JPS61178491A - Method for pulling up single crystal - Google Patents

Method for pulling up single crystal

Info

Publication number
JPS61178491A
JPS61178491A JP60015365A JP1536585A JPS61178491A JP S61178491 A JPS61178491 A JP S61178491A JP 60015365 A JP60015365 A JP 60015365A JP 1536585 A JP1536585 A JP 1536585A JP S61178491 A JPS61178491 A JP S61178491A
Authority
JP
Japan
Prior art keywords
pulling
single crystal
dislocation
axis
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60015365A
Other languages
Japanese (ja)
Other versions
JPH0155239B2 (en
Inventor
Junji Matsui
松井 純爾
Hisao Watanabe
渡邊 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60015365A priority Critical patent/JPS61178491A/en
Publication of JPS61178491A publication Critical patent/JPS61178491A/en
Publication of JPH0155239B2 publication Critical patent/JPH0155239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make it possible to grow a single crystal of a Group III-V compound semiconductor having low or no dislocation in growing the single crystal of the Group III-V compound semiconductor, by adjusting the direction of the pulling up axis to <210> direction. CONSTITUTION:A Group III-V compound semiconductor is grown by the pulling up method. In the process, the direction of the pulling up axis is adjusted to <210> direction. The growing direction of the propagation dislocation from a seed crystal, i.e. [100] direction, is kept away from the pulling up axis. Therefore, the above-mentioned direction is fixed at a direction to make the dislocation 3 from the seed crystal go out to the surface of a crystal ingot 2 as shown in the sectional perspective view of the ingot 2 even if the dislocation 3 from the seed crystal is propagated in the direction [100] in the initial stage of growth. The <210> direction is set at the direction of the pulling axis. Thus, the <210> direction fixed at the pulling up and growth direction of the single crystal avoids the residual slip dislocation by the propagation of the dislocation from the seed crystal in the pulling up axis and thermal stress.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料の融体を含むルツボに種子結晶を浸漬し
た後、回転しなから■−v族化合物半導体単結晶を成長
させる引上げ方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a pulling method in which a seed crystal is immersed in a crucible containing a melt of raw material and then rotated to grow a ■-V group compound semiconductor single crystal. Regarding.

〔従来技術〕[Prior art]

半導体結晶を素材とする高速論理素子および光通信素子
には、砒化ガリウム・(以下GaAsと記述する)や燐
化インジウム(以下InPと記述する)のようなm−v
族化合物半導体単結晶が用いられている。これらの単結
晶には、一般に転位と呼ばれる線状格子欠陥が103〜
10’ /cm2程度の密度で含まれていることが多く
、このような単結晶を前述のような素子の素材として用
いた場合には、動作閾値電圧が素子間で不均一になった
り、光出力が劣化したりすることが報告されている。そ
のために、このような結晶欠陥を含まないようなm−v
族化合物半導体単結晶を育成することが必要である。
High-speed logic devices and optical communication devices made of semiconductor crystals include m-v materials such as gallium arsenide (hereinafter referred to as GaAs) and indium phosphide (hereinafter referred to as InP).
Group compound semiconductor single crystals are used. These single crystals generally have linear lattice defects called dislocations of 103~
It is often contained at a density of about 10'/cm2, and when such a single crystal is used as a material for the above-mentioned elements, the operating threshold voltage may become non-uniform between elements, and the light It has been reported that the output may deteriorate. Therefore, m-v that does not contain such crystal defects
It is necessary to grow group compound semiconductor single crystals.

例えば、GaAs単結晶中の転位を減少する目的のため
に、G a、A sの融体の中に、インジウム(以下I
nと記述する)のような電気的に中性な不純物を添加す
ることにより、GaAs結晶中における転位の移動速度
を減じ、単結晶表面近傍の熱応力によって転位が導入さ
れても引上げ単結晶内部にまで転位が侵入することを防
止することで、低転位密度あるいは無転位のGaAs単
結晶を得ることが試みられている。
For example, for the purpose of reducing dislocations in a GaAs single crystal, indium (hereinafter I
By adding electrically neutral impurities such as Attempts have been made to obtain GaAs single crystals with low dislocation density or no dislocations by preventing dislocations from penetrating into the surface.

〔従来技術の問題点〕[Problems with conventional technology]

これらのGaAs単結晶の引上げ方位は第4図(a)に
示すようにHOO>方向であることが多く、その場合、
種子結晶1中に存在する転位のうちHOO>方向のみが
、引上げられた育成単結晶であるインゴット2中にその
まま伝播してくる結果、第4図(b)に示すように種子
結晶からの伝播転位3が生成される。このため、引上げ
軸(回転軸)に垂直に切り出された(100)ウェーハ
のほぼ中央付近には、ウェーハ表面に垂直に交わる転位
が多く存在する゛ことが知られている。
The pulling direction of these GaAs single crystals is often the HOO> direction as shown in Figure 4(a), and in that case,
Of the dislocations existing in the seed crystal 1, only the HOO> direction propagates as it is into the pulled grown single crystal ingot 2, resulting in the propagation from the seed crystal as shown in FIG. 4(b). Dislocation 3 is generated. Therefore, it is known that there are many dislocations perpendicular to the wafer surface near the center of a (100) wafer cut perpendicularly to the pulling axis (rotation axis).

X線トポグラフィ等による分析の結果、これらの転位は
引上げ軸であるH OO>軸を含む(110)面内に存
在し、そのバーガースベクトルの方向は、転位線に垂直
なH10)方向に平行で、やはり〈100>引上げ軸を
含む(110)面内に横たわっていることがわかってい
る。なお、第4図(a)は引上げ法により育成されたG
aAs単結晶のインゴットの斜視図、第4図(b)はこ
のインゴットの中心軸付近の断面を示す斜視図である。
As a result of analysis by X-ray topography, etc., these dislocations exist in the (110) plane that includes the pulling axis HOO>, and the direction of the Burgers vector is parallel to the H10) direction perpendicular to the dislocation line. , is also found to lie in the (110) plane containing the <100> pulling axis. In addition, Fig. 4(a) shows G grown by the pulling method.
A perspective view of an aAs single crystal ingot, FIG. 4(b) is a perspective view showing a cross section near the central axis of this ingot.

一方、一般に、m−v族化合物半導体単結晶を引上げる
場合、熱応力によって成長中のインゴット表面から転位
が、4面存在する(111)面上をすべりながら内部に
導入され、転位密度が増加する・ことが頻繁に発生する
。したがってこれらの(111)面のうち1つでも引上
げ軸との傾きが浅くなると、この(111)面上の転位
がインゴットの内部に留まったまま・になる確率が高く
なる。
On the other hand, when pulling an m-v group compound semiconductor single crystal, dislocations are generally introduced from the surface of the growing ingot due to thermal stress into the interior while sliding on the (111) planes that exist, increasing the dislocation density. Something that happens frequently. Therefore, if the inclination of even one of these (111) planes with respect to the pulling axis becomes shallow, the probability that dislocations on this (111) plane will remain inside the ingot increases.

<100>引上げ軸の場合には、これら4つの(111
)面のいずれもが、(100>引上げ軸に垂直な(10
0)面と54°44′の傾きを持つため、(111)面
と<100>引上げ軸との傾きは問題とはならないが、
前述したように(110)面が引上げ軸と平行になるた
めに、第4図(b)に示すような種子結晶からの伝播転
位が回避できないという欠点を有していた。
In the case of a <100> pulling axis, these four (111
) plane is (100>perpendicular to the pulling axis (10
0) plane, so the inclination between the (111) plane and the <100> pulling axis is not a problem, but
As mentioned above, since the (110) plane is parallel to the pulling axis, it has the disadvantage that propagation dislocations from the seed crystal as shown in FIG. 4(b) cannot be avoided.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる種子結晶からの伝播転位がインゴッ
トの成長方向に伸びてくることを除去するとともに、(
111)面のいずれもが引上げ方向に平行にならないよ
うな方向に単結晶を引上げることにより、低転位ないし
は無転位の■−v族化合物半導体の単結晶を育成する方
法を提供することにある。
This invention eliminates the propagation of dislocations from such seed crystals from extending in the growth direction of the ingot;
111) To provide a method for growing a single crystal of a ■-v group compound semiconductor with low or no dislocations by pulling the single crystal in a direction such that none of its planes are parallel to the pulling direction. .

〔発明の構成〕[Structure of the invention]

この発明は、m−v族化合物半導体単結晶を引上げ法に
より成長育成する際に、引上げ軸の方向を<210>方
向とすることを特徴とする。
This invention is characterized in that when growing an m-v group compound semiconductor single crystal by a pulling method, the direction of the pulling axis is set to the <210> direction.

〔構成の詳細な説明〕[Detailed explanation of the configuration]

以下、この発明の詳細について、図を用いて説明する。 The details of this invention will be explained below with reference to the drawings.

第3図はm−v族化合物半導体単結晶の単位胞を示す概
念図である。第4図で説明した従来の引上げ軸を(10
0)方向とすると、種子結晶からの伝播転位は四辺形B
DHFの(011)面または四辺形ACGEの(011
)面内にあり、それぞれのバーガースベクトルは%(0
11)または%(011)である。
FIG. 3 is a conceptual diagram showing a unit cell of an m-v group compound semiconductor single crystal. The conventional pulling shaft explained in Fig. 4 is (10
0) direction, the propagating dislocation from the seed crystal is quadrilateral B
(011) plane of DHF or (011) of quadrilateral ACGE
) plane, and each Burgers vector is %(0
11) or %(011).

したがって、この発明では、種子結晶からの伝播転位の
伸びる方向即ち(100)方向が、引上げ軸とならない
ようにすることにより、仮りに、成長の初期に種子結晶
から転位3が(100)方向に伝播してきても、第1図
のインゴット2の断面斜視図に示すように、いずれ結晶
インゴットの表面に抜は出てしまうような方向としてく
210〉方向を引上げ軸の方向とした。このような方向
としては<210>方向以外にも多(あり、例えば第3
図において(110)方向を引上げ軸としても種子結晶
からの転移はインゴット表面に抜は出てしまうという目
的は達せられるが、その場合、三角形BGEの(111
)面あるいは三角形CHFの(111)面のように、(
11’O)方向と平行な(111)面が存在することに
なり、前述のような理由で不適当である。
Therefore, in this invention, by making sure that the direction in which propagating dislocations from the seed crystal extend, that is, the (100) direction, does not become the pulling axis, it is possible to make it possible for dislocations 3 from the seed crystal to move in the (100) direction at the initial stage of growth. Even if it propagates, as shown in the cross-sectional perspective view of the ingot 2 in FIG. 1, the pulling axis is set to the 210〉 direction, which is such that it will eventually come out on the surface of the crystal ingot. There are many such directions other than the <210> direction (for example, the 3rd direction).
In the figure, even if the (110) direction is used as the pulling axis, the goal of dislocation from the seed crystal will be extracted to the ingot surface can be achieved, but in that case, the (111) direction of the triangular BGE
) plane or (111) plane of triangle CHF, (
A (111) plane parallel to the 11'O) direction exists, which is inappropriate for the reasons mentioned above.

そこで、この発明では(100)方向と〔110〕方向
の中間的な方向でなおかつ、いずれの(110)面およ
びいずれの(111)面とも平行でない方向として(2
10)方向で代表されろく210〉方向を単結晶の引上
げ成長方向とすることで、種子結晶からの転位の引上げ
軸方向の伝播および熱応力によるすべり転位の残存を回
避している。
Therefore, in this invention, (2
By setting the 210> direction represented by the 10) direction as the pulling growth direction of the single crystal, propagation of dislocations from the seed crystal in the pulling axis direction and residual slip dislocations due to thermal stress are avoided.

〔実施例〕〔Example〕

GaAsの融体の中にInを添加し、GaAs単結晶で
ある種子結晶を浸漬した後、引上げ軸の方向を<210
>方向とし回転しながら引上げて、Inドープ(Inの
添加濃度5 X 1019cm−3) GaAs単結晶
インゴットを育成した。この単結晶インゴットのうち、
固化率約50%の部分から(100)表面をもつように
切断されたウェーハを、水酸化カリウムの融液によって
エッチピットを露呈させる。エッチピットを露呈させた
後のウェーハ中心部の表面を電子顕微鏡により撮影した
。第2図(a)は、その顕微鏡写真を示す。比較の意味
で、引上げ軸の方向をHOO>方向とし、その他の条件
は全く同一として育成したInドープGaAs単結晶イ
ンゴットのウェーハの同様な電子顕微鏡写真を示す。こ
れら表面写真を比較すれば明らかなように、第2図(b
)の表面写真によれば(100)ウェーハの中央部分に
は種子結晶からの伝播転位が存在しているが、第2図(
a)の表面写真によれば(100)ウェーへの中央部分
には種子結晶からの伝播転位はもはや存在していない。
After adding In into a GaAs melt and immersing a GaAs single crystal seed crystal, the direction of the pulling axis was set to <210
> direction and pulled up while rotating to grow an In-doped (In addition concentration: 5 x 1019 cm-3) GaAs single crystal ingot. Of this single crystal ingot,
A wafer is cut to have a (100) surface from a portion where the solidification rate is approximately 50%, and etch pits are exposed using a potassium hydroxide melt. After exposing the etch pits, the surface of the center of the wafer was photographed using an electron microscope. FIG. 2(a) shows the micrograph. For comparison, a similar electron micrograph is shown of a wafer of an In-doped GaAs single crystal ingot grown with the pulling axis in the HOO> direction and other conditions being exactly the same. As is clear from comparing these surface photographs, Figure 2 (b
According to the surface photograph of (100) wafer, there are dislocations propagating from the seed crystal in the central part of the (100) wafer, but as shown in Fig. 2 (
According to the surface photograph in a), there are no longer propagating dislocations from the seed crystal in the central part of the (100) wafer.

このように、この発明の方法が、種子結晶からの転位が
(100)ウェーハ中央部に伝播することを回避するの
に有効であることが判明した。
Thus, it has been found that the method of the present invention is effective in preventing dislocations from the seed crystal from propagating to the center of the (100) wafer.

この発明は、上記実施例のGaAs単結晶のみならず、
H00>方向に伝播転位を伸長することを特徴とする他
の単結晶の引上げにも応用できることは勿論である。
This invention applies not only to the GaAs single crystal of the above embodiment, but also to
Of course, the present invention can also be applied to pulling other single crystals characterized by elongation of propagating dislocations in the H00> direction.

〔発明の効果〕〔Effect of the invention〕

以上説明したところから明らかなように、本発明の単結
晶引上げ方法によれば、低転位ないしは無転位のm−v
族化合物半導体の単結晶を育成することが可能となる。
As is clear from the above explanation, according to the single crystal pulling method of the present invention, low dislocation or no dislocation m-v
It becomes possible to grow single crystals of group compound semiconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法により <210>方向に引
上げ育成されたGaAs単結晶インゴットの中心軸付近
の断面斜視図、 第2図は、この発明の方法により<210>方向に引上
げ育成されたGaAs単結晶インゴットの固化率50%
付近から切断された(100)ウェーへの中央部分の結
晶の構造を示す電子顕微鏡写真、および従来の方法によ
り<100>方向に引上げ育成されたGaAs単結晶イ
ンゴットの固化率50%付近から切断された(100)
ウェーへの中央部分の結晶の構造を示す電子顕微鏡写真
、第3図は、この発明の結晶学的方向を説明する単位胞
を示す図、 第4図は、従来の<100>引上げ軸によるGaAs単
結晶インゴットの斜視図およびその中心軸付近の断面斜
視図である。 1・・・・・種子結晶 2・・・・・インゴット 3・・・・・伝播転位
FIG. 1 is a cross-sectional perspective view of a GaAs single crystal ingot near the central axis that has been pulled and grown in the <210> direction by the method of the present invention, and FIG. Solidification rate of GaAs single crystal ingot 50%
An electron micrograph showing the structure of the crystal in the central part of the (100) wafer cut from the vicinity, and a GaAs single crystal ingot pulled and grown in the <100> direction by the conventional method, cut from around 50% solidification rate. Ta (100)
FIG. 3 is an electron micrograph showing the structure of the crystal in the central part of the wafer. FIG. 3 is a diagram showing a unit cell explaining the crystallographic direction of this invention. FIG. FIG. 2 is a perspective view of a single crystal ingot and a cross-sectional perspective view of the vicinity of its central axis. 1... Seed crystal 2... Ingot 3... Propagating dislocation

Claims (1)

【特許請求の範囲】[Claims] (1)III−V族化合物半導体単結晶を引上げ法により
成長育成する際に、引上げ軸の方向を〈210〉方向と
することを特徴とする単結晶引上げ方法。
(1) A method for pulling a single crystal, which is characterized in that when a III-V group compound semiconductor single crystal is grown by a pulling method, the direction of the pulling axis is the <210> direction.
JP60015365A 1985-01-31 1985-01-31 Method for pulling up single crystal Granted JPS61178491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60015365A JPS61178491A (en) 1985-01-31 1985-01-31 Method for pulling up single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60015365A JPS61178491A (en) 1985-01-31 1985-01-31 Method for pulling up single crystal

Publications (2)

Publication Number Publication Date
JPS61178491A true JPS61178491A (en) 1986-08-11
JPH0155239B2 JPH0155239B2 (en) 1989-11-22

Family

ID=11886765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60015365A Granted JPS61178491A (en) 1985-01-31 1985-01-31 Method for pulling up single crystal

Country Status (1)

Country Link
JP (1) JPS61178491A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154183A (en) * 1974-06-06 1975-12-11
JPS5717494A (en) * 1980-06-30 1982-01-29 Toshiba Corp Manufacture of single crystal
JPS5756399A (en) * 1980-09-18 1982-04-03 Toshiba Corp Manufacture of single crystal of compound with high decomposition pressure
JPS58104399A (en) * 1981-11-30 1983-06-21 アイ・テイ・テイ・インダストリ−ズ・インコ−ポレ−テツド Device for submarine pump unit guide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154183A (en) * 1974-06-06 1975-12-11
JPS5717494A (en) * 1980-06-30 1982-01-29 Toshiba Corp Manufacture of single crystal
JPS5756399A (en) * 1980-09-18 1982-04-03 Toshiba Corp Manufacture of single crystal of compound with high decomposition pressure
JPS58104399A (en) * 1981-11-30 1983-06-21 アイ・テイ・テイ・インダストリ−ズ・インコ−ポレ−テツド Device for submarine pump unit guide

Also Published As

Publication number Publication date
JPH0155239B2 (en) 1989-11-22

Similar Documents

Publication Publication Date Title
Kawamura et al. Drastic decrease in dislocations during liquid phase epitaxy growth of GaN single crystals using Na flux method without any artificial processes
JPH03236218A (en) Compound semiconductor substrate and manufacture thereof
Mahajan et al. The status of current understanding of InP and InGaAsP materials
US5769941A (en) Method of forming semiconductor material
Yamada et al. Elimination of grown-in dislocations in In-doped liquid encapsulated Czochralski GaAs
JPS61178491A (en) Method for pulling up single crystal
Rode et al. Growth of AlGaAs-GaAs heterostructures from step-cooled solutions
JPH0247437B2 (en)
KR930007856B1 (en) Wafer of compound semiconductor
Huang et al. Microchannel Epitaxy of GaAs from parallel and nonparallel seeds
JPS5912639B2 (en) crystal growth method
JPH0316119A (en) Compound semiconductor wafer
JPH0670973B2 (en) Compound semiconductor epitaxial wafer
Inoue TriPyramid Growth of Epitaxial Silicon
JPH0263115A (en) Selective growth of thin film
JPH08195356A (en) Manufacture of semiconductor element and semiconductor device
Rozgonyi et al. Defect studies of gap crystals pulled from non-stoichiometric melts: I. Growth related defect analysis
Hirano et al. Crystal growth of low EPD S-doped< 100> InP by facet formation
JPH0818899B2 (en) Crystal growth method
JPH0779087B2 (en) Surface treatment method for GaAs (111) A-plane substrate
JP2023145595A (en) Indium phosphide substrate and semiconductor epitaxial wafer
JPS62186524A (en) Epitaxial wafer
Stacy et al. Interfacial elastic strains in (Al, Ga) As/GaAs heterostructures grown by liquid phase epitaxy
JPH06232045A (en) Manufacture of crystalline substrate
JPS62128996A (en) Production of iii-v compound semiconductor single crystal