JPH08222226A - Manufacture of three-dimensional mesh electrode carrier - Google Patents

Manufacture of three-dimensional mesh electrode carrier

Info

Publication number
JPH08222226A
JPH08222226A JP7022800A JP2280095A JPH08222226A JP H08222226 A JPH08222226 A JP H08222226A JP 7022800 A JP7022800 A JP 7022800A JP 2280095 A JP2280095 A JP 2280095A JP H08222226 A JPH08222226 A JP H08222226A
Authority
JP
Japan
Prior art keywords
metal
electrode carrier
coated
powder
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7022800A
Other languages
Japanese (ja)
Inventor
Masayuki Ishii
正之 石井
Keizo Harada
敬三 原田
Seisaku Yamanaka
正策 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7022800A priority Critical patent/JPH08222226A/en
Publication of JPH08222226A publication Critical patent/JPH08222226A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide an electrode carrier with large porosity and mechanical strength. CONSTITUTION: After the skeletal surface of a porous resin core is covered with the first metal in a method of electroless plating, vacuum deposition or sputtering, it is impregnated and coated with slurry mainly containing the second metal powder and organic binder. Then, in a non-oxidizing atmosphere, heating is applied at a certain or higher temperature where the first metal and the second metal powders are sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三次元網状構造電極担
体、特に、ニッケル−カドミウム電池、ニッケル−水素
電池、ニッケル−亜鉛電池等のアルカリ二次電池用電極
基板として用いられる電極担体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a three-dimensional network structure electrode carrier, particularly an electrode carrier used as an electrode substrate for alkaline secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries and nickel-zinc batteries. Regarding the method.

【0002】[0002]

【従来の技術】連通孔を有した三次元網目状構造の金属
多孔体の製造方法には、特開昭57−174484など
のメッキ法によるものと、特公昭38−17554など
の焼結法によるものがある。メッキ法ではウレタンフォ
ームなどの発泡樹脂の骨格表面にカーボン粉末等を塗着
することにより導電化処理を行い、その上に電気メッキ
法により金属を電析させ、その後発泡樹脂及びカーボン
を焼失させ金属多孔体を得るという方法である。この方
法では金属多孔体に要求される強度等の特性は満足しう
るものの、その製造工程が繁雑であるためコスト高とな
る。
2. Description of the Related Art A method for producing a porous metal body having a three-dimensional network structure having communicating holes includes a plating method such as JP-A-57-174484 and a sintering method such as JP-B-38-17554. There is something. In the plating method, carbon powder is applied to the skeleton surface of foamed resin such as urethane foam to conduct conductivity, and the metal is electrodeposited by electroplating, and then the foamed resin and carbon are burned off. It is a method of obtaining a porous body. With this method, the properties such as strength required for the porous metal body can be satisfied, but the manufacturing process is complicated, resulting in high cost.

【0003】一方、特公昭38−17554に記載の焼
結方式による金属多孔体の製造方法では、スラリー化し
た金属粉末をウレタンフォームなどの発泡樹脂の骨格表
面に含浸塗布し、その後乾燥加熱することにより、金属
粉末を焼結する方法が記載されている。しかし本発明者
等の知見によると、格別の工夫をすることなく製造した
この方法では、金属多孔体としての強度が弱いため、実
際に電極板や各種フィルター等に使用する際に必要とな
る曲げ加工等の加工に耐えないという問題があった。ま
た、直接多孔性樹脂上に塗布するとスラリーに対する濡
れ性が悪く、塗布欠陥が多かった。そのために、焼結後
も骨格欠陥部として残り、電気抵抗が高くなるので電極
担体として充分な特性ではなかった。
On the other hand, in the method for producing a metal porous body by the sintering method described in Japanese Examined Patent Publication No. 38-17554, slurry metal powder is impregnated and applied on the skeleton surface of a foamed resin such as urethane foam, and then dried and heated. Describes a method of sintering metal powder. However, according to the knowledge of the present inventors, in this method manufactured without any special device, since the strength as a metal porous body is weak, it is necessary to bend the electrode plate or various filters when actually used. There was a problem that it could not withstand processing such as processing. Further, when it was directly applied onto the porous resin, the wettability with respect to the slurry was poor and there were many coating defects. For this reason, it remains as a skeleton defect portion even after sintering, and the electric resistance becomes high, so that the characteristics are not sufficient as an electrode carrier.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記従来例の
如く繁雑な製造工程を必要とすることや、電池用電極と
して用いるのに必要な強度の付与といった課題を解決す
べく、新たな知見に基づく三次元網状構造電極担体の製
造方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention provides a new finding in order to solve the problems such as the need for complicated manufacturing steps as in the above conventional example and the addition of strength necessary for use as a battery electrode. The present invention is intended to provide a method for manufacturing a three-dimensional network structure electrode carrier based on.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を検討
した結果、金属粉末を含むスラリーを浸漬塗着する前
に、多孔性樹脂芯体の骨格表面に、無電解めっき法、真
空蒸着法、スパッタ法のうち、いずれかの方法で金属を
被覆しておくことによって、上記課題が解決できること
を発見した。すなわち、本発明の構成は、多孔性樹脂芯
体の骨格表面に無電解めっき法、真空蒸着法、スパッタ
法のうち、いずれかの方法で第1の金属を被覆した後、
第2の金属粉末と有機結着剤とを主成分としたスラリー
を含浸塗着し、ついで、非酸化性雰囲気中で第1の金属
および第2の金属が焼結する温度以上に加熱する三次元
網状構造電極担体の製造方法としたものである。
DISCLOSURE OF THE INVENTION As a result of studying the above-mentioned problems, the present invention has revealed that the skeleton surface of the porous resin core is electroless plated or vacuum-deposited before the dip coating of the slurry containing the metal powder. It was discovered that the above problems can be solved by coating the metal with any one of the sputtering methods. That is, the structure of the present invention, after coating the first metal on the skeleton surface of the porous resin core body by any one of the electroless plating method, the vacuum deposition method, and the sputtering method,
Third-order in which a slurry containing a second metal powder and an organic binder as a main component is impregnated and applied, and then heated in a non-oxidizing atmosphere to a temperature at which the first metal and the second metal are sintered or higher. This is a method for manufacturing an original reticulated structure electrode carrier.

【0006】更に、上記第2の金属粉末がNiであるこ
と。第1の金属がNiあるいはCuを主成分とし、合金
化することで融点が下がるAl、B、Bi、Ga、G
e、In、Mg、P、Sn、Znから選ばれた何れか一
つまたは二以上の金属からなる合金であること、多孔性
樹脂芯体が発泡樹脂、樹脂繊維からなるフェルト、不織
布および織布のうちの何れかであること等を構成とする
三次元網状構造電極担体の製造方法である。また被覆さ
れた第1の金属は、熱処理時、被覆膜において隣接する
第2の金属との焼結を促進させる働きをする。例えば、
第1の金属を被覆せずにNi粉末のみを用いた場合は多
孔体の骨格構造を維持するためにはNiの融点以下の温
度での固相拡散による焼結であるのに対して、本発明で
は第1の金属中に含まれる添加金属とNiとの液相反応
による低融点化を利用した液相拡散による焼結であるた
めその焼結性は極めて良好となり、その結果十分な強度
特性を有する金属多孔体が得られる。
Further, the second metal powder is Ni. Al, B, Bi, Ga, G whose melting point is lowered by alloying the first metal with Ni or Cu as a main component
e, In, Mg, P, Sn, Zn, any one or two or more metal alloy, porous resin core is foamed resin, resin fiber felt, non-woven fabric and woven fabric The method for producing a three-dimensional net-structured electrode carrier is configured to be any one of the above. Further, the coated first metal has a function of promoting sintering with the second metal adjacent to the coating film during heat treatment. For example,
In the case of using only Ni powder without coating the first metal, in order to maintain the skeleton structure of the porous body, sintering by solid phase diffusion at a temperature below the melting point of Ni is used. In the invention, since the sintering is performed by the liquid phase diffusion utilizing the lowering of the melting point by the liquid phase reaction between the additive metal contained in the first metal and Ni, the sinterability is extremely good, and as a result, sufficient strength characteristics are obtained. A metal porous body having is obtained.

【0007】ここで第1の金属として、NiあるいはC
uを主成分とし、Al,B,Bi,Ga,Ge,In,
Mg,P,Sn,Znから選ばれた1種もしくは2種以
上の添加金属からなる合金を用いることができる。さら
にこれら金属の含有量としては0.1より10wt%で
あることが好ましい。0.1wt%未満では充分な焼結
促進効果が得られないためで、また10wt%を越える
と焼結促進効果は大きいものの最終製品のNiあるいは
Cu骨格への固溶体化あるいは金属間化合物形成等が進
むため逆に脆化あるいは電気抵抗の高抵抗化等を招く場
合があるためである。本発明でのスラリー液を製造する
工程は、上記の金属混合粉末と例えばアクリル系樹脂な
どのバインダー剤にカルボキシメチルセルロースなどの
分散剤及び水などの溶媒をボールミルなどの混合機中で
十分に分散混合させることにより実現できる。次にこの
スラリー液を例えばポリウレタンフォーム等の連通孔を
有する三次元網目状構造をもつ合成樹脂多孔体に塗着し
た後乾燥する。この塗着物を例えば水素気流中の還元性
雰囲気下において熱処理することによりポリウレタンフ
ォームなどの有機成分を除去するとともに金属粉末の焼
結を行い、最終的に連通孔を有する三次元網目状構造で
ある金属多孔体を得る。なお、水素に代えてN2,Ar
ガスを用いても同様の成果を得られる。
Here, Ni or C is used as the first metal.
u as a main component, Al, B, Bi, Ga, Ge, In,
It is possible to use an alloy composed of one or more additive metals selected from Mg, P, Sn, and Zn. Further, the content of these metals is preferably 0.1 to 10 wt%. If it is less than 0.1 wt%, a sufficient sintering promoting effect cannot be obtained. If it exceeds 10 wt%, the sintering promoting effect is great, but the solid solution or intermetallic compound formation on the Ni or Cu skeleton of the final product may occur. This is because, as it progresses, it may lead to embrittlement or increase in electrical resistance. In the step of producing the slurry liquid of the present invention, the above metal mixed powder and a binder agent such as an acrylic resin are sufficiently dispersed and mixed with a dispersant such as carboxymethyl cellulose and a solvent such as water in a mixer such as a ball mill. It can be realized by Next, this slurry liquid is applied to a synthetic resin porous body having a three-dimensional network structure having communicating holes, such as polyurethane foam, and then dried. This coating is heat-treated in a reducing atmosphere such as a hydrogen stream to remove organic components such as polyurethane foam and sinter the metal powder, and finally have a three-dimensional network structure having communicating holes. A metallic porous body is obtained. Note that instead of hydrogen, N 2 , Ar
Similar results can be obtained using gas.

【0008】[0008]

【実施例】以下、本発明を実施例によって具体的に説明
する。 実施例1 1)金属粉末スラリーの作製 予めニッケル粉末(インコ社製タイプ255平均粒径
2.5μm)を60wt%、カルボキシルメチルセルロ
ース樹脂2wt%、フェノール樹脂10wt%、水28
wt%の配合量でボールミル混合して作製しておいた。 2)多孔性樹脂芯体の金属被覆 樹脂芯体として1インチあたりの空孔数が約50個で平
均孔径300μm、気孔率96%、厚さ1.8mm、幅
20cm、長さ1mのポリウレタンフォームを用い、こ
のポリウレタンフォームに通常の無電解メッキ法により
三次元網状骨格全体に第1の金属として10g/m2
ニッケル金属被覆を行った。P含有量は0.5wt%で
あった。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 1) Preparation of metal powder slurry 60 wt% of nickel powder (type 255 manufactured by Inco Co., Ltd. average particle size 2.5 μm), carboxymethyl cellulose resin 2 wt%, phenol resin 10 wt%, water 28
It was prepared by mixing with a ball mill at a blending amount of wt%. 2) Metallic coating of porous resin core As the resin core, there are about 50 pores per inch, average pore diameter 300 μm, porosity 96%, thickness 1.8 mm, width 20 cm, length 1 m polyurethane foam. This polyurethane foam was coated with 10 g / m 2 of nickel metal as the first metal on the entire three-dimensional network skeleton by a conventional electroless plating method. The P content was 0.5 wt%.

【0009】3)スラリーの含浸 次に予め作製したスラリー液中に金属被覆したウレタン
フォームを浸漬し、ロールによる余分なペーストを取り
除く方法でポリウレタンフォームに含浸塗着した。塗着
量は金属量として600g/m2であった。 4)非酸化性雰囲気中の加熱 上記3)工程を経た樹脂芯体を120℃で10分間、窒
素雰囲気中で乾燥した。その後、水素気流中で30℃/
分の昇温速度で1150℃まで昇温し、1150℃で1
0分間熱処理することにより三次元網状構造の金属多孔
体が得られた。 5)製品の性質 機械的性質として引張強度4kg/15mm幅、伸び率
4%、電気抵抗55mΩ/10mm幅・長さ10cmが
得られた。電池電極板に使用される金属多孔体に十分使
用できる特性が得られた。
3) Impregnation of Slurry Next, a urethane foam coated with metal was dipped in a slurry liquid prepared in advance and impregnated and coated on the polyurethane foam by a method of removing excess paste by a roll. The applied amount was 600 g / m 2 in terms of metal amount. 4) Heating in non-oxidizing atmosphere The resin core body obtained through the above step 3) was dried at 120 ° C for 10 minutes in a nitrogen atmosphere. Then, in a hydrogen stream at 30 ° C /
The temperature is raised to 1150 ° C at a heating rate of 1 minute, and at 1150 ° C, 1
By heat treatment for 0 minutes, a porous metal body having a three-dimensional network structure was obtained. 5) Product Properties As mechanical properties, a tensile strength of 4 kg / 15 mm width, an elongation rate of 4%, and an electrical resistance of 55 mΩ / 10 mm width / length 10 cm were obtained. The properties which can be sufficiently used for the metal porous body used for the battery electrode plate were obtained.

【0010】実施例2 平均粒径20μm、最大粒径50μmの電解銅粉末をス
ラリー化した以外は実施例1と同じ方法でスラリー塗着
物を作製した。その後、塗着物を120℃で10分間窒
素雰囲気中で乾燥後、水素気流中で50℃/分の昇温速
度で1000℃まで昇温し、1000℃で10分間加熱
することにより三次元網状構造の電極担体が得られた。 比較例1及び比較例2 金属下地被覆処理してないウレタンフォームを用いて実
施例1と同じ方法で作製した金属多孔体の特性を併せて
表1に示す。機械的特性は15mm幅で、電気抵抗は1
0mm幅、10cm長さで測定した。表1には実施例
1、実施例2及び比較例1、比較例2で得られた三次元
網状構造電極担体の機械的特性及び電気抵抗測定結果を
示す。
Example 2 A slurry-coated material was prepared in the same manner as in Example 1 except that electrolytic copper powder having an average particle size of 20 μm and a maximum particle size of 50 μm was slurried. Then, the coated article is dried at 120 ° C. for 10 minutes in a nitrogen atmosphere, then heated to 1000 ° C. at a heating rate of 50 ° C./minute in a hydrogen stream, and heated at 1000 ° C. for 10 minutes to form a three-dimensional network structure. The electrode carrier of was obtained. Comparative Example 1 and Comparative Example 2 Table 1 also shows the properties of the metal porous body produced by the same method as in Example 1 using urethane foam not subjected to the metal undercoating treatment. Mechanical property is 15mm width, electric resistance is 1
It was measured with a width of 0 mm and a length of 10 cm. Table 1 shows the mechanical characteristics and the electrical resistance measurement results of the three-dimensional net-structured electrode carriers obtained in Examples 1 and 2 and Comparative Examples 1 and 2.

【0011】[0011]

【表1】 [Table 1]

【0012】下地処理として無電解ニッケルメッキを施
した実施例1あるいは実施例2は施さなかった比較例1
あるいは比較例2に比べて電池電極板に使用される金属
体に十分使用できる良好な機械的特性及び電気特性が得
られた。又、比較例1及び比較例2においては、スラリ
ー塗着後のウリタンフォームの全骨格表面に均一なスラ
リー塗着がされておらず、塗着欠陥が多く見られた。最
終製品にもこの塗着欠陥場所が焼結欠陥として残留して
いることが判った。この欠陥が機械的強度の低さ及び高
抵抗化をもたらした原因である。
Comparative Example 1 in which Example 1 or Example 2 in which electroless nickel plating was applied as a base treatment was not applied
Alternatively, as compared with Comparative Example 2, good mechanical properties and electrical properties sufficiently obtainable for a metal body used for a battery electrode plate were obtained. Further, in Comparative Examples 1 and 2, uniform slurry coating was not carried out on the entire skeleton surface of the urethane coating after slurry coating, and many coating defects were observed. It was found that this coating defect location remained as a sintering defect in the final product as well. This defect is the cause of low mechanical strength and high resistance.

【0013】実施例3 1)金属粉末スラリーの作製 予めニッケル粉末(インク社製タイプ123平均粒径
5.2μm)を50wt%、カルボキシルメチルセルロ
ース樹脂2wt%、アクリル樹脂10wt%、水28w
t%の配合量でボールミル混合しておいた。 2)金属ターゲットは−350メッシュの金属Bi粉末
を1wt%、潤滑材0.2wt%と残りをインコ社製ニ
ッケル粉末タイプ123粉末とし、配合した後、5時間
ボールミルにて混合した後型押しプレスし、金属粉末タ
ーゲットとした。
Example 3 1) Preparation of metal powder slurry 50 wt% of nickel powder (type 123 made by Ink Co., Ltd. average particle size 5.2 μm), 2 wt% of carboxymethyl cellulose resin, 10 wt% of acrylic resin, 28 w of water
A ball mill was mixed at a blending amount of t%. 2) For the metal target, 1 wt% of metal Bi powder of -350 mesh, 0.2 wt% of lubricant and the rest are nickel powder type 123 powder manufactured by Inco Co., blended, and then mixed in a ball mill for 5 hours, and then an embossing press. Then, it was used as a metal powder target.

【0014】3)多孔性樹脂芯体の金属被覆 予め10-2Torrの真空中でウレタンフォーム骨格表
面の清浄化のために2時間放置し、表面に付着した水分
や揮発分を除去した後、通常巻取り式真空蒸着装置にウ
レタンフォームをセットした。出力2kWの電子ビーム
を坩堝内の金属粉末ターゲットに照射し、金属を溶融蒸
発させ、ウレタンフォームの骨格表面に金属目付け量が
平均5g/m2になるように金属被覆した。 4)スラリーの含浸 次に予め作製したスラリー液中に金属被覆したウレタン
フォームを浸漬し、ロールによる余分なペーストを取り
除く方法でポリウレタンフォームに含浸塗着した。塗着
量は金属量として600g/m2であった。
3) Metal coating of the porous resin core body: Preliminarily left in a vacuum of 10 -2 Torr for 2 hours for cleaning the surface of the urethane foam skeleton, and after removing water and volatile components attached to the surface, A urethane foam was set in a normal roll-up type vacuum deposition device. The metal powder target in the crucible was irradiated with an electron beam having an output of 2 kW to melt and evaporate the metal, and the skeleton surface of the urethane foam was coated with a metal so that the average weight of the metal was 5 g / m 2 . 4) Impregnation of Slurry Next, the metal-coated urethane foam was dipped in a slurry liquid prepared in advance, and the polyurethane foam was impregnated and coated by a method of removing excess paste by a roll. The applied amount was 600 g / m 2 in terms of metal amount.

【0015】5)非酸化性雰囲気中での加熱 骨格表面に調製した金属スラリーを塗着した後、120
℃で10分間乾燥した。次いでこの塗着物を水蒸気流中
で60℃/分の昇温速度で1050℃まで昇温し、10
50℃で10分間熱処理することで三次元網状構造の電
極担体が得られた。 6)製品の性質 機械的性質として、引張強度5.5kg/15mm幅、
伸び率5%、電気抵抗60mΩ/10mm幅・長さ10
cmが得られた。実施例1と比べ機械的性質において、
無電解メッキによる金属被覆処理品を使用したものより
もより一層向上し、しかも同等特性が低温で得られるこ
とが判った。
5) Heating in non-oxidizing atmosphere After coating the prepared metal slurry on the surface of the skeleton, 120
It was dried at 0 ° C for 10 minutes. Then, the coating is heated to 1050 ° C. at a heating rate of 60 ° C./min in a steam flow and heated to 10 ° C.
A heat treatment at 50 ° C. for 10 minutes gave an electrode carrier having a three-dimensional network structure. 6) Properties of products As mechanical properties, tensile strength is 5.5 kg / 15 mm width,
Elongation rate 5%, electric resistance 60mΩ / 10mm width / length 10
cm was obtained. In mechanical properties as compared with Example 1,
It was found that the characteristics were improved more than those using the metal-coated product by electroless plating, and the same characteristics were obtained at low temperature.

【0016】比較例3 金属下地被覆せずにニッケル粉末スラリーを塗着したウ
レタンフォームを用いて実施例2と同様な方法で三次元
網状構造金属多孔体を作製した。水素中での熱処理温度
は1200℃で10分間処理した。機械的性質及び電気
特性は実施例1と同じ条件で測定した。機械的性質とし
て引張強度0.8kg/15mm幅、伸び率1.1%、
電気抵抗240mΩ/10mm幅・長さ10cmが得ら
れた。金属下地処理をした実施例3に比べて高温で熱処
理したにも拘らず、下地処理しなかった比較例3では機
械的特性及び電気特性が劣り、下地被覆処理することで
機械的特性及び電気特性が向上することが判った。
Comparative Example 3 A three-dimensional net-structured metal porous body was produced in the same manner as in Example 2 by using urethane foam coated with nickel powder slurry without coating the metal base. The heat treatment temperature in hydrogen was 1200 ° C. for 10 minutes. The mechanical properties and electrical properties were measured under the same conditions as in Example 1. Mechanical properties include tensile strength 0.8kg / 15mm width, elongation 1.1%,
An electrical resistance of 240 mΩ / 10 mm width and length 10 cm was obtained. Despite being heat-treated at a higher temperature than Comparative Example 3 in which a metal undercoating was performed, Comparative Example 3 in which the undercoating was not performed was inferior in mechanical properties and electrical properties. Was found to improve.

【0017】比較例4 実施例3と同じ方法でBi添加Ni合金をウレタンフォ
ームに被覆し、金属多孔体を作製した。金属ターゲット
の組成はBi6wt%、残Niであった。機械的性質と
して引張強度8kg/15mm幅、伸び率1.5%、電
気抵抗180mΩ/10mm幅・長さ10cmが得られ
た。金属下地処理をした実施例3に比べて下地処理しな
かった比較例3では引張強度は向上しているが、電気特
性が劣り、電池電極用に使用するには不向きなことが判
った。
Comparative Example 4 A urethane foam was coated with a Bi-added Ni alloy in the same manner as in Example 3 to prepare a metal porous body. The composition of the metal target was Bi 6 wt% and the balance was Ni. As mechanical properties, a tensile strength of 8 kg / 15 mm width, an elongation rate of 1.5%, and an electrical resistance of 180 mΩ / 10 mm width / length 10 cm were obtained. It was found that in Comparative Example 3 in which the undercoating was not performed as compared with Example 3 in which the metal undercoating was performed, the tensile strength was improved, but the electrical characteristics were poor and it was unsuitable for use as a battery electrode.

【0018】実施例4〜19,比較例5〜12 実施例3と同じように真空蒸着法を用いて金属被覆し
た。被覆金属用ターゲットとしては、Al,B,Ga,
Ge,In,Mg,Sn,Znの金属から選ばれた金属
とNiとの合金ターゲットを用いた。合金ターゲットの
組成は表2に示した。被覆処理はいずれも5g/m2
定とした。金属被覆処理後、実施例1で作製したのと同
じスラリーを塗着し、表2に示す熱処理条件で熱処理を
実施し、三次元網状構造電極担体を得た。製品の性質を
表3に示した。
Examples 4 to 19 and Comparative Examples 5 to 12 As in Example 3, metal coating was performed by using the vacuum deposition method. As the target for the coated metal, Al, B, Ga,
An alloy target of a metal selected from the metals of Ge, In, Mg, Sn and Zn and Ni was used. The composition of the alloy target is shown in Table 2. The coating treatment was constant at 5 g / m 2 . After the metal coating treatment, the same slurry as that produced in Example 1 was applied, and heat treatment was performed under the heat treatment conditions shown in Table 2 to obtain a three-dimensional network structure electrode carrier. The properties of the product are shown in Table 3.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【発明の効果】以上、説明したように、本発明の方法に
よれば芯体の塗着欠陥が減少し、粉末の焼結性が向上す
るので製品の機械的強度が向上し、電気抵抗が低下す
る。従って、電気抵抗による電力損失が小さいので大型
電池用電極板として有効である。NiあるいはCuと合
金化することで単体金属よりも低融点化する金属が混合
されていると、焼結のための熱処理温度が低下するので
熱処理コストが低下する。また、金属の固溶強化によ
り、単一金属、例えば純ニッケル製のものより製品の機
械的特性が向上する。
As described above, according to the method of the present invention, the coating defects of the core are reduced and the sinterability of the powder is improved, so that the mechanical strength of the product is improved and the electric resistance is improved. descend. Therefore, since the power loss due to the electric resistance is small, it is effective as an electrode plate for a large battery. When a metal whose melting point is lower than that of a single metal by being alloyed with Ni or Cu is mixed, the heat treatment temperature for sintering is lowered, and thus the heat treatment cost is lowered. In addition, the solid solution strengthening of the metal improves the mechanical properties of the product over a single metal, for example, pure nickel.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔性樹脂芯体の骨格表面に、無電解め
っき法、真空蒸着法、スパッタ法のうち、いずれかの方
法で第1の金属を被覆した後、第2の金属粉末と有機結
着剤とを主成分としたスラリーを含浸塗着し、ついで非
酸化性雰囲気中で第1の金属および第2の金属粉末が焼
結する温度以上に加熱することを特徴とする三次元網状
構造電極担体の製造方法。
1. A skeleton surface of a porous resin core is coated with a first metal by any one of an electroless plating method, a vacuum deposition method and a sputtering method, and then a second metal powder and an organic material. Three-dimensional reticulate, characterized in that a slurry containing a binder as a main component is impregnated and coated, and then heated in a non-oxidizing atmosphere to a temperature at which the first metal and the second metal powder are sintered or higher. Method for manufacturing structured electrode carrier.
【請求項2】 第1の金属が、NiあるいはCuを主成
分とし、合金化することで融点が下がるAl、B、B
i、Ga、Ge、In、Mg、P、Sn、Znの金属か
ら選ばれた何れか一種または二種以上の添加金属からな
る合金であることを特徴とする請求項1に記載の三次元
網状構造電極担体の製造方法。
2. The first metal, which has Ni or Cu as a main component, is alloyed to lower the melting point of Al, B, B.
The three-dimensional net-like structure according to claim 1, which is an alloy composed of one or more additive metals selected from metals of i, Ga, Ge, In, Mg, P, Sn, and Zn. Method for manufacturing structured electrode carrier.
【請求項3】 第2の金属粉末がNiあるいはCuであ
ることを特徴とする請求項1または2記載の三次元網状
構造電極担体の製造方法。
3. The method for producing a three-dimensional network electrode carrier according to claim 1, wherein the second metal powder is Ni or Cu.
【請求項4】 第1の金属中にNiあるいはCu以外の
添加金属が0.1wt%以上10wt%以下の範囲で含
有していることを特徴とする請求項1ないし3の何れか
に記載の三次元網状構造電極担体の製造方法。
4. The first metal contains an additive metal other than Ni or Cu in a range of 0.1 wt% or more and 10 wt% or less, according to any one of claims 1 to 3. A method for manufacturing an electrode carrier having a three-dimensional network structure.
【請求項5】 多孔性樹脂芯体が発泡樹脂、樹脂繊維か
らなるフェルト、不織布および織布のうちの何れかであ
ることを特徴とする請求項1ないし請求項4の何れかに
記載の三次元網状構造電極担体の製造方法。
5. The tertiary according to claim 1, wherein the porous resin core is any one of foamed resin, felt made of resin fiber, non-woven fabric and woven fabric. Method for producing original network electrode carrier.
JP7022800A 1995-02-10 1995-02-10 Manufacture of three-dimensional mesh electrode carrier Pending JPH08222226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7022800A JPH08222226A (en) 1995-02-10 1995-02-10 Manufacture of three-dimensional mesh electrode carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7022800A JPH08222226A (en) 1995-02-10 1995-02-10 Manufacture of three-dimensional mesh electrode carrier

Publications (1)

Publication Number Publication Date
JPH08222226A true JPH08222226A (en) 1996-08-30

Family

ID=12092768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7022800A Pending JPH08222226A (en) 1995-02-10 1995-02-10 Manufacture of three-dimensional mesh electrode carrier

Country Status (1)

Country Link
JP (1) JPH08222226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502798A (en) * 2004-06-25 2008-01-31 シーブイアールディ、インコ、リミテッド Open metal foam and manufacturing method
JP2020534434A (en) * 2017-09-19 2020-11-26 アランタム ヨーロッパ ゲーエムベーハーAlantum Europe Gmbh A method for producing a surface-modified metal perforated molded body, and a molded body manufactured by the method.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502798A (en) * 2004-06-25 2008-01-31 シーブイアールディ、インコ、リミテッド Open metal foam and manufacturing method
US7951246B2 (en) 2004-06-25 2011-05-31 Alantum Corporation Method for manufacturing open porous metallic foam body
JP2020534434A (en) * 2017-09-19 2020-11-26 アランタム ヨーロッパ ゲーエムベーハーAlantum Europe Gmbh A method for producing a surface-modified metal perforated molded body, and a molded body manufactured by the method.

Similar Documents

Publication Publication Date Title
US5640669A (en) Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same
KR102194260B1 (en) Porous metal body and method for producing porous metal body
US6103319A (en) Battery electrode substrate and process for producing the same
EP0921210B1 (en) Method of preparing porous nickel-aluminium structures
JP5167687B2 (en) Process for producing activated carbon-multimetallic complex
JPH08225865A (en) Production of metallic porous body having three-dimensional network structure
CA2179347C (en) Electrode substrate for battery and process for preparing the same
JPH08222226A (en) Manufacture of three-dimensional mesh electrode carrier
JP3468493B2 (en) Battery electrode substrate and method of manufacturing the same
CN113199024B (en) Ternary layered compound, metal-based composite material, and preparation method and raw materials thereof
JP3407813B2 (en) Method for manufacturing three-dimensional network structure
JPH08193232A (en) Production of metallic porous body
JPH0797602A (en) Dissimilar metal coated porous metallic fiber sintered sheet and production thereof
JPH0781161B2 (en) Method for producing metal-coated powder
JPH08287917A (en) Manufacture of metallic porous body
JPH08302495A (en) Production of metallic porous body
JP2006086007A (en) Fuel electrode for solid oxide fuel cell and its manufacturing method
JPH076765A (en) Manufacture of porous current collector for battery
JPH0992292A (en) Manufacture of metal porous body
JPH09161807A (en) Electrode base for lithium ion battery
JPH097607A (en) Manufacture of metal porous body
JP2000106177A (en) Manufacture of negative electrode material for alkaline secondary battery
JPH11329449A (en) Electrode substrate for battery and its manufacture
JPS6112032B2 (en)
JPH0869799A (en) Electrode supporter alkaline battery and electrode, and manufacture of that electrode supporter