル被覆し、No.21〜25の各種金属多孔体よりなる集電体を作製した。作製した不織布構造の金属多孔体の密度、断面組織より測定したニッケル膜の被覆率及び電気抵抗値を以下の表1に示す。
Example 1
As a resin fiber, a PP / PE composite fiber having a fiber diameter of 0.8 dtex and a core-sheath ratio of 3/7 is used. A high-density layer having a thickness of 0.1 mm and a basis weight of 40 g / m 2 , a fiber diameter of 3.6 dtex and a core Using a PP / PE composite fiber having a sheath ratio of 5/5, a nonwoven fabric having a two-layer structure of a low density layer having a thickness of 0.7 mm and a weight per unit area of 35 g / m 2 was produced. Next, a 1.8 g / m 2 nickel film was formed on the nonwoven fabric by a sputtering method and subjected to a conductive treatment. Thereafter, the fiber surface was coated with nickel by electroplating. Current collectors made of various metal porous bodies of 21 to 25 were produced. Table 1 below shows the density of the metal porous body having a nonwoven fabric structure, the nickel membrane coverage and the electrical resistance measured from the cross-sectional structure.

次に、表1のNo.21〜25のサンプル各々の集電体を用いて、Ni水素電池のニッケル極を作製した。水酸化ニッケルを主とする活物質を充填した後、表面を平滑化しその後120℃で1時間乾燥した。得られた電極は1トン/cmの圧力で加圧し、縦長さ180mm、横幅220mm、厚さ0.4mmとした。このニッケル極それぞれ5枚と、相手極として公知のミッシュメタルニッケル(MmNi)系水素吸蔵合金極6枚、親水化処理PP不織布セパレータを用いて、角型密閉形ニッケル水素電池を構成した。電解液として比重1.3のKOH水溶液に25g/Lの水酸化リチウムを溶解して用いた。 Next, no. The nickel electrode of the Ni hydrogen battery was produced using the current collectors of the samples 21 to 25. After filling with an active material mainly composed of nickel hydroxide, the surface was smoothed and then dried at 120 ° C. for 1 hour. The obtained electrode was pressurized with a pressure of 1 ton / cm 2 to have a longitudinal length of 180 mm, a lateral width of 220 mm, and a thickness of 0.4 mm. Each of these nickel electrodes, a known misch metal nickel (MmNi) -based hydrogen storage alloy electrode as 6 mating electrodes, and a hydrophilized PP nonwoven fabric separator were used to form a square sealed nickel-metal hydride battery. As an electrolytic solution, 25 g / L lithium hydroxide was dissolved in a KOH aqueous solution having a specific gravity of 1.3.

このように製造した各電池は、電極に使用した表1のサンプルNoと対応して、それぞれの電池Noを21B、22B、23B…とする。各電池の放電電流10Aと200Aの際の放電電圧と容量を調べた。また寿命試験として50A放電において1000サイクル後の容量維持率を評価した。結果を以下の表2に示す。   Each battery manufactured in this way corresponds to the sample No. of Table 1 used for the electrodes, and the respective battery Nos. Are 21B, 22B, 23B. The discharge voltage and capacity at the time of discharge current 10A and 200A of each battery were examined. As a life test, the capacity retention rate after 1000 cycles in 50 A discharge was evaluated. The results are shown in Table 2 below.

比較例1
ニッケル膜の被覆率の小さい集電体No.21は比較例である。
Comparative Example 1
Current collector No. having a small nickel film coverage 21 is a comparative example.

実施例2
下記表3に示した、No.26〜30の各種仕様の不織布を用いて、スパッタリング法により1.0g/mのニッケル膜を形成しそれぞれに導電処理を行った。その後、電気メッキ法により繊維表面を平均被覆率95%でニッケル被覆し、各種金属多孔体電極基板を得た。得られた各種基板の電気抵抗値を表3に示す。尚、全ての金属多孔体電極基板は、低密度領域が厚み0.6mmで密度0.15g/cc、高密度領域が厚み0.1mmで密度1.7g/ccとした。
Example 2
No. shown in Table 3 below. Using non-woven fabrics having various specifications of 26 to 30, a nickel film of 1.0 g / m 2 was formed by a sputtering method, and each was subjected to a conductive treatment. Thereafter, the surface of the fiber was nickel-coated with an average coverage of 95% by electroplating to obtain various metal porous electrode substrates. Table 3 shows the electrical resistance values of the obtained various substrates. In all metal porous electrode substrates, the low density region had a thickness of 0.6 mm and a density of 0.15 g / cc, and the high density region had a thickness of 0.1 mm and a density of 1.7 g / cc.

実施例1と同様に、表3掲載のNo.26〜30の基板を用いて、ニッケル水素電池を作製した。各電池は、実施例1と同様に、表3のサンプルNoと対応して、それぞれの電池Noを26B、27B、28B…とする。これらについて性能評価を行った結果を以下の表4に示す。   As in Example 1, No. 1 listed in Table 3 was used. Nickel metal hydride batteries were fabricated using 26 to 30 substrates. Similarly to Example 1, each battery corresponds to the sample No. in Table 3, and the respective battery Nos. Are 26B, 27B, 28B. The results of performance evaluation for these are shown in Table 4 below.

実施例3
樹脂繊維として、繊維径が0.6dtexで芯鞘比が3/7のPP/PE複合繊維を用いて厚み0.1mmで目付け35g/mの高密度層、繊維径が4.2dtexで芯鞘比が5/5のPP/PE複合繊維を用いて厚み0.6mmで目付け30g/mの低密度層の2層構造からなる不織布を作製した。次いで、この不織布に、スパッタリング法により1.3g/mのニッケル膜を形成し導電処理を行った。その後、電気メッキ法により繊維表面をニッケル被覆し、処理材とアノード電極間距離を調整することによりNiメッキ量を調整しNo.31〜36の各種金属多孔体よりなる集電体を作製した。作製した不織布構造の金属多孔体の密度、断面組織より測定したニッケル膜の被覆率及び電気抵抗値を以下の表5に示す。
Example 3
As a resin fiber, a PP / PE composite fiber having a fiber diameter of 0.6 dtex and a core-sheath ratio of 3/7 is used to form a high-density layer having a thickness of 0.1 mm and a weight per unit area of 35 g / m 2 , and a fiber diameter of 4.2 dtex. Using a PP / PE composite fiber having a sheath ratio of 5/5, a nonwoven fabric having a two-layer structure of a low density layer having a thickness of 0.6 mm and a basis weight of 30 g / m 2 was produced. Subsequently, a 1.3 g / m 2 nickel film was formed on the nonwoven fabric by a sputtering method and subjected to a conductive treatment. Thereafter, the surface of the fiber was coated with nickel by electroplating, and the amount of Ni plating was adjusted by adjusting the distance between the treatment material and the anode electrode. Current collectors made of various metal porous bodies of 31 to 36 were produced. Table 5 below shows the density of the metal porous body having a non-woven fabric structure, the nickel membrane coverage and the electrical resistance measured from the cross-sectional structure.

表5の集電体を用いて実施例1と同様にニッケル水素電池を作製した。各電池は、表5のサンプルNoと対応して、それぞれの電池Noを31B、32B、33B…とする。これらについて性能評価を行った結果を以下の表6に示す。   Using the current collector shown in Table 5, a nickel metal hydride battery was produced in the same manner as in Example 1. Each battery corresponds to the sample No. in Table 5, and the battery Nos. Are 31B, 32B, 33B. The results of performance evaluation for these are shown in Table 6 below.

電池36Bをサイクル試験後解体調査した結果、低密度部のニッケル膜の一部に破断や脱落が生じていることが確認でき、これらがサイクル特性の低下をきたしたものと考えられる。   As a result of disassembling the battery 36B after the cycle test, it can be confirmed that a part of the nickel film in the low density portion is broken or dropped off, which is considered to have caused a decrease in cycle characteristics.

実施例4
樹脂繊維として、繊維径が2.2dtexで芯鞘比が1/1のPP/PE複合繊維からなる厚み0.4mmの不織布材を用いた。この不織布に、スパッタリング法により0.8g/mのニッケル膜を形成し導電処理を行った。その後、以下に示す傾斜電気メッキ法により繊維表面をニッケル被覆し、No.37〜40の各種金属多孔体電極基板を作製した。作製した不織布構造の金属多孔体の高密度側と低密度側のメッキ厚を10箇所測定し、その平均値を以下の表7に示す。尚、メッキ厚の測定は、電極基板の金属多孔体をエポキシ樹脂で埋め込んだ後に研磨加工することにより厚み方向の断面組織を光学顕微鏡にて観察することにより行なった。また同時に評価したニッケル膜の平均被覆率は97%であった。
Example 4
As the resin fiber, a non-woven fabric material having a thickness of 0.4 mm made of PP / PE composite fiber having a fiber diameter of 2.2 dtex and a core-sheath ratio of 1/1 was used. A 0.8 g / m 2 nickel film was formed on the nonwoven fabric by a sputtering method and subjected to a conductive treatment. Thereafter, the fiber surface was coated with nickel by the following gradient electroplating method. Various metal porous electrode substrates of 37 to 40 were produced. Ten high-density and low-density plating thicknesses of the produced non-woven structure metal porous body were measured, and the average values are shown in Table 7 below. The plating thickness was measured by observing the cross-sectional structure in the thickness direction by embedding the metal porous body of the electrode substrate with an epoxy resin and polishing it. The average coverage of the nickel film evaluated at the same time was 97%.

表7において、No.38のサンプルは、上記導電処理を行なった不織布を室温のイオン交換水に浸漬することにより脱泡処理を行なった後、ニッケル濃度100G・Lのスルファミン酸ニッケル浴中において、ワークの両面側にニッケルのアノードケースを配置し、印加電圧を調整し、20dA/cmと10dA/cmの電流密度に設定することにより、両面側でメッキ厚の異なる電気メッキを行なった。 In Table 7, no. Sample 38 was subjected to defoaming treatment by immersing the above-mentioned non-woven fabric subjected to the conductive treatment in ion-exchanged water at room temperature, and then in a nickel sulfamate bath having a nickel concentration of 100 G · L, nickel on both sides of the workpiece. The anode case was arranged, the applied voltage was adjusted, and the current density was set to 20 dA / cm 2 and 10 dA / cm 2 , thereby performing electroplating with different plating thicknesses on both sides.

同様に両面の電流密度を15dA/cmとして、両面のメッキ厚を均一化した比較サンプルNo.37を製作した。
また、No.39のサンプルでは、サンプルのワークとアノードケースの間の距離を片側は25mm、他方側を60mmとすることにより両面側でメッキ厚の異なる電気メッキを行なった。
更に、No.40のサンプルでは電流密度は15dA/cmと両面で均一にしたが、アノードケースの長さを片側を2.4m、他方を1.4mとし、このアノードケース間を8cm/分速度でワークを通過させながら連続的にメッキすることにより作製した。
Similarly, comparative sample No. 1 in which the current density on both sides was 15 dA / cm 2 and the plating thickness on both sides was made uniform was obtained. 37 was made.
No. In the 39 samples, electroplating with different plating thickness was performed on both sides by setting the distance between the sample workpiece and the anode case to 25 mm on one side and 60 mm on the other side.
Furthermore, no. In 40 samples, the current density was 15 dA / cm 2 and uniform on both sides. However, the length of the anode case was 2.4 m on one side and 1.4 m on the other side. It was produced by continuously plating while passing through.

表7の集電体を用いて実施例1と同様にニッケル水素電池を作製した。各電池は表7のサンプルNoと対応してそれぞれ電池Noを37B、38B、39B・・とする。これらについて性能評価を行った結果を以下の表8に示す。   Using the current collector shown in Table 7, a nickel metal hydride battery was produced in the same manner as in Example 1. Each battery has a battery No. of 37B, 38B, 39B,. The results of performance evaluation for these are shown in Table 8 below.

実施例5
下記表9に示す各種の金属多孔体を上述の製造方法によって作製した。この際にウェブの進行方向の軸が、No.41〜48(実施例)においては10°以下、No.49〜52(比較例)においては30°以上になるようにウェブを積層した、このようにして得られた各金属多孔体について、電気抵抗を計測し、その結果を表9に示す。
Example 5
Various metal porous bodies shown in Table 9 below were produced by the above-described production method. At this time, the axis of the web traveling direction is No. Nos. 41 to 48 (Examples), 10 ° or less, No. In 49 to 52 (comparative examples), the electrical resistance was measured for each of the metal porous bodies obtained in this manner in which the webs were laminated so as to be 30 ° or more, and the results are shown in Table 9.

次いで、表9の金属多孔体を用いてNi水素電池のニッケル極を作製した。水酸化ニッケルを主とする活物質を充填した後、表面を平滑化した後120℃で1時間乾燥した。得られた電極は1トン/cmの圧力で加圧し、縦長さ70mm、横幅150mm、厚さ0.4mmとした。このニッケル極をそれぞれ10枚、相手極として公知のミッシュメタルニッケル(MmNi)系水素吸蔵合金極11枚、親水化処理PP不織布セパレータを用いて角型密閉形ニッケル水素電池を構成した。尚、電極リードは電気抵抗の低い縦方向集電となるようにそれぞれの電極にリードを溶接した。電解液として比重1.3のKOH水溶液に25g/Lの水酸化リチウムを溶解して用いた。
このように製造した各電池は、電極に使用した表9のサンプルNo.に対応して、それぞれ電池No.41B、42B、43B・・・とする。各電池の10Aと100Aの際の放電電圧と容量を調べた。また寿命試験として50A放電において1000サイクル後の容量維持率を評価した結果を表10に示す。
Next, a nickel electrode of a Ni hydrogen battery was produced using the metal porous body shown in Table 9. After filling with an active material mainly composed of nickel hydroxide, the surface was smoothed and then dried at 120 ° C. for 1 hour. The obtained electrode was pressurized with a pressure of 1 ton / cm 2 to have a longitudinal length of 70 mm, a lateral width of 150 mm, and a thickness of 0.4 mm. A square sealed nickel-metal hydride battery was constructed using 10 nickel electrodes, 11 known misch metal nickel (MmNi) -based hydrogen storage alloy electrodes, and a hydrophilized PP nonwoven fabric separator. In addition, the lead was welded to each electrode so that an electrode lead may become the vertical direction current collection with low electrical resistance. As an electrolytic solution, 25 g / L lithium hydroxide was dissolved in a KOH aqueous solution having a specific gravity of 1.3.
Each battery manufactured in this way was prepared using the sample No. in Table 9 used for the electrode. Corresponding to each battery No. 41B, 42B, 43B... The discharge voltage and capacity at 10A and 100A of each battery were examined. Table 10 shows the results of evaluating the capacity retention after 1000 cycles in a 50 A discharge as a life test.

実施例6
表9の金属多孔体No.41を用いて円筒型Ni水素電池を作製した。ニッケル極は水酸化ニッケルを主とする活物質を充填した後、表面を平滑化した後120℃で1時間乾燥した。得られた電極は1トン/cmの圧力で加圧し、縦長さ40mm、横幅350mm、厚さ0.3mmとした。このニッケル極と公知のMmNi系水素吸蔵合金極、親水化処理PP不織布セパレータを捲回して円筒密閉形ニッケル水素電池を構成した。電解液として比重1.3のKOH水溶液に25g/Lの水酸化リチウムを溶解して用いた。ここで、ニッケル極を金属多孔体の電気抵抗の低い縦方向を捲回の軸方向とした電池を1SBA、電気抵抗の低い縦方向を捲回方向とした電池を1SBBとする。各電池の1A放電と10A放電の際の放電電圧と容量を調べた。また寿命試験として1A放電において500サイクル後の容量維持率を評価した結果を表11に示す。
Example 6
The porous metal body No. 41 was used to produce a cylindrical Ni-hydrogen battery. The nickel electrode was filled with an active material mainly composed of nickel hydroxide, smoothed and then dried at 120 ° C. for 1 hour. The obtained electrode was pressurized at a pressure of 1 ton / cm 2 to have a length of 40 mm, a width of 350 mm, and a thickness of 0.3 mm. This nickel electrode, a known MmNi-based hydrogen storage alloy electrode, and a hydrophilized PP nonwoven fabric separator were wound to form a cylindrical sealed nickel-metal hydride battery. As an electrolytic solution, 25 g / L lithium hydroxide was dissolved in a KOH aqueous solution having a specific gravity of 1.3. Here, a battery in which the nickel electrode is a metal porous body having a longitudinal direction with a low electrical resistance in the winding axial direction is defined as 1 SBA, and a battery having a longitudinal direction with a low electrical resistance in the winding direction is defined as 1 SBB. The discharge voltage and capacity at the time of 1 A discharge and 10 A discharge of each battery were examined. Table 11 shows the results of evaluating the capacity retention after 500 cycles in 1 A discharge as a life test.

本発明の集電体はそのまま或いは電池活物質以外の物質例えば触媒物質を充填することにより、触媒電極、水処理電極その他の電極基板に利用することができる。また、本発明の電池用電極基板は少ないニッケル量で低い電気抵抗を持つので、アルカリ二次電池などに利用することが可能である。   The current collector of the present invention can be used for an electrode substrate of a catalyst electrode, a water treatment electrode or the like as it is or by filling a material other than the battery active material such as a catalyst material. In addition, since the battery electrode substrate of the present invention has a low nickel resistance and a low electrical resistance, it can be used for alkaline secondary batteries and the like.

Claims (13)

織布もしくは不織布の樹脂繊維表面に平均被覆率が85%以上のニッケル膜を被覆した構造を有する金属多孔体であって、厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、低密度領域の厚みが高密度領域の厚みの1.5倍以上である金属多孔体であることを特徴とする集電体。   A porous metal body having a structure in which a nickel fiber having an average coverage of 85% or more is coated on the surface of a woven or non-woven resin fiber, and the density of nickel amounts in the low density region and the high density region differ in thickness direction 2 A current collector comprising a layer having at least one layer, and a low-density region having a thickness of 1.5 times or more that of a high-density region. 上記樹脂繊維がポリプロピレン(PP)を芯、ポリエチレン(PE)を鞘とした芯鞘複合繊維構造であり、PP/PEの芯鞘比率は2/1〜1/4の範囲であることを特徴とする請求項1に記載の集電体。   The resin fiber has a core / sheath composite fiber structure in which polypropylene (PP) is a core and polyethylene (PE) is a sheath, and the core / sheath ratio of PP / PE is in a range of 2/1 to 1/4. The current collector according to claim 1. 高密度領域のニッケル量の密度が0.8g/cc以上4g/cc以下、低密度領域のニッケル量の密度が0.1g/cc以上0.8g/cc未満であることを特徴とする請求項1又は2に記載の集電体。   The density of the nickel amount in the high density region is 0.8 g / cc or more and 4 g / cc or less, and the density of the nickel amount in the low density region is 0.1 g / cc or more and less than 0.8 g / cc. The current collector according to 1 or 2. 請求項1〜3のいずれか一に記載の集電体に電池活物質を充填してなることを特徴とする電池用電極基板。   A battery electrode substrate, wherein the current collector according to any one of claims 1 to 3 is filled with a battery active material. 厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、かつ、低密度領域の厚みが高密度領域の厚みの1.5倍以上である樹脂繊維からなる織布もしくは不織布を基材とし、樹脂繊維表面にスパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法により、面密度0.3g/m〜10g/mのニッケル膜を形成した後、電気メッキ法によりニッケル膜を被覆することにより作製された金属多孔体を使用することを特徴とする請求項1〜5のいずれか一に記載の集電体の製造方法。 It consists of two or more layers with different nickel density densities in the low density region and the high density region in the thickness direction, and consists of resin fibers in which the thickness of the low density region is 1.5 times or more the thickness of the high density region the woven or nonwoven fabric as a base material, a sputtering method on the resin fiber surface, by any of the vapor-phase vacuum deposition and ion plating, the nickel film surface density 0.3g / m 2 ~10g / m 2 The method for producing a current collector according to any one of claims 1 to 5, wherein a porous metal body formed by coating a nickel film by electroplating after formation is used. 織布もしくは不織布の樹脂繊維表面にスパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法により、面密度0.3g/m〜10g/mのニッケル膜を形成した後、傾斜電気メッキ法により、厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、低密度領域の厚みが高密度領域の厚みの1.5倍以上となるようにニッケル膜を被覆することにより作製された金属多孔体を使用することを特徴とする、請求項1〜5のいずれか一に記載の集電体の製造方法。 Sputtering resin fiber surface of the woven or nonwoven fabric, by any of the vapor-phase vacuum deposition and ion plating method to form a nickel film surface density 0.3g / m 2 ~10g / m 2 , By gradient electroplating, it consists of two or more layers with different nickel density in the low density region and high density region in the thickness direction, and the thickness of the low density region is 1.5 times or more the thickness of the high density region. The method for producing a current collector according to claim 1, wherein a porous metal body produced by coating a nickel film is used. 厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、かつ、低密度領域の厚みが高密度領域の厚みの1.5倍以上である樹脂繊維からなる織布もしくは不織布を基材とし、樹脂繊維表面にスパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法により、面密度0.3g/m〜10g/mのニッケル膜を形成した後、電気メッキ法によりニッケル膜を被覆することにより作製された金属多孔体を用いて集電体を作製し、該集電体に電池活物質を充填することを特徴とする請求項4に記載の電池用電極基板の製造方法。 It consists of two or more layers with different nickel density densities in the low density region and the high density region in the thickness direction, and consists of resin fibers in which the thickness of the low density region is 1.5 times or more the thickness of the high density region the woven or nonwoven fabric as a base material, a sputtering method on the resin fiber surface, by any of the vapor-phase vacuum deposition and ion plating, the nickel film surface density 0.3g / m 2 ~10g / m 2 5. A current collector is produced using a porous metal body formed by coating a nickel film by electroplating after the formation, and the current collector is filled with a battery active material. The manufacturing method of the electrode substrate for batteries as described in any one of. 織布もしくは不織布の樹脂繊維表面にスパッタリング法、真空蒸着法及びイオンプレーティング法のいずれかの気相法により、面密度0.3g/m〜10g/mのニッケル膜を形成した後、傾斜電気メッキ法により、厚み方向に低密度領域と高密度領域のニッケル量の密度の異なる2層以上の層よりなり、低密度領域の厚みが高密度領域の厚みの1.5倍以上となるようにニッケル膜を被覆することにより作製された金属多孔体を用いて集電体を作製し、該集電体に電池活物質を充填することを特徴とする請求項4に記載の電池用電極基板の製造方法。 Sputtering resin fiber surface of the woven or nonwoven fabric, by any of the vapor-phase vacuum deposition and ion plating method to form a nickel film surface density 0.3g / m 2 ~10g / m 2 , By gradient electroplating, it consists of two or more layers with different nickel density in the low density region and high density region in the thickness direction, and the thickness of the low density region is 1.5 times or more the thickness of the high density region. 5. A battery electrode according to claim 4, wherein a current collector is produced using a metal porous body produced by coating a nickel film as described above, and the battery active material is filled in the current collector. A method for manufacturing a substrate. 不織布樹脂繊維の表面にニッケル膜を被覆した構造を有する電池用電極基板において、電気抵抗の縦横比に異方性がある金属多孔体を用いたことを特徴とする電池用電極基板。   A battery electrode substrate having a structure in which a surface of a nonwoven fabric resin fiber is coated with a nickel film, wherein a metal porous body having an anisotropic aspect ratio of electrical resistance is used. 前記電気抵抗の縦横比が2倍以上である金属多孔体を用いたことを特徴とする請求項9に記載の電池用電極基板。   The battery electrode substrate according to claim 9, wherein a metal porous body having an aspect ratio of the electrical resistance of 2 times or more is used. 上記不織布樹脂繊維が、複数層のウェブを積層することにより構成され、当該複数層のウェブが進行方向の軸で12°以下で交差するように形成されたことを特徴とする請求項9又は10に記載の電池用電極基板。   The said nonwoven fabric resin fiber is comprised by laminating | stacking a multiple layer web, The said multiple layer web was formed so that it might cross | intersect at 12 degrees or less with the axis | shaft of the advancing direction. The electrode substrate for batteries as described in 2. 上記不織布樹脂繊維が、ポリプロピレンを芯とし、ポリエチレンを鞘とした芯鞘複合繊維構造であり、ポリプロピレン/ポリエチレンの芯鞘比率が0.8以下であることを特徴とする請求項9〜11のいずれか一に記載の電池用電極基板。   The nonwoven fabric resin fiber has a core / sheath composite fiber structure in which polypropylene is used as a core and polyethylene is used as a sheath, and the core / sheath ratio of polypropylene / polyethylene is 0.8 or less. The battery electrode substrate according to claim 1. 上記不織布樹脂繊維が、円筒型電池に組みこむために金属多孔体の電気抵抗の小さな方向を軸として捲回されたことを特徴とする請求項9〜12のいずれか一に記載の電池用電極基板。   The battery electrode substrate according to any one of claims 9 to 12, wherein the nonwoven fabric resin fiber is wound around a direction in which the electrical resistance of the metal porous body is small in order to be incorporated into a cylindrical battery. .
JP2010086057A 2005-01-14 2010-04-02 Current collector, battery electrode substrate, and manufacturing method thereof Expired - Fee Related JP5285014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086057A JP5285014B2 (en) 2005-01-14 2010-04-02 Current collector, battery electrode substrate, and manufacturing method thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005007693 2005-01-14
JP2005007693 2005-01-14
JP2005032667 2005-02-09
JP2005032667 2005-02-09
JP2005093703 2005-03-29
JP2005093703 2005-03-29
JP2010086057A JP5285014B2 (en) 2005-01-14 2010-04-02 Current collector, battery electrode substrate, and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005345000A Division JP4914059B2 (en) 2005-01-14 2005-11-30 Current collector, battery electrode substrate, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010212244A true JP2010212244A (en) 2010-09-24
JP5285014B2 JP5285014B2 (en) 2013-09-11

Family

ID=42972172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086057A Expired - Fee Related JP5285014B2 (en) 2005-01-14 2010-04-02 Current collector, battery electrode substrate, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5285014B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114795A (en) * 2011-11-25 2013-06-10 Sumitomo Electric Ind Ltd Electrode using aluminum porous body for collector, and method of manufacturing the same
CN103839686A (en) * 2014-03-13 2014-06-04 武汉纺织大学 Dye-sensitized solar cell fabric photo-anode and manufacturing method thereof
KR20180027945A (en) * 2016-09-07 2018-03-15 주식회사 엘지화학 Lithium metal electrode and lithium secondary battery comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482164A (en) * 1990-07-24 1992-03-16 Sanyo Electric Co Ltd Electrode plate for battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482164A (en) * 1990-07-24 1992-03-16 Sanyo Electric Co Ltd Electrode plate for battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114795A (en) * 2011-11-25 2013-06-10 Sumitomo Electric Ind Ltd Electrode using aluminum porous body for collector, and method of manufacturing the same
CN103839686A (en) * 2014-03-13 2014-06-04 武汉纺织大学 Dye-sensitized solar cell fabric photo-anode and manufacturing method thereof
KR20180027945A (en) * 2016-09-07 2018-03-15 주식회사 엘지화학 Lithium metal electrode and lithium secondary battery comprising the same
KR101990614B1 (en) 2016-09-07 2019-06-18 주식회사 엘지화학 Lithium metal electrode and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP5285014B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP2006310261A (en) Current collector and electrode base plate for battery and their manufacturing method
ES2686339T3 (en) Non-woven textile product current collector, battery manufacturing method that uses the same and its manufacturing system
JP4699899B2 (en) Separator material for alkaline secondary battery, method for producing the same, and separator for alkaline secondary battery
KR101666699B1 (en) Current collector for rechargeable battery and electrode using the same
US11018333B2 (en) Conductive mat for battery electrode plate reinforcement and methods of use therefor
EP2858142B1 (en) New pasting paper made of glass fiber nonwoven comprising carbon graphite
TW516252B (en) Collector for alkaline secondary battery, method for making the same, and alkaline secondary battery using the same
JP5046539B2 (en) Nickel metal hydride storage battery
KR100499217B1 (en) Alkaline battery separator and process for producing the same
JP5191091B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
WO2000046866A1 (en) Separator for alkaline battery and production method therefor
JP5137117B2 (en) Nonwoven fabric substrate for battery, battery electrode using the same, and battery
JP5285014B2 (en) Current collector, battery electrode substrate, and manufacturing method thereof
JP4903959B2 (en) Battery current collector and battery using the same
JP2009163976A (en) Nonwoven fabric substrate for battery, and its manufacturing method
JP4800527B2 (en) Non-woven fabric, battery using the non-woven fabric, and capacitor using the non-woven fabric
JP5048231B2 (en) Battery separator and battery using the same
JP3917873B2 (en) Nonwoven fabric and battery using the same
KR100634227B1 (en) Alkali storage battery
JP4868761B2 (en) Current collector with terminal and electrochemical device using the same
JP2008078037A (en) Electrode substrate for battery and electrode for battery
JP2000215873A (en) Alkaline storage battery and its manufacture
JP6440474B2 (en) Battery separator and battery equipped with the same
JP4699686B2 (en) Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same
JP4711485B2 (en) Alkaline battery separator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5285014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees