JPS6115367A - Manufacture of gate turn-off thyristor - Google Patents

Manufacture of gate turn-off thyristor

Info

Publication number
JPS6115367A
JPS6115367A JP13608784A JP13608784A JPS6115367A JP S6115367 A JPS6115367 A JP S6115367A JP 13608784 A JP13608784 A JP 13608784A JP 13608784 A JP13608784 A JP 13608784A JP S6115367 A JPS6115367 A JP S6115367A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
type
type semiconductor
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13608784A
Other languages
Japanese (ja)
Other versions
JPH0550858B2 (en
Inventor
Mitsuo Kusano
草野 光男
Mitsuru Hanakura
満 花倉
Satoshi Ishibashi
石橋 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP13608784A priority Critical patent/JPS6115367A/en
Publication of JPS6115367A publication Critical patent/JPS6115367A/en
Publication of JPH0550858B2 publication Critical patent/JPH0550858B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To improve the reverse withstand voltage at junctions by a method wherein the surface of a P type semiconductor layer is provided with a P type expitaxial layer of low impurity concentration, and an N type impurity is deposited on its surface and then diffused by intrusion into the boundary region of said epitaxial layer. CONSTITUTION:A P type semiconductor layer P2 (gate layer) is formed by diffusing a P type impurity from the surface of an N type semiconductor layer N1. Next, the P type epitaxial layer P<-> of low P type impurity concentration is formed on the surface on this semiconductor layer P2. Then, a deposition layer N<+> is formed by depositing an N type impurity on the surface of this epitaxial layer P<->; thereafter, this impurity is diffused by intrusion to the boundary region between the semiconductor layer P2 and the epitaxial layer P<->. Thereby, an N type semiconductor layer N2 serving as the cathode layer is formed by junction on one surface side of the semiconductor layer P2. Since this manner enables the layer P2 to have the peak of impurity concentration at the part other than the end in the thickness dcirection, the reverse withstand voltage VGR can be increased with the reduction in resistance of the semiconductor layer P2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はゲートターンオフ(GTO)サイリスタの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing gate turn-off (GTO) thyristors.

従来の技術 GTO廿イリスタは、例えば威4図に示すようにアノー
ドJ脅であるP型の半導体層P+−N型の半導体層N1
、ゲート層であるP型の半導体層Pt1カソード層であ
るN型の半導体層N2をこの順に設けて構成され、アノ
ード層21表面にアノード電極A1カソード層N1表面
にカンード電極に1ゲ一ト層P。
For example, the conventional GTO iris transistor has a P-type semiconductor layer P+-N-type semiconductor layer N1, which is an anode layer, as shown in FIG.
, a P-type semiconductor layer Pt as a gate layer, an N-type semiconductor layer N2 as a cathode layer, are provided in this order, an anode electrode A on the surface of the anode layer 21, a gate layer as a cando electrode on the surface of the cathode layer N1. P.

表面にゲー・ト雷、極Gが設けられている。GTOサイ
リスタにおいては、アノード層P、からカソード層N2
に向かって負荷電流が流れ、半導体層N、 、 P。
Gate lightning and polar G are provided on the surface. In the GTO thyristor, from the anode layer P to the cathode layer N2
A load current flows toward the semiconductor layers N, , P.

の接合を逆バイアスする方向に電極に、0間にゲート電
流を流すことによって負荷電、流が遮断される。
The load current is cut off by passing a gate current between the electrodes in a direction that reverse biases the junction.

ここにGTO4)イリスタの最大遮断電流を■、工とす
ると、工AmaXは次式で衣わされる。
Here, if the maximum breaking current of the GTO4) Iristor is (■), then AmaX is given by the following formula.

工AmaX″工grma X G −VGK7Rgxanpn/(αnpn+αpnp−1
) ・(il但しGはターンオフゲイン、voKはゲー
トカンード間の降伏電圧(逆耐圧)、R,1はゲートフ
ケの内部インピーダンス、工   は最大ターンオフゲ
インーmax ト電流、αnpn、αpnpは夫々GTOサイリスタを
2つのトランジスタモデルで近似したときのNPNトラ
ンジスタ及びPNPI−ランリスタの直流電流増幅基で
ある。(1)式かられかるように、最大遮断電流を大き
くするためには、voKを大きくするか、或いはRgを
小さくすればよい。Rgを小さくするためにはゲート層
P2の抵抗率を小さくすること、即ちゲート層P2にお
けるP型の不純物濃度を高めるようにすればよい。とこ
ろでゲート層P、は通常所要の比抵抗、のN型の半導体
である7リコン基板にガリウム、ボロン、或いはアルミ
ニュム等のP型の不純物を熱拡散することによって形成
されるため、その濃度プロファイルは第5図に示すよう
に表面から深さ方向に対して濃度が低下するような(通
常は補誤差関数)分布となる。そして半導体1−N2は
、半導体層P、が形成されてからその表面より高濃度の
リン等のN型不純物を拡散することによって形成される
。一方vGKは半導体層P、と半導体層N、との接合部
における半導体層P、の不純物濃度Cj(第5図参照)
で決定され、vGkを高くするにはその不純物濃度を低
くすることが必要である。
工AmaX″ 工 grma
) ・(il where G is the turn-off gain, voK is the breakdown voltage (reverse withstand voltage) between the gate canads, R,1 is the internal impedance of the gate cap, F is the maximum turn-off gain - max current, αnpn, αpnp are the GTO thyristor voltages, respectively) This is the DC current amplification base of an NPN transistor and a PNPI-Ranristor when approximated by a two-transistor model.As seen from equation (1), in order to increase the maximum breaking current, voK must be increased or Rg In order to reduce Rg, it is necessary to reduce the resistivity of the gate layer P2, that is, to increase the concentration of P-type impurities in the gate layer P2.By the way, the gate layer P is normally required. Because it is formed by thermally diffusing P-type impurities such as gallium, boron, or aluminum into a silicon substrate, which is an N-type semiconductor with a specific resistance of The distribution is such that the concentration decreases in the depth direction (usually by a complementary error function).Then, the semiconductor 1-N2 has a higher concentration of N such as phosphorus than the surface after the semiconductor layer P is formed. On the other hand, vGK is the impurity concentration Cj of the semiconductor layer P at the junction between the semiconductor layer P and the semiconductor layer N (see FIG. 5).
In order to increase vGk, it is necessary to lower the impurity concentration.

しかしながら第5図に示す濃度プロファイルでは、vG
kを高くするためにCjを低くすると上述のようにR6
が大きくなってしまう。
However, in the concentration profile shown in Figure 5, vG
If Cj is lowered to increase k, R6
becomes large.

このようなことからIAmaXを大きくするには、半導
体層P2の濃度プロファイルは第6図に示すように厚さ
方向あるいは両端部を除いたところに濃度ピークがある
ようなものが望ましいとされている。その理由は、vG
kを大きくとりなからR6を小さくできるからである。
For this reason, in order to increase IAmaX, it is desirable that the concentration profile of the semiconductor layer P2 has a concentration peak in the thickness direction or in a region excluding both ends, as shown in Figure 6. . The reason is vG
This is because R6 can be made small without making k large.

第6図に示すような濃度プロファイルを得るためには従
来アウトディフユーズ法と呼ばれる製造方法がある。こ
の製造方法は、第7図に示すようにN型の半導体層N、
の一面側にP型不純物を拡散しく第7図一点鎖線部)、
更に長時間押込み拡散をしく第7図点線部)、その後表
面側からN型不純物を、半導体層N、の不純物の表面濃
度が所要の大きさとなるように拡散して半導体層P2、
半導体層N2を形成する方法である。
In order to obtain the concentration profile as shown in FIG. 6, there is a conventional manufacturing method called the out-diffuse method. In this manufacturing method, as shown in FIG. 7, an N-type semiconductor layer N,
In order to diffuse P-type impurities on one side of the (dotted chain line in Figure 7),
After further in-diffusion for a long time (dotted line section in Figure 7), N-type impurities are diffused from the surface side so that the surface concentration of the impurities in the semiconductor layer N becomes the required level, thereby forming the semiconductor layer P2,
This is a method of forming the semiconductor layer N2.

この方法は、押込み拡散工程においてP型不純物をアウ
トディフユーズしその表面濃度を低下させることはでき
るが、次の工程にて半導体層N2の表面濃度が高濃屓と
なるようにN型不純物の拡散を行うため、半導体層N2
、P2の接合部におけるP型不純物濃[Ojをそれ程低
くすることはできず、実用レベルではvGkの大きさは
20〜25V程度である。
In this method, the P-type impurity can be out-diffused and its surface concentration can be lowered in the forced diffusion step, but in the next step, the N-type impurity is In order to perform diffusion, the semiconductor layer N2
, P-type impurity concentration [Oj at the junction of P2 cannot be made so low, and the magnitude of vGk is about 20 to 25 V at a practical level.

また第6図に示す濃度プロファイルを得るためには、従
来アウトディフユーズ法の他に、第8図に示すようic
N型の半導体層N、の両面からP型不純物を拡散した後
その一方側の表面にエピタキシャル法によってP型半導
体層P″″を、その厚さが半導体層N、も含めた最終寸
法になる大きさとなるように成長させ1次いでこのエピ
タキシャル成長層P7の表面からN型不純物を当該成長
層P′の深さよりも浅い位置まで拡散して半導体層N、
を形成する方法がある。このようなエピタキシャルによ
る方法は、半導体j輌P、の不純物の濃度制御を大きな
自由反をもって行うことができるという利点はあるが、
次のような問題点がある。即ち、この方法は、エピタキ
シャル成長jd P−の厚ざを可成り大きく(10〜2
58m)とらないと空乏層、即ち前記接合部が半導体層
P2の茜濃厩部分にぶつかってしまい高い逆耐圧V。k
を望めない。このためエピタキシャル成長層P−の厚さ
が大きくなり従ってゲート層全体の厚さが大きくなって
しまう。また第9図に示すようにブレナー接合で半導体
層N、を形成する場合、プレナー接合の表面(点線丸印
)の′電界が最も強く、このため当該表面の保護が困帷
である。
Moreover, in order to obtain the concentration profile shown in FIG. 6, in addition to the conventional out-diffuse method, it is necessary to
After diffusing P-type impurities from both sides of the N-type semiconductor layer N, a P-type semiconductor layer P'''' is formed on one surface by an epitaxial method, and its thickness becomes the final dimension including the semiconductor layer N. The epitaxially grown layer P7 is grown to a certain size, and then an N-type impurity is diffused from the surface of the epitaxially grown layer P7 to a position shallower than the depth of the grown layer P' to form a semiconductor layer N,
There is a way to form. Although such an epitaxial method has the advantage of being able to control the concentration of impurities in the semiconductor P with a large degree of freedom,
There are the following problems. That is, this method allows the thickness of the epitaxially grown jd P- to be considerably large (10 to 2
58 m), otherwise the depletion layer, that is, the junction portion would collide with the dark red part of the semiconductor layer P2, resulting in a high reverse breakdown voltage V. k
I can't hope for it. For this reason, the thickness of the epitaxially grown layer P- becomes large, and therefore the thickness of the entire gate layer becomes large. Further, when forming the semiconductor layer N by a Brenner junction as shown in FIG. 9, the electric field at the surface of the planar junction (indicated by a dotted circle) is the strongest, making it difficult to protect the surface.

特に半導体層N、の島状スリットが1個の素子に数百本
も形成さルる場合には特に困難であり、フィールドリン
グ等を設ける必要がある。この問題は上記のアウトディ
フユーズ法でも同様に起こる。
This is particularly difficult when several hundred island-like slits are formed in one element in the semiconductor layer N, and it is necessary to provide a field ring or the like. This problem also occurs in the out-diffuse method described above.

光間が解決しようとする問題点 本発明はこのような事情に基づいてなされ良ものであり
、ゲート層の厚さを抑えながらその抵抗を小さくし且つ
半導体層P、、 N、の接合部における逆耐圧を畠める
ことができ、その上半導体4khをブレナー接合で形成
する場合にその接合の表面の電界を弱くすることができ
るGTOサイリスタの製造方法を提供することを目的と
するものである。
Problems to be Solved by Hikama The present invention was developed based on these circumstances, and it reduces the resistance of the gate layer while suppressing its thickness, and also reduces the resistance at the junction of the semiconductor layers P, N, The object of the present invention is to provide a method for manufacturing a GTO thyristor that can increase the reverse breakdown voltage and also weaken the electric field on the surface of the junction when a 4kHz semiconductor is formed by a Brenner junction. .

問題点を解決するための手段 本発明は、N型の半導体層N、の表面からこの中にP型
不純物を拡散してP型の半導体層P、を形成する工程と
、この半導体層220表面に、エピタキシャル法によっ
て・P型不純物濃度の低いP型エピタキシヤル成長層を
形成する工程と、このP型エピタキ/ヤル成長層の表面
KNW不純物をデボジノヨンする工程と、デボジンヨン
されたN型不純物を前記半導体層P、と前記エビタキノ
ヤル成長層との境界領域まで押し込み拡散を行う工程と
を含むものである。
Means for Solving the Problems The present invention includes a step of diffusing a P-type impurity from the surface of an N-type semiconductor layer N into the layer to form a P-type semiconductor layer P, and a step of forming a P-type semiconductor layer P on the surface of this semiconductor layer 220 A step of forming a P-type epitaxial growth layer with a low concentration of P-type impurities by an epitaxial method, a step of deboding KNW impurities on the surface of this P-type epitaxial growth layer, and a step of depositing the deposited N-type impurities in the above steps. This step includes a step of performing intrusion diffusion to the boundary region between the semiconductor layer P and the Evita Kinoyal growth layer.

実施例 以下図面により本発明の実施例について説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図(Al〜C′D)は各々本発明の実施例に係る方
法の各工程における不純物のa度分布特性図である。
FIG. 1 (Al to C'D) is a characteristic diagram of the a-degree distribution of impurities in each step of the method according to the embodiment of the present invention.

実施例においては%N型の半導体層N1例えば所定の比
抵抗の7リコンウエI・−を用い、これの−面からガリ
ウム、ボロン、或いはアルミニウム等のP型不純物を、
例えば表面濃度1×10〜2×10atm/d%深さ1
0〜70μm になるように拡散を行い、これにより半
導体層N、の一面側にゲート層となるP型の半導体層P
、を形成し、第1図(A1に示すような濃度分布特性を
得る。半導体層P、の形成は、イオン注入或いは熱拡散
によりデポジンヨンし、その後押し込み熱拡散を行って
もよい。尚半導体層N、の他面側にもP型不純物を熱拡
散させ、これによりアノード層であるP型の半導体層P
1を同時に形成してもよい。次に前記半導体層P、の表
面に′  エピタキシャル法によって低濃度のP型不純
物のエピタキシャル成長1t!P−を1次に形成される
カソード層となるN型の半導体層N、の厚さよりも数μ
m大きな厚さとなるように形成する(第1図(Bl参照
)。
In the embodiment, an N-type semiconductor layer N1, for example, a 7 silicon layer I-- with a predetermined resistivity is used, and a P-type impurity such as gallium, boron, or aluminum is added from the - side of the N-type semiconductor layer N1.
For example, surface concentration 1 x 10 to 2 x 10 atm/d% depth 1
Diffusion is performed so that the thickness is 0 to 70 μm, and as a result, a P-type semiconductor layer P, which will become a gate layer, is formed on one side of the semiconductor layer N.
, to obtain the concentration distribution characteristics as shown in FIG. P-type impurities are thermally diffused to the other side of N, thereby forming a P-type semiconductor layer P which is an anode layer.
1 may be formed simultaneously. Next, a low concentration of P-type impurity is epitaxially grown on the surface of the semiconductor layer P by an epitaxial method. P- is several microns thicker than the thickness of the N-type semiconductor layer N, which will be the cathode layer formed as the primary layer.
m thick (see Fig. 1 (Bl)).

そしてエピタキシャル成長層P−の表面にN型不純物を
デボジンヨンしてデポジョン層Nを形成し友後(第1図
(01参照)、このN型不純物を、半導体層P、とエピ
タキシャル成長層P−との境界領域、即ち半導体層P、
のP型不純物がエピタキシャル成長Je’r P−内に
拡散された層まで押し込み拡散を行い。
Then, an N-type impurity is deposited on the surface of the epitaxial growth layer P- to form a deposition layer N (see Figure 1 (see 01)). region, i.e. semiconductor layer P,
The P-type impurity is forced into the layer diffused into the epitaxially grown Je'r P-.

これにより半導体層P2の一面側1/I:、カソード層
トなるN型半導体層N2が接合して形成される。
As a result, the N-type semiconductor layer N2, which is the cathode layer, is bonded to one surface side 1/I of the semiconductor layer P2.

第1図(Diはこのようにして得られたGTO+イリス
クの不純物の濃度分布特性図である。この図かられかる
ように半導体層P、のP型不純物濃度のピークが当該半
導体層P!の厚さ方向の両端部以外の所例えば中央部付
近にあって半導体層P、のP型不純物の総量が大きくな
り、半導体層P2の内部インピーダンスRgが小さく、
更に半導体層P2と半導体層N7との接合部におけるP
型不純物濃度が可成り低い。
FIG. 1 (Di is the impurity concentration distribution characteristic diagram of GTO+IRISK obtained in this way. As can be seen from this figure, the peak of the P-type impurity concentration of the semiconductor layer P, is the peak of the P-type impurity concentration of the semiconductor layer P! In places other than both ends in the thickness direction, for example near the center, the total amount of P-type impurities in the semiconductor layer P becomes large, and the internal impedance Rg of the semiconductor layer P2 becomes small.
Furthermore, P at the junction between the semiconductor layer P2 and the semiconductor layer N7
The type impurity concentration is quite low.

第2図は、本発明方法によりブレナー接合を形成して成
るGTOザイリスタの構造図であり、このGTOサイリ
スタは、半導体層N、を形成するにあたって、エピタキ
シャル成長層P−の表面にマスクを用いて選択的にN型
不純物をデポジションと、そして押し込み拡散を行った
ものである。第2図におけるA−A’線、B−B’線、
c −c’線に沿った不純物濃度分布は夫々第1図(D
)、第3図[A1、第3図(Blに示す通りである。
FIG. 2 is a structural diagram of a GTO thyristor in which a Brenner junction is formed by the method of the present invention, and this GTO thyristor is selected by using a mask on the surface of the epitaxially grown layer P- when forming the semiconductor layer N. Specifically, N-type impurities were deposited and then intrusion-diffused. AA' line, BB' line in Fig. 2,
The impurity concentration distribution along the c-c' line is shown in Figure 1 (D
), Figure 3 [A1, Figure 3 (Bl).

次に本発明方法の具体例について説明する。Next, a specific example of the method of the present invention will be explained.

100Ω・−のN型7リコンウエハーを半導体層N。A 100Ω・- N type 7 silicon wafer is used as the semiconductor layer N.

として用い、GaGeを拡散源としてGa  を120
0”Cで18時間粥人波散により前記ウェハー内に拡散
し、これにより半導体層N2の表面に半導体層P、を接
合して形成する。このときのGaの表面濃度は5x I
Q +?atn / cr/lであった。次いで半導体
層P、の表面に、エピタキシャル法によって抵抗率2o
Ω・(支)、厚さ15μmのP型エピタキンヤル成長層
P−を形成し、その後この成長層P−の表面に、酸化ケ
イ素膜より成るマスクを用いてリンを選択的にデボジノ
ヨンした。このときの拡散条件はpoc17を拡散源と
し、温度が1200℃、時間が10分であった。またリ
ンの表面濃度は約I X 1.0 ” atm/(y/
l であった。
using GaGe as a diffusion source and 120
Ga is diffused into the wafer at 0''C for 18 hours by porridge scattering, thereby bonding and forming a semiconductor layer P on the surface of the semiconductor layer N2.At this time, the surface concentration of Ga is 5x I.
Q+? atn/cr/l. Next, the surface of the semiconductor layer P is coated with a resistivity of 2o by an epitaxial method.
A P-type epitaxial growth layer P- with a thickness of 15 μm was formed, and then phosphorus was selectively deposited onto the surface of the growth layer P- using a mask made of a silicon oxide film. The diffusion conditions at this time were that poc17 was used as the diffusion source, the temperature was 1200° C., and the time was 10 minutes. In addition, the surface concentration of phosphorus is approximately I x 1.0” atm/(y/
It was l.

更にリンガラス層を除いてから酸化雰囲気中にて120
0’Cで7時間リンの押し込み拡散を行い、第2図に示
すようにプレナー接合をもったGTOeイリスタを形成
した。このGTOサイリスタについて逆耐圧VGkを測
定したところ70〜72Vであった。これは従来のアウ
トディフユーズ法によって得たもののvGkの2倍以上
の大きさである。
Furthermore, after removing the phosphorus glass layer, it was heated at 120°C in an oxidizing atmosphere.
Intrusion diffusion of phosphorus was performed at 0'C for 7 hours to form a GTOe iristor with a planar junction as shown in FIG. When the reverse breakdown voltage VGk of this GTO thyristor was measured, it was 70 to 72V. This is more than twice the vGk obtained by the conventional out-diffuse method.

発明の効果 、以上のように本発明は、P型の半導体層p、の表面に
P型不純*#[の低いP型エピタキシヤル成長層を形成
し、このエピタキシャル成長層の表面にN型不純物をデ
ボジノヨンしそして当該N型不純物を半導体層P、とP
型エビタキ7ヤル成長層との諧界領せ′E〒抑1.込み
拡散するようにしている。
Effects of the Invention As described above, the present invention forms a P-type epitaxial growth layer with low P-type impurity *#[ on the surface of a P-type semiconductor layer p, and forms an N-type impurity on the surface of this epitaxial growth layer. Deposit the N-type impurity into the semiconductor layers P and P.
The boundary between the type of Ebi-taki and the 7-year growth layer is 'E〒Suppressed 1. We are trying to spread the word.

従って本発明によればP型半導体層P2は厚さ方向の端
部以外の所に不純物濃度のピークを有するもめとなり、
半導体層P2の抵抗を小さくしながら逆耐圧■。kを大
きくすることができ、これにより最大遮断電流を大きく
することができる。そしてN型不純物をデボジンヨンし
てから押し込み拡散を行っているので前記エピタキシャ
ル成長層の厚さを小さくすることができ、しかもN型不
純物を前記境界領域まで押し込むようにしているため、
ゲート層の厚さを大きくとらなくてすむ。そして前記境
界領域にて半導体層Pt1 と半導体層N、とが接合さ
れているため、プレナー接合で半導体4N*を形成する
棚台、プレナー接合の表面の電界が内部に比べて可成り
弱くなる。従って接1合の降伏は内部で優先的に起こる
ため半導体層N、の島状スリットを多数形成したときに
フィールドリング等を般けるといった特別の配慮を払わ
なくてよいからプレナー接合表面の保護が簡便となる。
Therefore, according to the present invention, the P-type semiconductor layer P2 has a peak of impurity concentration at a location other than the end portion in the thickness direction.
Reverse breakdown voltage ■ while reducing the resistance of the semiconductor layer P2. k can be increased, thereby increasing the maximum breaking current. Since the N-type impurity is deposited and then forced diffusion is performed, the thickness of the epitaxial growth layer can be reduced, and the N-type impurity is forced into the boundary region.
There is no need to increase the thickness of the gate layer. Since the semiconductor layer Pt1 and the semiconductor layer N are bonded in the boundary region, the electric field on the surface of the shelf and planar junction where the semiconductor 4N* is formed by the planar junction becomes considerably weaker than that inside. Therefore, since the breakdown of the junction occurs preferentially inside the semiconductor layer N, there is no need to pay special consideration to the formation of field rings when a large number of island-like slits are formed, so that the surface of the planar junction can be protected. It's convenient.

史にカソード層とゲート層との接合は大面積のツェナー
構造となり、信頼性の向上が図れる。
Historically, the junction between the cathode layer and the gate layer is a large-area Zener structure, which improves reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(Al〜第1図(DIは、各々本発明方法の実施
例の各工程における不純物の濃度分布特性図、第2図は
本発明方法の実施例にて得られたゲートターンオフサイ
リスタの一部を示す構造図、第3図fAl 、 (Bl
は夫々第2図のゲートターンオフサイリスタのB−B’
線及びc −c’線に沿った不純物の#度分布特性図、
第4図は従来のゲートターンオフサイリスタの構造図%
第5図〜第8図は各々従来のゲートターンオフサイリス
タの不純物の濃度分布特性図、鎖9図は従来のゲートタ
ーンオフサイリスタの一部を示す構造図である。 P、アノード層であるP型の半導体層、N、・・N型の
半導体層、P、・・ゲート層であるP型の半導体層、N
、・ カソード層であるN型の半導体層、A・・アノー
ド電極、G・・ゲート電極、K カソード電極。 第1図<A)      第1図(B)第1図(C) 
     第1図CD)第2図 B′!八幌 Δ丈−P!−突一 第4図 第5図    第6図 、厚さ−洋芝−− 厚ニー            F!−ざ−第9図
Figure 1 (Al~Figure 1 (DI) is a characteristic diagram of impurity concentration distribution in each step of the embodiment of the method of the present invention, and Figure 2 is a graph of the gate turn-off thyristor obtained in the embodiment of the method of the present invention. Structural diagram showing a part, Fig. 3 fAl, (Bl
are B-B' of the gate turn-off thyristor in Fig. 2, respectively.
# degree distribution characteristic diagram of impurities along line and c-c' line,
Figure 4 is a structural diagram of a conventional gate turn-off thyristor%
5 to 8 are impurity concentration distribution characteristic diagrams of conventional gate turn-off thyristors, and chain diagram 9 is a structural diagram showing a part of the conventional gate turn-off thyristor. P, P-type semiconductor layer which is an anode layer, N,...N-type semiconductor layer, P,...P-type semiconductor layer which is a gate layer, N
, N-type semiconductor layer which is a cathode layer, A... anode electrode, G... gate electrode, K cathode electrode. Figure 1 <A) Figure 1 (B) Figure 1 (C)
Figure 1 CD) Figure 2 B'! Yapporo Δjo-P! -Toichi Fig. 4 Fig. 5 Fig. 6, Thickness - Western grass - Thick knee F! -za- Figure 9

Claims (1)

【特許請求の範囲】[Claims] アノード層となるP型の半導体層P_1、N型の半導体
層N_1、ゲート層となるP型の半導体層P_2、カソ
ード層となるN型の半導体層N_2をこの順に設けて構
成されるゲートターンオフサイリスタの製造方法におい
て、N型の半導体層N_2の表面からこの中にP型不純
物を拡散してP型の半導体層P_2を形成する工程と、
この半導体層P_2の表面に、エピタキシャル法によつ
てP型不純物濃度の低いP型エピタキシヤル成長層を形
成する工程と、このP型エピタキシヤル成長層の表面に
N型不純物をデポジションする工程と、デポジションさ
れたN型不純物を前記半導体層P_2と前記エピタキシ
ャル成長層との境界領域まで押し込み拡散する工程とを
含むことを特徴とするゲートターンオフサイリスタの製
造方法。
A gate turn-off thyristor consisting of a P-type semiconductor layer P_1 serving as an anode layer, an N-type semiconductor layer N_1, a P-type semiconductor layer P_2 serving as a gate layer, and an N-type semiconductor layer N_2 serving as a cathode layer in this order. In the manufacturing method, a step of diffusing a P-type impurity from the surface of the N-type semiconductor layer N_2 into the N-type semiconductor layer N_2 to form a P-type semiconductor layer P_2;
A step of forming a P-type epitaxial growth layer with a low concentration of P-type impurities on the surface of this semiconductor layer P_2 by an epitaxial method, and a step of depositing an N-type impurity on the surface of this P-type epitaxial growth layer. A method for manufacturing a gate turn-off thyristor, comprising the steps of: pushing and diffusing the deposited N-type impurity to a boundary region between the semiconductor layer P_2 and the epitaxial growth layer.
JP13608784A 1984-06-30 1984-06-30 Manufacture of gate turn-off thyristor Granted JPS6115367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13608784A JPS6115367A (en) 1984-06-30 1984-06-30 Manufacture of gate turn-off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13608784A JPS6115367A (en) 1984-06-30 1984-06-30 Manufacture of gate turn-off thyristor

Publications (2)

Publication Number Publication Date
JPS6115367A true JPS6115367A (en) 1986-01-23
JPH0550858B2 JPH0550858B2 (en) 1993-07-30

Family

ID=15166948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13608784A Granted JPS6115367A (en) 1984-06-30 1984-06-30 Manufacture of gate turn-off thyristor

Country Status (1)

Country Link
JP (1) JPS6115367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287269A (en) * 1985-06-14 1986-12-17 Res Dev Corp Of Japan Semiconductor element
JPH0279473A (en) * 1988-09-14 1990-03-20 Meidensha Corp Manufacture of semiconductor element
JPH06129286A (en) * 1992-09-18 1994-05-10 Kohler Co Mixture control system of internal combusion engine
WO2007009284A1 (en) * 2005-07-22 2007-01-25 Abb Technology Ag Power semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519838A (en) * 1978-07-27 1980-02-12 Mitsubishi Electric Corp Three terminal control commutation element and its producing method
JPS5680165A (en) * 1979-12-04 1981-07-01 Mitsubishi Electric Corp Gate turn-off thyristor
JPS56158477A (en) * 1980-05-12 1981-12-07 Meidensha Electric Mfg Co Ltd Manufacture of gate turn off thyristor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519838A (en) * 1978-07-27 1980-02-12 Mitsubishi Electric Corp Three terminal control commutation element and its producing method
JPS5680165A (en) * 1979-12-04 1981-07-01 Mitsubishi Electric Corp Gate turn-off thyristor
JPS56158477A (en) * 1980-05-12 1981-12-07 Meidensha Electric Mfg Co Ltd Manufacture of gate turn off thyristor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287269A (en) * 1985-06-14 1986-12-17 Res Dev Corp Of Japan Semiconductor element
JPH0279473A (en) * 1988-09-14 1990-03-20 Meidensha Corp Manufacture of semiconductor element
JPH06129286A (en) * 1992-09-18 1994-05-10 Kohler Co Mixture control system of internal combusion engine
WO2007009284A1 (en) * 2005-07-22 2007-01-25 Abb Technology Ag Power semiconductor device
US7816706B2 (en) 2005-07-22 2010-10-19 Abb Technology Ag Power semiconductor device

Also Published As

Publication number Publication date
JPH0550858B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US5156981A (en) Method of making a semiconductor device of a high withstand voltage
JPH0222869A (en) Symmetrical blocking high breakdown voltage semiconductor device and its manufacture
US4899199A (en) Schottky diode with titanium or like layer contacting the dielectric layer
US5677562A (en) Planar P-N junction semiconductor structure with multilayer passivation
JPS5951743B2 (en) semiconductor integrated device
JPH0691244B2 (en) Gate turn-off thyristor manufacturing method
US6583485B2 (en) Schottky diode
US5223442A (en) Method of making a semiconductor device of a high withstand voltage
JPS6115367A (en) Manufacture of gate turn-off thyristor
CN112382568B (en) Manufacturing method of MOS control thyristor
CN113658922A (en) JBS silicon carbide diode device structure for enhancing reliability and manufacturing method
JP3067034B2 (en) Schottky barrier semiconductor device
JP3789580B2 (en) High voltage semiconductor device
US11715766B2 (en) Stacked high barrier III-V power semiconductor diode
US3911472A (en) Isolated contact
JPH01266760A (en) Schottky barrier semiconductor device
JP3001601B2 (en) Semiconductor device
JP4302329B2 (en) Semiconductor device
JP2001308348A (en) Semiconductor surge protection element and method of manufacturing the same, and electronic circuit using the same
JPS6115366A (en) Gate turn-off thyristor and manufacture thereof
JPS6031268Y2 (en) Planar thyristor
JPS6119104B2 (en)
JPH02216873A (en) Semiconductor device
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JPS59100569A (en) Mos transistor