JPS58176971A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58176971A
JPS58176971A JP5815182A JP5815182A JPS58176971A JP S58176971 A JPS58176971 A JP S58176971A JP 5815182 A JP5815182 A JP 5815182A JP 5815182 A JP5815182 A JP 5815182A JP S58176971 A JPS58176971 A JP S58176971A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
electrode
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5815182A
Other languages
Japanese (ja)
Inventor
Susumu Murakami
進 村上
Naohiro Monma
直弘 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5815182A priority Critical patent/JPS58176971A/en
Publication of JPS58176971A publication Critical patent/JPS58176971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0839Cathode regions of thyristors

Abstract

PURPOSE:To obtain planer junction structure which assures stable current amplification factor and minimum gate arc current by applying a forward bias to p-n junction formed by n-emitter layer and p-base layer. CONSTITUTION:A thin gallium deposited layer in high impurity concentration is formed by heat processing of an n type silicon with gallium and a p-base layer 4 is also formed by driving under the oxygen ambient in such a manner that the peak of impurity concentration appears at the depth of about 15-20mum from the surface. Then, a window is opened to a n<+>-emitter layer 3 by the photo etching, phosphorus is deposited by driving, a window is opened by the photo etching keeping a certain distance therefrom, boron is deposited and a p<+> layer 5 is formed by driving. Thereafter, the entire part of SiO2 formed on the surface is removed, a P base region 4 in comparatively low concentration exposed on the surface is compensated, and an n-layer 10 in such a low concentration as resulting in the n type is formed in the thickness of about 0.5mum or more by ion implantion of the arsenic or phorphorus. Finally, an oxide film 9 is formed again on the surface, a window is opened by the photo-etching and electrodes 7, 8 are formed by photo etching after vacuum deposition of electrode of aluminium, etc.

Description

【発明の詳細な説明】 本発明は半導体装置に係り、特に順方向、逆方向物性が
優n、安定な電流増幅率及び最小ゲート点弧電流が得ら
nるプレーナ接合構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a planar junction structure that has excellent forward and reverse physical properties, stable current amplification factor, and minimum gate firing current.

従来、ゲート信号でターンオン、ターンオフさせるサイ
、リスクのnエミツタ層及びpベース層の構造の一例と
して%M昭51−50678に開示されているようにp
ベース内の不S峻濃度分布が次のように構成さ扛ている
。すなわち、ゲート電也を設けていない領域の表1不純
物濃監は11016atoリ一″機度に低くし、内部に
おいて101011BtO!151” 6度のピーク領
域を壱し、ケート1憔を設ける部分では電極との低抵抗
接触t−確保するためにnエミツタ層周辺からめる一定
の距離會−して選択的に高年IMl物凝度の領域を設け
ている。
Conventionally, as an example of the structure of the n emitter layer and the p base layer, which are turned on and turned off by a gate signal, the p
The non-S steep concentration distribution within the base is constructed as follows. In other words, the impurity concentration in Table 1 in the area where the gate electrode is not provided is lowered to 11016ato 1", the internal peak area of 101011BtO! 151" 6 is lowered, and the electrode is A region of high IML concentration is selectively provided at a certain distance from the periphery of the n emitter layer to ensure low resistance contact with the n emitter layer.

この鴇の濃良分布に1−するサイリスタでは、表(3)
でのt界強度が(ハ)部でのそytよりも低くなるため
nエミツタ層とpベース層で構成さnるpn像酋の耐圧
は内部で決冗されるため9面の影響を受けに<<、安定
になるとさ扛ている。
For a thyristor that has a 1-1 density distribution, Table (3)
Since the t-field strength at part (C) is lower than that at part (c), the withstand voltage of the n pn imager composed of the n emitter layer and the p base layer is affected by the nine planes because it is broken internally. <<, it seems to be stable.

しかしながら、表面に露出している比較的低不純物at
のpベース層はその上に形成さnる杷縁豪at配置した
場合、絶縁被膜が通常の2酸化珪素であると膜中に正の
電荷が存在するため、pベース層弐lが空乏化しやすい
。換言すれば)pペース層表面で再結酋電眞がart易
い仁とを意味するすなわち、pベース層とnエミツタ層
からなるpnm曾において表面再結上電流が流れる交め
のリーク電流の通路が付加さnたことになる。このり一
りtfLの通IIIIt等価的に抵抗Rspmで表わす
ことにする。
However, relatively low impurities exposed on the surface
When the p-base layer is formed on top of the p-base layer, if the insulating film is made of ordinary silicon dioxide, the p-base layer becomes depleted due to the presence of positive charges in the film. Cheap. In other words, it means that the reconsolidation current is easy to form on the surface of the p-base layer.In other words, there is an alternate leakage current path through which the current flows on the surface reconsolidation in the pnm layer consisting of the p-base layer and the n-emitter layer. This means that n has been added. This will be expressed equivalently by the resistance Rspm of tfL.

RI P mは膜中の正の電荷が多い程、まま表面pベ
ース層の不純物111度が低い程、小さくなり電流増幅
率hν1の低下や最小ゲート点弧電R’ztの増加など
好ましくない問題を起こす欠点があった。
The more positive charges in the film and the lower the impurity level of the surface p base layer, the smaller RI P m becomes, leading to undesirable problems such as a decrease in the current amplification factor hv1 and an increase in the minimum gate ignition current R'zt. It had the disadvantage of causing

本発明の目的は、真面安定化膜と接合構造の適合性を考
慮し几電流増幅率及び最小ゲート点弧電流が安定なプレ
ーナ接合構造を具え次半導体装置倉提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device storage having a planar junction structure with stable dielectric current amplification factor and minimum gate firing current, taking into consideration the compatibility between the planar stabilizing film and the junction structure.

本発明は、かかる従来の問題点を解決し、順方向及び逆
方同共に優fた特性を示すnエミッタ。
The present invention solves these conventional problems and provides an n-emitter that exhibits excellent characteristics in both forward and reverse directions.

pベース接合を有しており、高不純物濃度のnエミツタ
層と抵抗接触用20層の間に介在するn層またはp層は
絶縁膜との界面で、カソード電極とケート電極とを職バ
イアスレ几ときに蓄積型になってふ・ジ、表向の絶縁膜
中の電荷が正であっても表面再結合電流が流nず最小ゲ
ート点弧電流が小さく安定で、電流増幅率が高く安定で
あり1また逆バイアスし文ときに上記のntvitたは
p層が空乏化し、光面電界は緩和され表面でのゲート・
カソード両電極間の耐圧は内部におけるものより高くし
たことに特徴がある。
The n-layer or p-layer, which has a p-base junction and is interposed between the n-emitter layer with a high impurity concentration and the 20-layer resistive contact layer, connects the cathode electrode and the cathode electrode at the interface with the insulating film. Sometimes it becomes an accumulation type, and even if the charge in the insulating film on the surface is positive, no surface recombination current flows, the minimum gate firing current is small and stable, and the current amplification factor is high and stable. Yes 1 Also, when the reverse bias is applied, the above ntvit or p layer is depleted, the optical surface electric field is relaxed, and the gate and
The feature is that the breakdown voltage between the cathode and cathode electrodes is higher than that inside.

以下、本発明の第1実施例を第1図により説明する。A first embodiment of the present invention will be described below with reference to FIG.

第1図はn−ベースJ@31.pxミッタ層2.n9エ
ミッタ層3.pベース層4.低抵抗嵌触用p9層51ア
ノード電極6.カソード電極7.ゲート1憔8.絶縁保
@膜91表面再結合防止用n層10から構成さ扛る。第
2図は第1図に示した王ii!縦方向の不純物濃度分布
を示しており、第2図(a)。
Figure 1 shows n-base J@31. px transmitter layer 2. n9 emitter layer 3. p base layer 4. P9 layer 51 anode electrode for low resistance fitting 6. Cathode electrode7. Gate 1 8. The insulating film 91 is composed of an n-layer 10 for preventing surface recombination. Figure 2 shows the king II shown in Figure 1! Figure 2(a) shows the impurity concentration distribution in the vertical direction.

(b)、 (C)はそれぞn第1図のA−A線、B−B
線。
(b) and (C) are lines A-A and B-B in Figure 1, respectively.
line.

C−C線断面について示したものでおる。This is a cross section taken along line C-C.

次に本発明の動作について説明する。ノ畝方向阻止状態
ではアノード電極6が正、カソード電極7が負となる電
圧■ム!が印加さ扛る。VAにはn−ベース層1とpベ
ース層4からなるpn接合に主としてかかジ、この接合
両側に空乏膚が形成される。
Next, the operation of the present invention will be explained. In the state where the ridge direction is blocked, the voltage at which the anode electrode 6 is positive and the cathode electrode 7 is negative is ! is applied. In VA, a pn junction consisting of an n-base layer 1 and a p-base layer 4 is mainly formed with a slope, and depletion skins are formed on both sides of this junction.

この順方向阻止状態における動作は縦米例と同一である
。順方向阻止状態から導通状態に移行させるターンオン
動作について説明する。アノード・カソード関KUA五
を印加したまま、ゲート亀&8が正、カソード電極7が
負となるようなゲート電圧を印加するとpo 層5から
注入さwe正正孔pベース層4tAりn′″エミッタ層
30直下に注n込み、n0工ミツタ層3とpベース層4
からなるpnn接合Sバイアスさ扛てn+エミッタから
電子の注入が促進されてn−ベッタ層3.pペース層4
゜ローベース層lから成るnpll)7ンジスタが働く
The operation in this forward direction blocking state is the same as in the vertical direction example. The turn-on operation for transitioning from the forward blocking state to the conducting state will be described. When applying a gate voltage such that gate electrode &8 is positive and cathode electrode 7 is negative while applying the anode/cathode voltage KUA5, positive holes are injected from the po layer 5 to the p base layer 4tA and n''' emitter. Pour the n0 directly under the layer 30, and form the n0 base layer 3 and the p base layer 4.
The injection of electrons from the n+ emitter is promoted by the pnn junction S bias consisting of the n- beta layer 3. p-pace layer 4
゜Npll consisting of a low base layer 1) 7 transistors work.

続いてr エミッタから注入さf7を電子はpベース層
を逼りぬけソn−ベース層に注牡込み、pエミッタ層か
らの正孔の注入を促進−込せ、この正孔がpベース層4
に注n込み、正Al1作用を起こし、このサイリスタは
ターンオンする。
Subsequently, the electrons injected from the r emitter pass through the p-base layer and into the n-base layer, promoting the injection of holes from the p-emitter layer, and these holes enter the p-base layer. 4
The thyristor is turned on due to positive Al1 action.

従来の構造すなわちn虐10がない場合、比較的低不純
物濃度のpベース層が露出しておれに1杷緻膜中の正の
電荷によりpイー1表向が空乏化した構造となυ、ゲー
ト電&8.カソード電1に7閣に鵬バイアスしてターン
オンさせても、pペース層4費面が空乏化さnたドリフ
ト領域となる几め、29層5から注入さnた正孔はpベ
ース層4の内sを通過しづらく、主にpベース層安(3
)での貴結合電流となってしまう。この友めn0工ミツ
タ層3からの電子注入に児会う分たけ傘針に、つ1v六
面再結合電流が加算さ、Iしたケート電流が必要となり
、npn )>ンジスタのILNt増精率hF11  
が低下し、また最小ゲート点弧亀flL ’ t tは
大きくなる。
In the conventional structure, that is, in the absence of n-10, the p-base layer with a relatively low impurity concentration is exposed, and the p-base layer is depleted on the surface due to positive charges in the 1-layer film. Gate electric &8. Even if the cathode 1 is turned on with a bias voltage of 7, the p base layer 4 becomes a depleted drift region, and the holes injected from the layer 5 are transferred to the p base layer 4. It is difficult to pass through the s of the
) becomes a noble coupling current. A 1V hexagonal recombination current is added to the electron injection from this friend n0 process layer 3, and a gate current of I is required, so that npn )> ILNt increase rate hF11
decreases, and the minimum gate firing torque flL'tt increases.

すなわち、等嘗的に表th+再結合電流がl5tf′L
るリーク電流の通路、抵抗で赤わすRapmが付加さn
た構造となる。Rspmを生じる原因は絶縁膜中の電荷
が正の場合、基板がp型であり、また不純物濃度が低い
程小さく、リーフ電流の通路を形成しやすい。
That is, equivalently, the expression th+recombination current is l5tf'L
The path of the leakage current, Rapm is added due to the resistance.
The structure is as follows. The cause of Rspm is that when the charge in the insulating film is positive, the substrate is p-type, and the lower the impurity concentration, the smaller it is, and the easier it is to form a leaf current path.

本発明による次面再結合防止用nml Oかめftは1
層10のiP3鍬腺9との外囲では空乏層にならず蓄積
層となるので、吹向再紹せ電眞は流れず、111、fl
L増411に率hylは^くお工び最小ゲート点弧電流
i5tは小さく、またこnらのプロセス変動はほとんど
なくなる%徴がるる。
nml O jar ft for next plane recombination prevention according to the present invention is 1
Since layer 10 does not become a depletion layer but an accumulation layer in the outer area with iP3 hoe gland 9, the electric current does not flow, and 111, fl
Since the rate hyl is increased in the L increase 411, the minimum gate firing current i5t is small, and these process variations are almost eliminated.

またターンオンし九恢の定冨導逸状妙においても付加的
なゲート・カソード関のRats  がなくなるため、
pエイツタ層2から注入さnた正孔は正帰at起こす几
め有効にnpn トyンジスタを駆動させるので、オン
電圧は低くなる特徴もめる。
In addition, even in the case of turn-on and constant conduction state, there are no additional gate-cathode Rats.
Since the holes injected from the p-type transistor layer 2 cause positive return and effectively drive the npn transistor, the on-state voltage can be lowered.

またターンオフさせる場合、ゲート電極8が負。Furthermore, when turning off, the gate electrode 8 is negative.

六ソード電極7が正となるゲート電圧を印加するが、表
面においてtip”層5と1層1oからなるpn接合に
逆バイナスが印加さn1主として空乏層は低不純物濃度
の1層10に広がり表面電界は緩和さnる。−万内部に
おいてはn+エミッタ層3とpベース層4からなるpn
接合に逆バイアスが印加され、空乏層は低不純物濃度−
のpベース層に広がるが、その時の電界強度は表面より
も高くなる。
A positive gate voltage is applied to the six-sword electrode 7, but a reverse negative voltage is applied to the pn junction consisting of the tip'' layer 5 and the first layer 1o on the surface. The electric field is relaxed.Inside the pn layer, which consists of an n+ emitter layer 3 and a p base layer 4,
A reverse bias is applied to the junction, and the depletion layer has a low impurity concentration -
However, the electric field strength at that time is higher than that at the surface.

このようにゲート・カソード関の逆耐圧は表面よりもむ
しろ内部で決定さnるため、従来構造にくらぺて安定に
なる。
In this way, the reverse breakdown voltage between the gate and cathode is determined internally rather than on the surface, making it more stable than the conventional structure.

次に本発明の第1実施例の第1の製法について述べる。Next, the first manufacturing method of the first embodiment of the present invention will be described.

まず50〜100Ω傷のnM&シリコンをガリウムと共
に真壁に封じ、高温で熱処埴すると高不純物濃度層の薄
いガリウムデボ層tSXする。次に酸素雰囲気中でドラ
イブすれば、ガリウムは拡散係数の大きなシリコン酸化
膜中を通過しやすく、表向では10’s〜10” at
oms々−程度の低濃度層を形成し、不純物濃度のピー
ク(約101?〜10” ” a L orn S /
FF+” )は表向から15〜20μm程度のところに
なるよう形成する。次に10エミッタmt公知のホトエ
ツチングで窓開けし、リンをデホ、ドライブして形成し
、続いてn0工ミツタ層からめる距ll1t−離して、
公知のホトエツチングで窓開けし、ボロンをデボ、ドラ
イブして20層を形成する。その後、赤面に形成され友
8IOttフッ酸で全面除去し、赤面に露出した比較的
低濃度のpベース層を補償しn型化するS度の低llI
度n層をヒ素あるいはリンなどtイオン打込み法でα5
μm以上形成する。IIk後に鈑化膜會丹び表面に形成
し、電極取り出しの九めホトエツチングで窓開けし、ア
ルミニウムなどの電極tmllL、ホトエツチングで電
極を形成する。
First, nM&silicon with a 50 to 100 Ω flaw is sealed together with gallium in a true wall, and heat treated at high temperature to form a thin gallium devo layer tSX with a high impurity concentration layer. Next, if driven in an oxygen atmosphere, gallium easily passes through the silicon oxide film, which has a large diffusion coefficient, and the surface diffusion rate is 10's to 10" at
A low concentration layer of approximately 0.0 ms is formed, and the impurity concentration peaks (approximately 101?~10").
FF+") is formed at a distance of about 15 to 20 μm from the surface. Next, a 10-emitter mt window is opened using a well-known photoetching method, and phosphorus is deformed and driven to form it. Then, it is covered with an n0 emitter layer. distance ll1t- apart,
A window is opened using known photoetching, and boron is debossed and driven to form 20 layers. After that, the entire surface formed on the red surface is removed with hydrofluoric acid, and the relatively low concentration p base layer exposed on the red surface is compensated for and the low llI of S degree is converted to n-type.
α5 degree N layer is implanted using T ion implantation method using arsenic or phosphorus
Formed with a diameter of μm or more. After IIk, a plated film is formed on the surface, a window is opened by photo-etching at the ninth stage to take out the electrode, and an electrode of aluminum or the like is formed by photo-etching.

次に本発明の第1の拠施例の第2の製法について説明す
る。第1の製法を異なる点は次面再結合防止用n*xo
の形成方法である。つまp1第1のl1Ii法で説明し
几ガリウム拡散によるpベース層を形成し次後、リンを
ドープし穴子軸物濃度が約101’ 〜101@ lt
oms /3” ty) n MJi低不純物11tJ
i110にエピタキシャル成長法で形成するところであ
る。その徽のプ′ロセスは第1の製法で述へ友ものと同
様であるので省略する。第1おるいは第2の製法のいず
牡の場合に2いても!!面再結合電流防止用n層10は
電流増幅率hFIを高く、最小ゲート点弧電111gt
を小さくする有力な手段となる。
Next, the second manufacturing method of the first embodiment of the present invention will be explained. The difference in the first manufacturing method is that n*xo is used to prevent next-plane recombination.
This is the formation method. As explained in the first l1Ii method, a p base layer is formed by diffusion of gallium, and then phosphorus is doped so that the conger crystal concentration is about 101' to 101@lt
oms /3” ty) n MJi low impurity 11tJ
It is to be formed on i110 by epitaxial growth. The manufacturing process is the same as that described in the first manufacturing method, so it will be omitted here. Even if the first method is 2 if the second method is used! ! The n-layer 10 for preventing planar recombination current has a high current amplification factor hFI and a minimum gate firing current of 111 gt.
This is a powerful means to reduce the size of

第3図は、本発明の第2実施例である。カソード1憔7
がpベース層4上の111!!縁展を覆っているところ
に特徴がある。すなわちゲート・カソード関を職バイア
ス丁れば、カソード電極7とpベース層4とle鍬腹膜
9ら構成さCるMOB構造において電界効果に工りpベ
ース赤面は蓄積mに移行するので狭面再結合電流は流n
にくくなり電流増幅率hFmは高く、最小ゲート点弧電
流11番は低いところで安定する。を九ゲート°カソー
ド両電極8.7関を逆バイアスすnは上記と逆の電界効
果によりpペース層4嚢面は空乏化しやすく表面電y1
−は緩和さ扛て針圧は向上する特徴を有する。
FIG. 3 shows a second embodiment of the invention. cathode 1 7
is 111 on the p base layer 4! ! It is distinctive in that it covers the edges. In other words, if the gate-cathode connection is biased, the MOB structure consisting of the cathode electrode 7, the p-base layer 4, and the peritoneal membrane 9 will have an electric field effect, and the p-base red will shift to the accumulation m, resulting in a narrow surface. The recombination current is current n
The current amplification factor hFm becomes high, and the minimum gate firing current No. 11 becomes stable at a low value. 9 gate ° Cathode both electrodes 8.7 When the reverse bias is applied to n, the p-space layer 4 capsule surface is easily depleted due to the electric field effect opposite to the above, and the surface voltage y1
- has the characteristic that the stylus pressure is improved by relaxation.

以上説明した工うに、本発明によれば、nエミツタ層及
びpベース層カ・ら形成さn;bpn撤曾においてj1
バイアス倉印加するとpベース層鐵向が空乏化せず、し
たがって表面丹緒合亀流がゐnないので電流増幅率hr
xの低下、最小ケート点弧電AIgaの増大などの問題
はなく、プロセス変動も#1とんどない安定な特性を示
すことが可能である。
As described above, according to the present invention, when the n emitter layer and the p base layer are formed and removed, j1
When a bias voltage is applied, the p-base layer is not depleted in the iron direction, and therefore there is no surface current, so the current amplification factor hr is
There are no problems such as a decrease in x or an increase in the minimum gate ignition voltage AIga, and it is possible to exhibit extremely stable characteristics with respect to process fluctuations.

またターンオフ動作を行うときには、ゲート・カソード
閣に逆バイアス電圧を叩加するが、本発明では、表1i
llは低不純物製置のn鳩にを2層が延び表面電界が緩
和さnるので一面でのゲート・カソード閲耐圧は内部に
おけるものより高くすることができ、かつ安定なものと
なる。
In addition, when performing a turn-off operation, a reverse bias voltage is applied to the gate and cathode, but in the present invention, Table 1i
Since two layers extend over the n layer with low impurities and the surface electric field is relaxed, the gate/cathode breakdown voltage on one surface can be made higher than that on the inside, and is stable.

こrttで主として、ゲート信号でターンオン。This is mainly turned on by the gate signal.

□ ターンオフできるサイリスタについて説明してきたが、
本発明の効果はサイリスタに限ら扛ず、トランジスタに
おいても有効でるる。つまり、p電極6をコレクタ電極
とし、ゲート電極8−ベース電極とす【ばよい。この場
合では、ペース電151tft。
□ We have explained about thyristors that can be turned off.
The effects of the present invention are not limited to thyristors, but are also effective in transistors. That is, the p-electrode 6 may be used as the collector electrode, and the gate electrode 8 may be used as the base electrode. In this case, the pace electrician is 151 tft.

してコレクタ電流1−*丁が、本発明で呼線に述べたよ
うに、表面貴結合電流となる無効リーク電流がRnない
次め1.電流増幅率は高くかつ安定なトランジスタが得
られることは明白である。
As described in the present invention for the calling line, there is no reactive leakage current Rn which becomes the surface precious coupling current. It is clear that a transistor with a high current amplification factor and stability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

#!1図は本発明の第1実施例を示す断面図、第2脂は
第1−のA−A線、B−B@、C−C縁断印に沿う不純
物濃度を示す図、第3図は本発明の第2実施例を示す断
面図である。 l・・・n−ベース層、2・・・pエミッタ層、3・・
・nエミツタ層、4・・・pベース層、5・・・低抵抗
接触用20層、6・・・アノードを極、7・・・カソー
ド電極、8・・・ゲート電極、9・・・絶縁膜、10・
・・表面再結合防止用n層。
#! Figure 1 is a cross-sectional view showing the first embodiment of the present invention, Figure 2 is a diagram showing the impurity concentration along the 1-A line, B-B@, and C-C edge markings, Figure 3. FIG. 2 is a sectional view showing a second embodiment of the present invention. l...n-base layer, 2...p emitter layer, 3...
・n emitter layer, 4... p base layer, 5... 20 layers for low resistance contact, 6... anode as pole, 7... cathode electrode, 8... gate electrode, 9... Insulating film, 10.
...N layer for preventing surface recombination.

Claims (1)

【特許請求の範囲】 1、第1導を型の半導体基板の1万の王弐面に第2導電
型の第2半専体層が瞬接して形成さC1第2半導体増の
表面から通釈的に高不純物濃度の第14電型の第3半導
体増が形■さnX第3半尋体l曽には第1の電極がオー
ミック接触して設けらn、第3半導体層をとり囲むよう
に隔離して第224電型の高不純物濃度の第4半導体層
が形成さC1第4半導体層には第2の電極がオーミック
接触して設けられ、第3牛導体層と第4牛導体層の闇に
介在し九半導体層の六面部は第1の電極とWJ2の電極
と1に順バイアスしたとき蓄積型V(なっており、lt
L訛増幅率が高<、Xfcは最小ケート点弧電流が小6
く安建でおり、ま次逆バイアスしたとき空乏化さ扛、表
面電界が内部電界工り低いことを%徴とする半導体装置
。 2、特許請求の範囲第1項において、第3半導体1−と
第4半導体膚の間に弁在し九半導体層の表面部が第3半
導体層と同導電型で、これより不純物濃度が低い半導体
層である半導体装置。7ふ 特許請求の範囲第1項にお
いて他方の主表面に纂2導電皺の第6半導体層が隣接し
て形成さC1第6半導体層には第3の電極がオーミック
接触している半導体装置。 4、待#!F請求の範囲第1項において他方の主表向に
第1導電形の半導体基板より高不純物濃度の第7半導体
層が隣接して形成され、第7半導体層には第4の電極が
オーミック接触している半導体装置。
[Claims] 1. A second semi-dedicated layer of a second conductivity type is formed by instantaneous contact with the 10,000-square-foot surface of a semiconductor substrate of a first conductivity type; A third semiconductor layer of the 14th electric type with a high impurity concentration is formed, and a first electrode is provided in ohmic contact with the third semiconducting body so as to surround the third semiconductor layer. A fourth semiconductor layer of high impurity concentration of the 224th conductor type is formed in isolation from C1.A second electrode is provided in ohmic contact with the fourth semiconductor layer C1, and a third conductor layer and a fourth conductor layer are formed. The hexagonal part of the nine semiconductor layers intervening in the darkness becomes an accumulation type V (lt
L accent amplification factor is high <, Xfc is minimum gate ignition current is small 6
A semiconductor device characterized by a relatively stable structure, less depletion when reverse biased, and a surface electric field that is lower than the internal electric field. 2. In claim 1, the surface portion of the semiconductor layer located between the third semiconductor layer 1- and the fourth semiconductor layer has the same conductivity type as the third semiconductor layer, and has a lower impurity concentration than the third semiconductor layer. A semiconductor device that is a semiconductor layer. 7F. The semiconductor device according to claim 1, wherein a sixth semiconductor layer having conductive wrinkles is formed adjacent to the other main surface of the C1 sixth semiconductor layer, and a third electrode is in ohmic contact with the sixth semiconductor layer C1. 4. Wait #! In claim 1, a seventh semiconductor layer having a higher impurity concentration than the first conductivity type semiconductor substrate is formed adjacent to the other main surface, and a fourth electrode is in ohmic contact with the seventh semiconductor layer. semiconductor devices.
JP5815182A 1982-04-09 1982-04-09 Semiconductor device Pending JPS58176971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5815182A JPS58176971A (en) 1982-04-09 1982-04-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5815182A JPS58176971A (en) 1982-04-09 1982-04-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58176971A true JPS58176971A (en) 1983-10-17

Family

ID=13075984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5815182A Pending JPS58176971A (en) 1982-04-09 1982-04-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58176971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154667A (en) * 1984-08-21 1986-03-18 ウエステイングハウス・ブレイク・アンド・シグナル・ホールデイングス・リミテツド Thyristor unit and method of producing same
JPS61224356A (en) * 1985-03-25 1986-10-06 モトローラ・インコーポレーテツド Gate turn-off switch and manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50782A (en) * 1973-05-02 1975-01-07
JPS52104075A (en) * 1976-02-27 1977-09-01 Toshiba Corp Semiconductor element
JPS538575A (en) * 1976-07-12 1978-01-26 Mitsubishi Electric Corp Semiconductor device
JPS55120166A (en) * 1979-03-09 1980-09-16 Nec Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50782A (en) * 1973-05-02 1975-01-07
JPS52104075A (en) * 1976-02-27 1977-09-01 Toshiba Corp Semiconductor element
JPS538575A (en) * 1976-07-12 1978-01-26 Mitsubishi Electric Corp Semiconductor device
JPS55120166A (en) * 1979-03-09 1980-09-16 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154667A (en) * 1984-08-21 1986-03-18 ウエステイングハウス・ブレイク・アンド・シグナル・ホールデイングス・リミテツド Thyristor unit and method of producing same
JPS61224356A (en) * 1985-03-25 1986-10-06 モトローラ・インコーポレーテツド Gate turn-off switch and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3425967B2 (en) Lateral MOS field effect transistor having lightly doped drain and method of manufacturing the same
US4963951A (en) Lateral insulated gate bipolar transistors with improved latch-up immunity
US9711631B2 (en) Dual trench-gate IGBT structure
JPH06252408A (en) Semiconductor device
JPH0457111B2 (en)
EP0181002B1 (en) Semiconductor device having high breakdown voltage
EP0454201A2 (en) A semiconductor device comprising a thyristor
JPH08502858A (en) Semiconductor device controlled by electric field effect
CN108767003B (en) IGBT device with high latch-up resistance
JP3189576B2 (en) Semiconductor device
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPS5912026B2 (en) thyristor
JPS58176971A (en) Semiconductor device
CN113838914A (en) RET IGBT device structure with separation gate structure and manufacturing method
JPS60187058A (en) Semiconductor device
JP3189543B2 (en) Semiconductor device
JPS639386B2 (en)
JPH06163909A (en) Vertical field effect transistor
CN116936611B (en) Low-loss bidirectional conduction IGBT structure and preparation method
JP2003298071A (en) Semiconductor device
JPH0870121A (en) Insulated gate semiconductor device
JPH03104284A (en) Insulated gate bipolar transistor
JPH0758328A (en) Self-extinction type semiconductor device
JP2916158B2 (en) Conduction modulation type MOSFET
KR100277680B1 (en) Improved LGI Power Devices