JPS61287269A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPS61287269A
JPS61287269A JP12963585A JP12963585A JPS61287269A JP S61287269 A JPS61287269 A JP S61287269A JP 12963585 A JP12963585 A JP 12963585A JP 12963585 A JP12963585 A JP 12963585A JP S61287269 A JPS61287269 A JP S61287269A
Authority
JP
Japan
Prior art keywords
layer
cathode
type
gate
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12963585A
Other languages
Japanese (ja)
Inventor
Mitsuru Hanakura
満 花倉
Yasuhide Hayashi
林 泰英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd, Research Development Corp of Japan filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP12963585A priority Critical patent/JPS61287269A/en
Publication of JPS61287269A publication Critical patent/JPS61287269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To obtain a thyristor having high withstand voltage in a semiconductor element for turning OFF by applying a reverse bias between a gate and a cathode by composing the gate layer of the first epitaxial layer of high impurity density of substrate side and the second epitaxial layer of low impurity density of cathode side, and intruding the cathode to the first layer. CONSTITUTION:An n<-> type layer and a P-type layer having a P<+> type buried gate layer are laminated and epitaxially grown on a P-type semiconductor substrate, and an n<+> type cathode layer is diffused in the P-type layer on the P<+> type buried gate layer. Then, an anode electrode A is formed on the back surface of the substrate, a cathode electrode K is formed on the cathode layer, and a gate electrode G is formed on the P-type layer for surrounding the elec trode K to form a GTO thyristor. In this construction, when a P-type layer is formed of an epitaxial layer grown on the buried gate layer, it is formed of a high impurity density P<->1 type layer and a relatively low impurity density P<->2 from the substrate side, the n<+> type cathode layer is intruded into the P<->1 type layer, thereby obtaining a stable gate and cathode withstand voltage.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、GTO(ゲートターンオフ)サイリスタなど
ゲート・カンード間釦逆バイアスを加えてターンオフを
得る半導体素子に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a semiconductor device, such as a GTO (gate turn-off) thyristor, which is turned off by applying a reverse bias between a gate and a button.

B0発明の概要 本発明は、ゲート・カソード間に逆バイアスヲ加えるG
TOサイリスクなどの半導体素子において、 ゲート層を不純物濃度の異なる2層構造でカソード表面
側の層を高抵抗とするエピタキシャル成長法で形成する
ことにより、 カソード・エミッタ接合表面のブレークダウン電圧を基
板側にして安定し九接合耐圧を得るようにしたものであ
る。
B0 Summary of the Invention The present invention provides a G
In semiconductor devices such as TOSIRISK, the gate layer has a two-layer structure with different impurity concentrations, and by forming the gate layer using an epitaxial growth method in which the layer on the cathode surface side has a high resistance, the breakdown voltage at the cathode-emitter junction surface is shifted to the substrate side. It is designed to be stable and to obtain a nine-junction withstand voltage.

C6従来の技術 周知のように、GTOサイリスタは自己消弧形半導体素
子であシ、一般のサイリスクに必要な転流回路を不要に
してその応用が急速に拡大してきている。GTOサイリ
スタのターンオフには、GToサイリスクのゲート−カ
ソード間に逆バイアスを加え、ターンオフゲート電流を
引出す。この逆バイアス電圧(以下オフゲート電圧と呼
ぶ)は高い電圧にするほどGTOサイリスタのPベース
層中の過剰キャリアを急峻に引出すことができ、ターン
オフ時間の減少、可制御電流の増大などターンオフ能力
の向上を図ることができる。
C6 Conventional Technology As is well known, the GTO thyristor is a self-extinguishing semiconductor device, which eliminates the need for a commutation circuit required for general thyristors, and its applications are rapidly expanding. To turn off the GTO thyristor, a reverse bias is applied between the gate and cathode of the GTO thyristor to draw a turn-off gate current. The higher this reverse bias voltage (hereinafter referred to as off-gate voltage) is, the more rapidly excess carriers in the P base layer of the GTO thyristor can be drawn out, improving the turn-off ability by reducing the turn-off time and increasing the controllable current. can be achieved.

しかし、オフゲート電圧はGTOサイリスタのカソード
−エミッタ接合のブレークダウン電圧によって制限され
る。そこで、大きなオフゲート電圧を実現し、ターンオ
フ特性改善を図ったGTOサイリスタとして、エピタキ
シャル成長によってカソード・エミッタ接合をn  −
p−接合とした構造のものが提案されている。この構造
例をに5図(4)及び(B)に示す。
However, the off-gate voltage is limited by the breakdown voltage of the GTO thyristor's cathode-emitter junction. Therefore, as a GTO thyristor that achieves a large off-gate voltage and improves turn-off characteristics, the cathode-emitter junction is formed by epitaxial growth.
A p-junction structure has been proposed. Examples of this structure are shown in Figures 5 (4) and (B).

同図(4)は埋込ゲート層P+を持つ埋込ゲート形の場
合を示し、P ゲート層の形成後にエピタキシャル成長
によって高抵抗のP一層を形成し、このエピタキシャル
成長層P−にn カソード層を拡散形成し、n  −p
−のカソードeエミッタ接合によってオフゲート電圧に
対する耐圧を確保する。
Figure (4) shows the case of a buried gate type with a buried gate layer P+, in which a high resistance P layer is formed by epitaxial growth after the formation of the P gate layer, and an n cathode layer is diffused into this epitaxially grown layer P−. form, n −p
The withstand voltage against the off-gate voltage is ensured by the negative cathode-e emitter junction.

同図(B)は分割金属ゲートが素子表面に露出した構造
の表面ゲート形の場合を示し、Pベース層にエピタキシ
ャル成長によって高抵抗のP一層を形成し、このP一層
に分割したn+カソード層を拡散形成し、n  −p−
のカソード・エミッタ接合を得ている。
Figure (B) shows the case of a surface gate type structure in which the divided metal gate is exposed on the element surface, in which a high-resistance P layer is formed on the P base layer by epitaxial growth, and an n+ cathode layer divided into this P layer is used. Formed by diffusion, n-p-
A cathode-emitter junction is obtained.

なお、同図(4)、(B)中、Aはアノード電極、Kは
カソード電極、Gはゲート電極である。
Note that in FIGS. 4(4) and (B), A is an anode electrode, K is a cathode electrode, and G is a gate electrode.

これらの構造によシ、従来20V程度であったカソード
−エミッタ接合の耐圧を100V以上に増大させること
ができる。
With these structures, the breakdown voltage of the cathode-emitter junction, which was conventionally about 20V, can be increased to 100V or more.

D0発明が解決しようとする問題点 従来のカソード・エミッタ接合を高耐圧化し九〇TOT
サイリスタにおいて、n 層とP一層の接合露出部での
ブレークダウンが高耐圧化を制限する問題がある。この
接合露出部のブレークダウンは、埋込ゲート形でも問題
となるが、特に表面ゲート形ではカソード・エミッタが
多数配列された構造になるため接合露出部の実質長が犬
きくなシ、接合表面でのブレークダウンが起き易く、バ
ルクでの大きな耐圧にも拘らず素子のオフゲート電圧を
制約する。
Problems that the D0 invention aims to solve: 90TOT by increasing the voltage resistance of the conventional cathode-emitter junction
In thyristors, there is a problem in that breakdown at the exposed junction between the n layer and the p layer limits the ability to increase the breakdown voltage. This breakdown of the exposed junction is a problem even in the buried gate type, but especially in the surface gate type, which has a structure in which many cathodes and emitters are arranged, the actual length of the exposed junction is small, and the junction surface Breakdown is likely to occur, which limits the off-gate voltage of the device despite its large bulk breakdown voltage.

このように、接合露出部でのブレークダウンによシ、ブ
レークダウン時の接合破壊、接合耐圧の低下や漏れ電流
の増加が素子の歩留シの低下、ターンオフ能力の向上を
制約するものであった。
In this way, the breakdown caused by the exposed junction, the breakdown of the junction during breakdown, the decrease in the junction breakdown voltage, and the increase in the leakage current reduce the yield of the device and limit the improvement of the turn-off ability. Ta.

E0問題点を解決するための手段と作用本発明は、上記
問題点に鑑み、ゲート・カソード間に逆バイアスを加え
てターンオフを行なう半導体素子において、ゲート層は
不純物濃度の異なる2層を持つエピタキシャル成長層と
しかつ該2層のうち基板側の第1の層の不純物濃度を他
方のカソード側の第2の層の不純物濃度よシも高く形成
し、カソード層は前記第2の層表面から拡散で形成しそ
の拡散深さを前記第1の層に達する深さに形成した構造
とし、接合露出部の耐圧を基板側(バルク側)よシも高
くしてカソード・エミッタ接合のブレークダウン電圧を
基板側にしたものである。
Means and operation for solving the E0 problem In view of the above problems, the present invention provides a semiconductor device in which turn-off is performed by applying a reverse bias between the gate and the cathode, in which the gate layer is formed by epitaxial growth having two layers with different impurity concentrations. of the two layers, the impurity concentration of the first layer on the substrate side is higher than the impurity concentration of the second layer on the cathode side, and the cathode layer can be diffused from the surface of the second layer. The breakdown voltage of the cathode-emitter junction is lowered by increasing the breakdown voltage of the cathode-emitter junction from the substrate side (bulk side). It's on the side.

F、実施例 第1図及び第2図は本発明の実施例を示すGTOサイリ
スタ素子構造図であシ、第1図は埋込ゲート形GTOサ
イリスタに、第2図はfI!面ゲート形GTOサイリス
タに夫々適用した場合である。
F. Embodiment FIGS. 1 and 2 are structural diagrams of a GTO thyristor element showing an embodiment of the present invention. FIG. 1 shows a buried gate type GTO thyristor, and FIG. 2 shows an fI! This is a case where each is applied to a plane gate type GTO thyristor.

第1図において、埋込ゲート層P+上にエピタキシャル
成長によって形成するP一層として、不純物濃度の低い
層P1−と、この層P1−上でその不純物濃度をさらに
低くした層P2−とに分離形成され、カソード層n は
Pニ一層に達する深さまで形成される。
In FIG. 1, a single P layer formed by epitaxial growth on a buried gate layer P+ is separated into a layer P1- with a low impurity concentration and a layer P2- with an even lower impurity concentration on this layer P1-. , the cathode layer n is formed to a depth that reaches the P layer.

このように、不純物濃度の異なる2層のエピタキシャル
成長層p、−、p、−とし、基板(バルク)側の成長層
PL−の不純物濃度よりも接合表面を形成する成長層P
2″′″の不純物濃度を低くし、カソード層n を層P
ニーに達する深さまで拡散形成し、カソード−エミッタ
接合を素子内ではPl一層との間で形成し、表面露出部
ではP2一層との間で形成する。
In this way, two epitaxial growth layers p, -, p, - with different impurity concentrations are formed, and the growth layer P forming the bonding surface is lower than the impurity concentration of the growth layer PL- on the substrate (bulk) side.
The impurity concentration of 2″″ is lowered, and the cathode layer n is changed to the layer P.
The cathode-emitter junction is formed by diffusion to a depth reaching the knee, and a cathode-emitter junction is formed between the Pl layer in the element and the P2 layer in the exposed surface area.

この構成によシ、カソードφエミッタ接合のうち、n+
  p2−接合部はn+ ++ pl−接合部よシもブ
レークダウン電圧が大きくなる。従って、オフゲート電
圧は、カソード・エミッタ接合のブレークダウン、即ち
n  −Pl−接合部(バルク部)で起きるまで高くで
き、しかもn+  pl−接合部は表面に露出していな
いため接合表面の影響を受けることかなくなる。そして
、Pニ一層の不純物濃度として・P形波散層の不純物濃
度よシも十分に低くすることで100 V以上の接合耐
圧を容易に実現できる。
With this configuration, n+
The p2-junction has a higher breakdown voltage than the n+++ pl-junction. Therefore, the off-gate voltage can be increased until breakdown of the cathode-emitter junction occurs at the n-Pl- junction (bulk part), and since the n+ pl- junction is not exposed to the surface, the effect of the junction surface can be avoided. I won't be able to receive it anymore. By making the impurity concentration of the P layer and the impurity concentration of the P-type wave diffusion layer sufficiently low, a junction breakdown voltage of 100 V or more can be easily achieved.

同様に、第2図に示す表面ゲート形GTOサイリスタに
おいても、ベース層P上に形成するエピタキシャル成長
層P−として、不純物濃度を低くしたP1″′″′層と
、この上に更に不純物濃度を低くしたP2一層との2を
構成とし、分割カソード層n+をPl一層に達する深さ
まで拡散形成される。これによって、カソード番エミッ
タ接合は素子表面でブレークダウンを起すことがなく、
バルクでのブレークダウンにして安定した接合耐圧を得
る。
Similarly, in the surface gate type GTO thyristor shown in FIG. 2, the epitaxially grown layer P- formed on the base layer P includes a P1'''' layer with a low impurity concentration, and a layer on top of this with a low impurity concentration. The divided cathode layer n+ is formed by diffusion to a depth reaching the Pl layer. This prevents the cathode emitter junction from breaking down on the device surface.
Achieve stable junction breakdown voltage by breaking down in bulk.

次に、実施例におけるGTOサイリスタの製造方法を説
明する。
Next, a method for manufacturing a GTO thyristor in an example will be described.

第3図は埋込ゲート形GTOサイリスタ(第1図)の製
造手順を示す、まず、第3図(a)に示すように70Ω
−yt 、 400μ厚のn−基板に両面からガリウム
を拡散しく表面シート抵抗150 、Q/l]、深さく
資)μm )、Pn−P構造を得る1 次に、(b)に
示すように酸化膜を利用してボロンを選択的に高濃度拡
散し、P 埋込ゲート層を形成する。次いで、(C)に
示すように埋込ゲート層P+側にエピタキシャル成長に
よってPL一層を形成する。このPニ一層の不純物濃度
を4XLOcm  、厚さを15μmとする。
Figure 3 shows the manufacturing procedure of the buried gate type GTO thyristor (Figure 1).First, as shown in Figure 3(a), a 70Ω
-yt, 400μ thick n-substrate by diffusing gallium from both sides to obtain a Pn-P structure with a surface sheet resistance of 150, Q/l], depth) μm) Next, as shown in (b), Boron is selectively diffused at a high concentration using the oxide film to form a P buried gate layer. Next, as shown in (C), a single PL layer is formed on the buried gate layer P+ side by epitaxial growth. The impurity concentration of this P layer is 4XLOcm and the thickness is 15 μm.

次に、(d)に示すようにエピタキシャル成長によって
P2一層を形成する。このP2一層の不純物濃度をPl
一層よシも低くし、2XlOcm  、厚さを8μmと
する。最後に(e)に示すように、酸化膜を用いてリン
を選択的に拡散し、n+カソード層を形成する。この拡
散深さはPl一層に達するよう表面シート抵抗1.0 
Q/口、深さ10μmにする1、以後はライフタイム制
御工程や電極付は工程を経て第1図に示す構造を得る。
Next, as shown in (d), a single layer of P2 is formed by epitaxial growth. The impurity concentration of this P2 layer is Pl
The height is also lowered to 2XlOcm and the thickness is 8 μm. Finally, as shown in (e), phosphorus is selectively diffused using an oxide film to form an n+ cathode layer. The surface sheet resistance is 1.0 so that this diffusion depth reaches the Pl layer.
The structure shown in FIG. 1 is obtained through a lifetime control process and an electrode attaching process.

っ この製法によるカソード・エミッタ接合の耐圧は110
Vとなり、一方n  −P2−接合部のブレークダウン
電圧は約200vとなる十分に大きな耐圧になるため、
n   P2−接合の表面露出部でブレークダウンする
ことはない。
The breakdown voltage of the cathode-emitter junction using this manufacturing method is 110
On the other hand, the breakdown voltage of the n-P2- junction is approximately 200V, which is a sufficiently large withstand voltage.
There is no breakdown at the exposed surface of the nP2-junction.

第4図は表面ゲート形GTOザイリスタ(第2゜図〕の
製造手順を示し、第3図と同様にPl一層上+ に高抵抗のP2一層を形成し、分割カソード層nをPニ
一層に達するまで形成する。
Figure 4 shows the manufacturing procedure of the surface gate type GTO Zyristor (Figure 2), in which a high resistance P2 layer is formed on the Pl layer, and the divided cathode layer n is made into a P layer in the same way as in Figure 3. Form until reaching.

なお、Pl一層とP2一層は個別にエピタキシャル成長
させて形成するほかに、1回のエピタキシャル成長工程
中でドーピング量を急峻に変化させることでもよい。
In addition to forming the single Pl layer and the single P2 layer by epitaxial growth separately, the doping amount may be changed sharply during one epitaxial growth process.

G1発明の効果 以上のとおシ、本発明によれば、ゲート層を不純物濃度
の異なる2層構造とし、カソード側の層の不純物濃度を
低くしてカソード・エミッタ接合表面のブレークダウン
電圧をバルク側よりも高くした構造とするため、接合露
出部の保護が不完全な場合にもブレークダウンで接合表
面が破壊することが無くな夛、バルク側で安定した、ゲ
ート・カソード耐圧を確保、維持できる効果がある。
In addition to the effects of the G1 invention, according to the present invention, the gate layer has a two-layer structure with different impurity concentrations, and the impurity concentration of the layer on the cathode side is lowered to lower the breakdown voltage of the cathode-emitter junction surface on the bulk side. Since the structure is made higher than that, the junction surface will not be destroyed due to breakdown even if the protection of the exposed junction part is incomplete, and stable gate and cathode withstand voltage can be secured and maintained on the bulk side. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の〜実施例を示す素子構造図、第2図は
本発明の他の実施例を示す素子構造図、第3図は第1図
の製造工程図、第4図は第2図の製造工程図、第5図(
4)及び第5図(B)は従来の素子構造図である1、 P+・・・埋込ゲート層、PI  r P2−・・・エ
ピタキシャル成長層、n ・・・カソード層、K・・・
カソード耐圧、G・・・ゲート電極、A・・・アノード
電極。 第1図 第1大洸?jの構鶴 第2図 才2夫應例−^九恥 ^           へ ^       、Oυ d      −9 I−〜               〆1Nで   
      Φ 一ノ             −ノ 第5図(A) 従来の精遣興 第5図(B)
Fig. 1 is an element structure diagram showing embodiments of the present invention, Fig. 2 is an element structure diagram showing another embodiment of the invention, Fig. 3 is a manufacturing process diagram of Fig. 1, and Fig. 4 is a diagram showing the manufacturing process of Fig. 1. Manufacturing process diagram in Figure 2, Figure 5 (
4) and FIG. 5(B) are conventional device structure diagrams. 1. P+...buried gate layer, PI r P2-... epitaxial growth layer, n... cathode layer, K...
Cathode breakdown voltage, G...gate electrode, A...anode electrode. Figure 1: Daiko? J's construction crane 2nd figure 2 husband 〉 example - ^ 9 shame ^ ^ , Oυ d - 9 I - ~ 〆1N
Φ Ichino -no Figure 5 (A) Conventional Seikenkyo Figure 5 (B)

Claims (1)

【特許請求の範囲】[Claims] ゲート・カソード間に逆バイアスを加えてターンオフを
行なう半導体素子において、ゲート層は不純物濃度の異
なる2層を持つエピタキシャル成長層としかつ該2層の
うち基板側の第1の層の不純物濃度を他方のカソード側
の第2の層の不純物濃度よりも高く形成し、カソード層
は前記第2の層表面から拡散で形成しその拡散深さを前
記第1の層に達する深さに形成したことを特徴とする半
導体素子。
In a semiconductor device that performs turn-off by applying a reverse bias between the gate and cathode, the gate layer is an epitaxially grown layer having two layers with different impurity concentrations, and of the two layers, the impurity concentration of the first layer on the substrate side is lower than that of the other layer. The impurity concentration is higher than that of the second layer on the cathode side, and the cathode layer is formed by diffusion from the surface of the second layer, and the diffusion depth is set to reach the first layer. Semiconductor device.
JP12963585A 1985-06-14 1985-06-14 Semiconductor element Pending JPS61287269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12963585A JPS61287269A (en) 1985-06-14 1985-06-14 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12963585A JPS61287269A (en) 1985-06-14 1985-06-14 Semiconductor element

Publications (1)

Publication Number Publication Date
JPS61287269A true JPS61287269A (en) 1986-12-17

Family

ID=15014370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12963585A Pending JPS61287269A (en) 1985-06-14 1985-06-14 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS61287269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251259A (en) * 1985-08-30 1987-03-05 Fuji Electric Co Ltd Gto thyristor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651868A (en) * 1979-10-05 1981-05-09 Nec Corp Semiconductor device
JPS5680165A (en) * 1979-12-04 1981-07-01 Mitsubishi Electric Corp Gate turn-off thyristor
JPS5939953B2 (en) * 1979-01-17 1984-09-27 日立電子株式会社 signal receiving circuit
JPS6115367A (en) * 1984-06-30 1986-01-23 Mitsuo Kusano Manufacture of gate turn-off thyristor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939953B2 (en) * 1979-01-17 1984-09-27 日立電子株式会社 signal receiving circuit
JPS5651868A (en) * 1979-10-05 1981-05-09 Nec Corp Semiconductor device
JPS5680165A (en) * 1979-12-04 1981-07-01 Mitsubishi Electric Corp Gate turn-off thyristor
JPS6115367A (en) * 1984-06-30 1986-01-23 Mitsuo Kusano Manufacture of gate turn-off thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251259A (en) * 1985-08-30 1987-03-05 Fuji Electric Co Ltd Gto thyristor

Similar Documents

Publication Publication Date Title
US4060821A (en) Field controlled thyristor with buried grid
JPH05347413A (en) Manufacture of semiconductor device
JP2950025B2 (en) Insulated gate bipolar transistor
JPH10200132A (en) High speed diode
US4837608A (en) Double gate static induction thyristor and method for manufacturing the same
JPS61287269A (en) Semiconductor element
JPS59158561A (en) Thyristor for self-protecting via avalanche from overvoltageand method of producing same
JPH06112216A (en) High breakdown strength semiconductor device
JPS6245710B2 (en)
JPS6046549B2 (en) Gate turn-off thyristor
JPH06177365A (en) Schottky barrier diode
JPS5916414B2 (en) semiconductor equipment
JPS6013311B2 (en) Semiconductor controlled rectifier
JPS62143467A (en) Semiconductor integrated circuit
JPH0488677A (en) Semiconductor device
JPH08241993A (en) Power switching device
JPH0136711B2 (en)
JPS621262B2 (en)
JP2024055476A (en) Semiconductor Device
JPH08222743A (en) High-speed diode
JP3334918B2 (en) Semiconductor diode
JPH02159067A (en) Gate turn-off thyristor
JPS63205957A (en) Electrostatic induction thyristor
JP2000101065A (en) Semiconductor element
JPS58176971A (en) Semiconductor device