JPH097607A - Manufacture of metal porous body - Google Patents

Manufacture of metal porous body

Info

Publication number
JPH097607A
JPH097607A JP7157604A JP15760495A JPH097607A JP H097607 A JPH097607 A JP H097607A JP 7157604 A JP7157604 A JP 7157604A JP 15760495 A JP15760495 A JP 15760495A JP H097607 A JPH097607 A JP H097607A
Authority
JP
Japan
Prior art keywords
powder
metal
porous
resin
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7157604A
Other languages
Japanese (ja)
Inventor
Keizo Harada
敬三 原田
Kenichi Watanabe
渡辺  賢一
Seisaku Yamanaka
正策 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7157604A priority Critical patent/JPH097607A/en
Publication of JPH097607A publication Critical patent/JPH097607A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE: To manufacture a useful metal porous body as an electrode base board for an alkaline secondary battery or the like. CONSTITUTION: After a binder resin is applied to a skeleton surface of a porous resin core body, a mixed powder comprising a metal powder and a carbon powder is directly applied thereto before the resin is hardened by drying and an organic resin component is reduced to ashes by electric Ni-plating method and by performing heat treatment in an unoxidizing atmosphere before the electric Ni-plating. Ni and Fe are better for metal power. Therefore, a useful metal porous body can be obtained without passing through a complicated process as an electric base board for an alkaline secondary battery or the like which has a desired strength characteristic and excels in quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主としてニッケル−カ
ドミウム電池、ニッケル−亜鉛電池、ニッケル−水素電
池などのアルカリ2次電池などの電極基板に用いる金属
多孔体の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal porous body mainly used for an electrode substrate of an alkaline secondary battery such as a nickel-cadmium battery, a nickel-zinc battery and a nickel-hydrogen battery.

【0002】[0002]

【従来の技術】各種の電源として使われる蓄電池として
鉛蓄電池とアルカリ蓄電池がある。このうちアルカリ蓄
電池は高信頼性が期待でき、小形軽量化も可能などの理
由で小型電池は各種ポータブル機器用に、大型は産業用
として広く使われてきた。このアルカリ蓄電池におい
て、負極としてはカドミウムの他に亜鉛、鉄、水素など
が対象となっている。しかし正極としては一部空気極や
酸化銀極なども取り上げられているがほとんどの場合ニ
ッケル極である。ポケット式から焼結式に代って特性が
向上し、さらに密閉化が可能になるとともに用途も広が
った。
2. Description of the Related Art Lead-acid batteries and alkaline batteries are used as storage batteries used as various power sources. Among them, the alkaline storage battery has been widely used for various portable devices, and the large type for industrial purposes because it is expected to have high reliability and can be made compact and lightweight. In this alkaline storage battery, zinc, iron, hydrogen, etc. are targeted as the negative electrode in addition to cadmium. However, as the positive electrode, an air electrode, a silver oxide electrode, and the like are partially taken up, but in most cases, it is a nickel electrode. The characteristics were improved from the pocket type to the sintered type, and it became possible to further seal and expand the applications.

【0003】しかし通常の粉末焼結式では基板の気孔率
を85%以上にすると強度が大幅に低下するので活物質
の充填に限界があり、したがって電池としての高容量化
に限界がある。そこで90%以上のような一層高気孔率
の基板として焼結基板に代えて発泡状基板や繊維状基板
が取り上げられ実用化されている。このような高気孔率
を有する金属多孔体基板の製造方法としては、特開昭5
7−174484号公報に開示されているメッキ法によ
るものと、特公昭38−17554号公報等に開示され
ている焼結法によるものがある。メッキ法ではウレタン
フォームなどの発泡樹脂の骨格表面にカーボン粉末等を
塗着することにより導電化処理を行い、その上に電気メ
ッキ法によりNiを電析させ、その後発泡樹脂及びカー
ボンを消失させ、金属多孔体を得るという方法である。
一方、焼結法ではスラリー化した金属粉末をウレタンフ
ォームなどの発泡樹脂の骨格表面に含浸塗布し、その後
加熱することにより金属粉末を焼結している。
However, in the ordinary powder sintering method, when the porosity of the substrate is 85% or more, the strength is significantly lowered, so that there is a limit to the filling of the active material, and therefore, there is a limit to increase the capacity of the battery. Therefore, as a substrate having a higher porosity of 90% or more, a foamed substrate or a fibrous substrate has been picked up and put into practical use instead of the sintered substrate. As a method for producing such a porous metal substrate having a high porosity, Japanese Patent Application Laid-Open No. S5-5200 is known.
There are a method by a plating method disclosed in JP-A-7-174484 and a method by a sintering method disclosed in JP-B-38-17554. In the plating method, carbon powder or the like is applied to the skeleton surface of a foamed resin such as urethane foam to perform a conductive treatment, and Ni is electrodeposited thereon by an electroplating method, after which the foamed resin and carbon are eliminated, The method is to obtain a metal porous body.
On the other hand, in the sintering method, slurry metal powder is impregnated and applied on the skeleton surface of foamed resin such as urethane foam, and then heated to sinter the metal powder.

【0004】[0004]

【発明が解決しようとする課題】従来技術に示した通り
金属多孔体を電池用極板として適用することにより、電
池の高容量化に果たした寄与は大きい。しかしながら、
特開昭57−174484号公報のようなメッキ法によ
る金属多孔体の製造において、多孔性樹脂芯体に電気メ
ッキするための導電処理としてカーボン塗布を行う必要
があるが、これは製造工程において必要なだけで最終的
には焼失させるものであって金属多孔体としては不要の
ものである。従って、導電処理のためのカーボン塗布
は、製品としてのコスト上昇をまねくだけでなく、カー
ボン残留による品質面への影響も考えられることから、
その改善が望まれている。また、特公昭38−1755
4号公報のような、焼結法による金属多孔体の製造にお
いては上記のような問題は無いが、金属粉末をスラリー
化して塗着する工程や、焼結工程などが煩雑な工程であ
り、所望の強度特性のものが得られにくく、また製造コ
ストも高くつく等の問題があった。
As described in the prior art, the application of the metal porous body as the electrode plate for a battery makes a great contribution to the high capacity of the battery. However,
In the production of a metal porous body by a plating method as disclosed in JP-A-57-174484, it is necessary to apply carbon as a conductive treatment for electroplating a porous resin core, which is necessary in the production process. Anything is eventually burned out, and is not necessary as a porous metal body. Therefore, carbon coating for conductive treatment not only increases the cost as a product, but also may affect the quality aspect due to carbon residue,
The improvement is desired. In addition, Japanese Examined Japanese Patent Publication No. 38-1755
Although there is no problem as described above in the production of a porous metal body by a sintering method as disclosed in Japanese Patent Publication No. 4, but it is a complicated step such as a step of slurrying metal powder and applying it, or a sintering step. There are problems that it is difficult to obtain desired strength characteristics and the manufacturing cost is high.

【0005】[0005]

【課題を解決するための手段】本発明は、以上の問題点
を解決するため、金属多孔体の製造方法として、多孔性
の樹脂芯体の骨格表面にバインダー樹脂を塗着した後、
樹脂が乾燥硬化する前に金属粉末と炭素粉末からなる混
合粉末を直接塗着し、電気Niメッキを行う。
In order to solve the above problems, the present invention provides a method for producing a metal porous body, which comprises applying a binder resin to the skeleton surface of a porous resin core,
Before the resin is dried and cured, a mixed powder of metal powder and carbon powder is directly applied and electroplating is performed.

【0006】本発明では従来メッキ法のカーボン導電処
理に変えて、金属粉末と炭素粉末からなる混合粉末によ
る導電処理を行う。本発明の金属粉末と炭素粉末からな
る混合粉末による導電処理方法においては、導電性を向
上させるため、バインダーを塗着した多孔性樹脂芯体上
に金属粉末を直接塗着する方法を用いる。
In the present invention, instead of the carbon conductive treatment of the conventional plating method, the conductive treatment with a mixed powder of metal powder and carbon powder is performed. In the conductive treatment method using the mixed powder of the metal powder and carbon powder of the present invention, a method of directly coating the metal powder on the porous resin core body coated with the binder is used in order to improve the conductivity.

【0007】ここで、多孔性樹脂芯体へのバインダー樹
脂の塗着方法としては、バインダー樹脂と水もしくは有
機溶剤等の希釈材を混合した液中に多孔性樹脂芯体を含
浸させ、その後ロール等により過剰に付着したものを除
去する等の方法や、多孔性樹脂芯体に上記の液をスプレ
ー等により吹き付けるなどの方法を用いることができ
る。また、金属粉末の直接塗着方法としては、多孔性樹
脂にエアーガン等により金属粉末を吹き付ける方法や金
属粉末中で多孔性樹脂芯体を揺動させる方法などを用い
ることができる。
Here, as a method for applying the binder resin to the porous resin core, the porous resin core is impregnated in a liquid obtained by mixing the binder resin and water or a diluent such as an organic solvent, and then rolling. It is possible to use a method of removing the excessively adhered material by a method such as the above, or a method of spraying the above liquid onto the porous resin core body by a spray or the like. Further, as the method of directly applying the metal powder, a method of spraying the metal powder on the porous resin with an air gun or a method of rocking the porous resin core in the metal powder can be used.

【0008】このように混合粉末を直接塗着させる方法
によると、従来用いられている、金属粉末とバインダー
樹脂とを混練させたスラリーによる塗着方法では、金属
粉末の周囲が樹脂成分で覆われるため粉末間の導電性が
悪くなるのに対して、バインダー樹脂が塗着された多孔
性樹脂芯体の表面に混合粉末を均一に覆うことができる
ため良好な導電性が得られる。さらにここで用いる金属
粉末は最終製品となる金属多孔体の主骨格部となりうる
ものであり、カーボン導電処理のようにその全てを焼失
させるものではない。
According to the method of directly applying the mixed powder as described above, in the conventionally used method of applying the slurry in which the metal powder and the binder resin are kneaded, the periphery of the metal powder is covered with the resin component. Therefore, the conductivity between the powders is deteriorated, while the surface of the porous resin core body coated with the binder resin can be uniformly covered with the mixed powder, and thus good conductivity can be obtained. Further, the metal powder used here can serve as the main skeleton of the metal porous body which is the final product, and does not burn all of it like carbon conductive treatment.

【0009】また、金属粉末単体ではなく、炭素粉末と
の混合粉末を用いることにより、多孔性樹脂芯体への付
着形態として、金属粉末間に炭素粉末が挿入されること
により金属粉末間の隙間が埋められるため、金属単体の
場合に比べてより導電性の向上が可能となる。従って、
ここで用いる炭素粉末は、平均粒径として10μm以下
の比較的微細な粉末を使用することが好ましく、より好
ましくは平均粒径5μm以下のものを用いる。また炭素
の種類としては天然黒鉛、人造黒鉛、カーボンブラック
等を用いることができる。さらに、炭素粉末を混合する
効果として、付着させる金属量を容易に制御できるとい
う作用がある。例えばFe粉末平均粒径40μm、天然
黒鉛粉末平均粒径5μmの混合粉末の場合、図1に示す
ような関係となる。通常、本発明の金属多孔体はアルカ
リ電池等の電池電極基板として用いられるが、その場
合、金属多孔体の単位面積当たりの重量は、電池性能に
大きく影響を及ぼすことから、精度良く制御されている
ことが重要となる。しかしながら、金属粉末単体で上記
の方法により多孔性樹脂芯体に付着させた場合、金属粉
末の粒径サイズにより付着量はほぼ一義的に決定されて
しまうため、付着量を厳密に制御することはかなり困難
となる。そこで、本発明者らは、例えば図1に示す様
に、混合する炭素粉末の量により、多孔性樹脂芯体に塗
着されるFe粉末の量を制御できることを見出したもの
である。
Further, by using a mixed powder with carbon powder instead of the metal powder alone, the carbon powder is inserted between the metal powders as a form of adhesion to the porous resin core, so that a gap between the metal powders is formed. Since it is filled with, the conductivity can be further improved as compared with the case of using a metal alone. Therefore,
The carbon powder used here is preferably a relatively fine powder having an average particle size of 10 μm or less, and more preferably an average particle size of 5 μm or less. Further, as the type of carbon, natural graphite, artificial graphite, carbon black or the like can be used. Further, as an effect of mixing the carbon powder, there is an effect that the amount of metal to be attached can be easily controlled. For example, in the case of a mixed powder having an average particle size of Fe powder of 40 μm and an average particle size of natural graphite powder of 5 μm, the relationship is as shown in FIG. Usually, the metal porous body of the present invention is used as a battery electrode substrate of an alkaline battery or the like, but in that case, the weight per unit area of the metal porous body has a great influence on the battery performance, so that it can be controlled accurately. Is important. However, when the metal powder alone is adhered to the porous resin core by the above method, the adhered amount is almost uniquely determined by the particle size of the metal powder, so it is not possible to strictly control the adhered amount. It will be quite difficult. Then, the present inventors have found that, for example, as shown in FIG. 1, the amount of Fe powder coated on the porous resin core can be controlled by the amount of carbon powder to be mixed.

【0010】次に電気NiメッキによりNi皮膜を形成
することで金属多孔体が得られる。また、好ましくは電
気Niメッキの後、非酸化性雰囲気において熱処理を行
うことで多孔性樹脂芯体及びバインダー樹脂等を除去す
ることもできる。
Next, an Ni coating is formed by electric Ni plating to obtain a porous metal body. In addition, the porous resin core, the binder resin and the like can be removed by preferably performing heat treatment in a non-oxidizing atmosphere after the electric Ni plating.

【0011】また、本発明では、金属粉末と炭素粉末か
らなる混合粉末を直接塗着させた段階で、非酸化性雰囲
気において熱処理を行い、多孔性樹脂芯体及びバインダ
ー樹脂等の有機成分を焼失させ、その後電気Niメッキ
によりNi皮膜を形成することで、金属多孔体を得る方
法も提供する。この方法ではNi皮膜の形成前に有機成
分を除去することでNiメッキ後の熱処理が不要となる
ため、熱処理時の金属粉末とNi金属の拡散による強度
低下もしくは導電率の低下等を回避することが可能とな
る。又、金属粉末同士の焼結が進行することから導電性
の向上も可能となる。
Further, in the present invention, heat treatment is performed in a non-oxidizing atmosphere at the stage of directly applying the mixed powder consisting of the metal powder and the carbon powder to burn off the organic components such as the porous resin core and the binder resin. Then, a method for obtaining a porous metal body is also provided by forming a Ni film by electroplating Ni after that. This method eliminates the need for heat treatment after Ni plating by removing the organic components before forming the Ni film, so avoiding a decrease in strength or a decrease in conductivity due to diffusion of the metal powder and Ni metal during heat treatment. Is possible. Further, since the sintering of the metal powders progresses, the conductivity can be improved.

【0012】また、金属粉末としては、好ましくはNi
もしくはFeを用いる。Fe粉末を用いた場合は金属多
孔体としての強度の向上が可能となると同時に安価な粉
末が大量に入手できることによる。
The metal powder is preferably Ni.
Alternatively, Fe is used. This is because when the Fe powder is used, the strength of the porous metal body can be improved, and at the same time, a large amount of inexpensive powder can be obtained.

【0013】さらに、炭素粉末の量は金属粉末の2wt
%以下であることが好ましく、これは炭素量が2wt%
をこえると、最終的に得られる金属多孔体の電気抵抗が
大きくなるという問題があるためである。
Further, the amount of carbon powder is 2 wt% of metal powder.
% Or less, which has a carbon content of 2 wt%
This is because if it exceeds, there is a problem that the electrical resistance of the metal porous body finally obtained increases.

【0014】[0014]

【実施例】【Example】

実施例1 厚さ2.5mmで1インチ当りの空孔数が約50個のポ
リウレタンフォームをアクリル樹脂60wt%、水40
wt%を混合したバインダー樹脂液中に含浸させた後絞
りロールにて過剰含浸塗着分を除去し、バインダーが塗
着された多孔性樹脂芯体を作製した。
Example 1 Polyurethane foam having a thickness of 2.5 mm and about 50 pores per inch was made of acrylic resin 60 wt% and water 40.
After impregnating the binder resin liquid mixed with wt%, the excess impregnated coating portion was removed by a squeeze roll to prepare a binder-coated porous resin core.

【0015】次に平均粒径55μmのFe粉末と平均粒
径5μmの天然黒鉛粉末を重量比(%)で99.2:
0.8の割合で均一に混ぜ合わせた混合粉末を用意し
た。次にエアーガンにより上記多孔性樹脂芯体にこの混
合粉末を直接吹き付けを行い、大気中150℃で5分乾
燥させることで導電処理を行った。このときのFe粉末
の塗着量は180g/m2で、電気抵抗は、幅10m
m、長さ100mmで25Ωであった。このサンプルを
Aとする。
Next, Fe powder having an average particle diameter of 55 μm and natural graphite powder having an average particle diameter of 5 μm are 99.2 in weight ratio (%):
A mixed powder that was uniformly mixed at a ratio of 0.8 was prepared. Next, the mixed powder was directly sprayed onto the porous resin core body by an air gun, and the conductive treatment was performed by drying in the air at 150 ° C. for 5 minutes. The coating amount of Fe powder at this time was 180 g / m 2 , and the electric resistance was 10 m in width.
m and length 100 mm were 25Ω. This sample is designated as A.

【0016】比較例としてFe粉末50wt%、アクリ
ル樹脂10wt%、水40wt%のスラリー液を作製
し、このスラリー液中にポリウレタンフォームを含浸さ
せた後絞りロールにて過剰含浸塗着分を除去し、Fe粉
末が塗着された多孔性樹脂芯体を作製した。このときの
Fe粉末の塗着量は400g/m2で、電気抵抗は幅1
0mm、長さ100mmで250kΩであった。このサ
ンプルをBとする。サンプルA,Bについて電気Niメ
ッキ用ワット浴中で電流密度10A/dm2でNiメッ
キを実施した。サンプルAでは全面均一にメッキ皮膜が
形成され、200g/m2のNiがメッキされていた。
Niメッキ後のサンプルを水素気流中、1000℃、5
分で熱処理を行い金属多孔体を得た。このサンプルをC
とする。一方サンプルBでは電気抵抗が高いため電極接
続部のみにNiがメッキされており均一なNiメッキ皮
膜が得られなかった。
As a comparative example, a slurry liquid of 50 wt% Fe powder, 10 wt% acrylic resin, and 40 wt% water was prepared, and polyurethane foam was impregnated into the slurry liquid, and the excess impregnated coating was removed with a squeezing roll. A porous resin core body coated with Fe powder was prepared. At this time, the coating amount of Fe powder was 400 g / m 2 , and the electric resistance was 1
It was 0 mm and the length was 100 mm, and it was 250 kΩ. This sample is designated as B. Samples A and B were plated with Ni in a watt bath for electric Ni plating at a current density of 10 A / dm 2 . In Sample A, a plating film was uniformly formed on the entire surface, and 200 g / m 2 of Ni was plated.
Ni-plated sample in a hydrogen stream at 1000 ° C for 5
Heat treatment was performed for minutes to obtain a porous metal body. This sample is C
And On the other hand, in Sample B, since the electric resistance was high, Ni was plated only on the electrode connection portion, and a uniform Ni plating film could not be obtained.

【0017】実施例2 厚さ2.0mmで1インチ当りの空孔数が約40個のポ
リウレタンフォームをフェノール樹脂60wt%、水4
0wt%を混合したバインダー樹脂液をスプレー塗布
し、バインダーが塗着された多孔性樹脂芯体を作製し
た。次に平均粒径6μmのNi粉末と平均粒径1μmの
人造黒鉛粉末を重量比(%)で99.4:0.6の割合
で均一に混ぜ合わせた混合粉末を用意した。次にこの混
合粉末中で上記多孔性樹脂芯体を揺動させて、Ni粉末
の塗着を行った後、大気中150℃にて10分乾燥させ
た。このときのNi粉末の塗着量は250g/m2で、
電気抵抗は幅10mm、長さ100mmで25Ωであっ
た。このサンプルについて電気Niメッキ用ワット浴中
で電流密度10A/dm2でNiメッキを実施し、35
0g/m2のNi皮膜を形成した。大気中700℃、5
分の熱処理をした後、さらに水素気流中1000℃、5
分の熱処理を行い金属多孔体を得た。この金属多孔体を
サンプルDとする。
Example 2 Polyurethane foam having a thickness of 2.0 mm and about 40 pores per inch was prepared by using 60 wt% of phenol resin and 4 parts of water.
A binder resin liquid mixed with 0 wt% was spray-coated to prepare a porous resin core body to which the binder was applied. Next, a mixed powder was prepared by uniformly mixing Ni powder having an average particle size of 6 μm and artificial graphite powder having an average particle size of 1 μm at a weight ratio (%) of 99.4: 0.6. Next, the porous resin core was shaken in this mixed powder to apply Ni powder, and then dried at 150 ° C. in the atmosphere for 10 minutes. The coating amount of Ni powder at this time was 250 g / m 2 ,
The electric resistance was 25Ω at a width of 10 mm and a length of 100 mm. Ni plating was performed on this sample at a current density of 10 A / dm 2 in a watt bath for electric Ni plating,
A Ni film of 0 g / m 2 was formed. 700 ° C in the atmosphere, 5
After heat treatment for 5 minutes, further in a hydrogen stream at 1000 ° C. for 5
Heat treatment was performed for a minute to obtain a metal porous body. This metal porous body is referred to as Sample D.

【0018】実施例3 厚さ2.5mmで1インチ当りの空孔数が約50個のポ
リウレタンフォームをフェノール樹脂60wt%、水4
0wt%を混合したバインダー樹脂液中に含浸させた後
絞りロールにて過剰含浸塗着分を除去し、バインダーが
塗着された多孔性樹脂芯体を作製した。
Example 3 Polyurethane foam having a thickness of 2.5 mm and about 50 pores per inch was prepared by using 60 wt% of phenol resin and 4 parts of water.
After impregnating the binder resin liquid mixed with 0 wt%, the excess impregnated coating component was removed with a squeeze roll to prepare a binder-coated porous resin core.

【0019】次に平均粒径70μmのFe粉末と平均粒
径5μmの天然黒鉛粉末を重量比(%)で98.6:
1.4の割合で均一に混ぜ合わせた混合粉末中で上記多
孔性樹脂芯体を揺動させた後、大気中150℃、5分の
条件で乾燥させ、300g/m2のFe粉末の塗着を行
った。次いで水素気流中1200℃、10分の熱処理を
行いウレタンフォーム及びフェノールバインダー樹脂を
焼失させた後、電気Niメッキ用ワット浴中で電流密度
10A/dm2でNiメッキを実施し、300g/m2
Ni皮膜を形成した。このサンプルをEとする。
Next, an Fe powder having an average particle size of 70 μm and a natural graphite powder having an average particle size of 5 μm were used in a weight ratio (%) of 98.6:
The porous resin core was shaken in a mixed powder that was uniformly mixed at a ratio of 1.4, then dried in the atmosphere at 150 ° C. for 5 minutes, and coated with 300 g / m 2 of Fe powder. I put on my clothes. Next, after heat-treating at 1200 ° C. for 10 minutes in a hydrogen stream to burn off the urethane foam and the phenol binder resin, Ni plating is performed at a current density of 10 A / dm 2 in a Watt bath for electric Ni plating, and 300 g / m 2 Ni film was formed. Let this sample be E.

【0020】実施例4 金属多孔体サンプルC,D,Eについて、引張り強度、
伸び、電気抵抗を測定した結果を表1に示す。
Example 4 Tensile strength of porous metal sample C, D and E,
Table 1 shows the results of measuring elongation and electric resistance.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果より本発明の作製方法によれば
良好な特性を示す金属多孔体が得られる。
From the results shown in Table 1, according to the manufacturing method of the present invention, it is possible to obtain a porous metal body having good characteristics.

【0023】[0023]

【発明の効果】本発明によれば、アルカリ2次電池など
の電極基板として有用な金属多孔体を煩雑な工程を経る
ことなく、所望の強度特性を持ち並びに品質に優れたも
のとして得ることができる。
According to the present invention, a metal porous body useful as an electrode substrate for an alkaline secondary battery or the like can be obtained as a product having desired strength characteristics and excellent quality without complicated steps. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】カーボン粉末量と鉄粉の付着量との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the amount of carbon powder and the amount of iron powder attached.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔性の樹脂芯体の骨格表面にバインダ
ー樹脂を塗着した後、樹脂が乾燥硬化する前に金属粉末
と炭素粉末からなる混合粉末を直接塗着し、電気Niメ
ッキを行うことを特徴とする金属多孔体の製造方法。
1. After applying a binder resin on the surface of a skeleton of a porous resin core, and then directly applying a mixed powder of a metal powder and a carbon powder before the resin is dried and hardened, an electric Ni plating is performed. A method for producing a porous metal body, comprising:
【請求項2】 多孔性の樹脂芯体の骨格表面にバインダ
ー樹脂を塗着した後、樹脂が乾燥硬化する前に金属粉末
と炭素粉末からなる混合粉末を直接塗着し、非酸化性雰
囲気において熱処理を行うことで有機樹脂成分を焼失さ
せ、ついで電気Niメッキを行うことを特徴とする金属
多孔体の製造方法。
2. After coating a binder resin on the skeleton surface of a porous resin core and then directly coating a mixed powder consisting of metal powder and carbon powder before the resin is dried and hardened, in a non-oxidizing atmosphere. A method for producing a porous metal body, characterized in that the organic resin component is burned down by heat treatment, and then electroplating with Ni is performed.
【請求項3】 金属粉末がNi,Feであることを特徴
とする請求項1,2記載の金属多孔体の製造方法。
3. The method for producing a metal porous body according to claim 1, wherein the metal powder is Ni or Fe.
JP7157604A 1995-06-23 1995-06-23 Manufacture of metal porous body Pending JPH097607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7157604A JPH097607A (en) 1995-06-23 1995-06-23 Manufacture of metal porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7157604A JPH097607A (en) 1995-06-23 1995-06-23 Manufacture of metal porous body

Publications (1)

Publication Number Publication Date
JPH097607A true JPH097607A (en) 1997-01-10

Family

ID=15653363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7157604A Pending JPH097607A (en) 1995-06-23 1995-06-23 Manufacture of metal porous body

Country Status (1)

Country Link
JP (1) JPH097607A (en)

Similar Documents

Publication Publication Date Title
US5968685A (en) Battery electrode substrate and process for producing the same
CN1043668C (en) Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same
JPH0644966A (en) Manufacture of hydrogen storage electrode
CA2179347C (en) Electrode substrate for battery and process for preparing the same
JP3468493B2 (en) Battery electrode substrate and method of manufacturing the same
JPH097607A (en) Manufacture of metal porous body
JPH0992292A (en) Manufacture of metal porous body
JPH08302495A (en) Production of metallic porous body
JPS6123706A (en) Production of sintered substrate for battery
JPH0949037A (en) Production of metallic porous body
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
JP4289858B2 (en) Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery
JPH08193232A (en) Production of metallic porous body
JPH08287917A (en) Manufacture of metallic porous body
JP2870125B2 (en) Manufacturing method of non-woven metal sintered sheet
JPH11329449A (en) Electrode substrate for battery and its manufacture
JPH05174831A (en) Sintered electrode for alkaline storage battery
JPH0388270A (en) Electrode for nickel-cadmium storage battery
JPH076765A (en) Manufacture of porous current collector for battery
JPH08222226A (en) Manufacture of three-dimensional mesh electrode carrier
JPH09161807A (en) Electrode base for lithium ion battery
JPH10183203A (en) Production of metallic porous body
JPH11176429A (en) Manufacture of electrode for battery
JPH03203163A (en) Manufacture of current collector for alkaline storage battery
JPH05242885A (en) Paste type cathode plate for alkaline storage battery