JPH03104284A - Insulated gate bipolar transistor - Google Patents

Insulated gate bipolar transistor

Info

Publication number
JPH03104284A
JPH03104284A JP24401189A JP24401189A JPH03104284A JP H03104284 A JPH03104284 A JP H03104284A JP 24401189 A JP24401189 A JP 24401189A JP 24401189 A JP24401189 A JP 24401189A JP H03104284 A JPH03104284 A JP H03104284A
Authority
JP
Japan
Prior art keywords
trench
semiconductor layer
well region
type
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24401189A
Other languages
Japanese (ja)
Inventor
Tadashi Natsume
夏目 正
Shigemi Okada
岡田 茂実
Yasuo Kitahira
北平 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24401189A priority Critical patent/JPH03104284A/en
Publication of JPH03104284A publication Critical patent/JPH03104284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To decrease resistance component of a P-type well region and suppress occurrences potential difference at a PN junction part by forming channel parts along sidewalls of a 1st trench and a 2nd trench and providing an emitter electrode which is in contact with each N<+> type emitter region and each P-type well region. CONSTITUTION:One of the sides of an N<+> type emitter region 19, faces the sidewall of a 3rd trench 18 and is in contact with an emitter electrode 20 and the other side of its region faces the sidewalls of a 1st trench 14 and a 2nd trench 15. In a P-type well region 13 which is sandwiched between the N<+> type emitter 19 and an N-type layer 12, when control voltage is applied to gate electrodes 17, inversion layers are formed along the 1st trench 14 and the 2nd trench 15 and then, such parts are formed into channel parts 21. In PN junction which is formed by the N<+> type emitter region 19 and the P-type well region 13, the distance from the part with which the emitter electrode 20 is in contact to a part of the PN junction, in other words, to the PN junction in the vicinity of each channel part 21 can be shortened. The value (r) of resistance component in the lateral direction of the P-type well region 13 is thus reduced as compared with conventional values.

Description

【発明の詳細な説明】 〈イ〉産業上の利用分野 本発明は絶縁ゲート型バイボーラトランジスタ( IG
BT)に関し、特に寄生サイリスクのラッチアップ防止
に関する. (口〉従来の技術 一般にIGBT装置は、バイボーラ的な動作をすること
からパワーMOSより低い才冫電圧、大きい電流容量が
得られる一方、寄生のPNPNサイリスタ構造を有する
為ラッチアップが問題となる.このラッチアップを改善
したものとして例えば特開平1−125979号公報に
記載されたものがある. その構造を第2図に示す.同図において、(1)はP+
型半導体基板、(2〉はN型半導体層、(3〉はN型半
導体層(2〉の表面に形成したPウェル領域、(4〉は
Pウェル領域(3〉表面に形成したN+型エミッタ領域
、(5〉はチャンネル部(6)上にゲート絶縁膜(7)
を介して設けたゲート電極、(8〉はPウェル領域(3
)の略中央に設けたトレンチ、(9)はトレンチ〈8)
内に埋め込まれてN+型エミッタ領域(4〉とPウェル
領域(3)とを電気的に接続するエミッタ電極である. この構造によれば、Pウェル領域(3)の横方向の抵抗
rが少なくなるので、Pウェル領域(3)とN+型エミ
ッタ領域〈4〉との電位差が拡大するのを抑制し N 
′″型エミッタ領域(4)をコレクタ、Pウェル領域(
3)をベース、N型半導体層(2〉をエミッタとする寄
生NPNトランジスタがONL,にくくなり、結果、サ
イリスク動作が生じにくくなる。
[Detailed description of the invention] <A> Industrial application field The present invention relates to an insulated gate bibolar transistor (IG
BT), particularly regarding prevention of parasitic rhinoceros latch-up. (Example) Conventional technology In general, IGBT devices operate in a bibolar manner, so they can provide lower voltage and larger current capacity than power MOS devices, but they have a parasitic PNPN thyristor structure, which causes latch-up problems. For example, there is a device that improves this latch-up described in Japanese Patent Application Laid-Open No. 1-125979. Its structure is shown in Figure 2. In the figure, (1) is P+
type semiconductor substrate, (2> is an N-type semiconductor layer, (3> is an N-type semiconductor layer (2) has a P-well region formed on the surface, (4> is a P-well region (3> is an N+-type emitter formed on the surface) (5) is a gate insulating film (7) on the channel part (6).
The gate electrode (8> is provided through the P well region (3)
), (9) is the trench (8)
This is an emitter electrode that is embedded in the N+ type emitter region (4) and electrically connects the P-well region (3). According to this structure, the lateral resistance r of the P-well region (3) is This suppresses the potential difference between the P well region (3) and the N+ type emitter region <4> from expanding.
'' type emitter region (4) as collector, P well region (
A parasitic NPN transistor having 3) as a base and the N-type semiconductor layer (2> as an emitter) becomes less likely to be ONL, and as a result, a si-risk operation becomes less likely to occur.

(ハ)発明が解決しようとする課題 しかしながら、第2図の構造でもPウェル領域(3〉の
抵抗分rが消失したわけではなく、特に工ミッタ電極(
8)から最も遠方になるゲート電極(5〉下部のチャン
ネル部(6〉付近のPN接合において、依然として抵抗
分rによって電位差が生じ易く、そのためサイリスク動
作が生じてしまう欠点があった。
(c) Problems to be Solved by the Invention However, even in the structure shown in FIG. 2, the resistance r of the P well region (3) has not disappeared, and especially
8) In the PN junction near the lower channel part (6>) which is the farthest from the gate electrode (5>), a potential difference is still likely to occur due to the resistance r, which has the disadvantage of causing a si-risk operation.

(二)課題を解決するための手段 本発明は上記従来の欠点に鑑み成され、Nゝ型エミッタ
領域(19〉の片側を第1と第2のトレンチ(14)(
15)で、もう一方を第3のトレンチ(l8)で挾み、
第1と第2のトレンチ(14)(15)には絶縁膜(l
6)ヲ介してゲート電極(17〉を設けることによりチ
勺ンネル部(21)を第1と第2のトレンチ(14)(
15〉の側壁に沿って形成し、第3のトレンチ(18)
にはN”型エミッタ領域(19)とPウェル領域(13
〉の両方に接触するエミッタ電極(20)を設けること
により、従来の欠点を解消した絶縁ゲート型バイポーラ
トランジスタを提供するものである。
(2) Means for Solving the Problems The present invention has been made in view of the above-mentioned drawbacks of the conventional art.
15), sandwich the other side with the third trench (l8),
The first and second trenches (14) (15) are provided with an insulating film (l).
6) By providing the gate electrode (17) through the channel part (21), the first and second trenches (14) (
A third trench (18) is formed along the side wall of the
has an N” type emitter region (19) and a P well region (13).
By providing an emitter electrode (20) in contact with both of the above, an insulated gate bipolar transistor is provided which eliminates the conventional drawbacks.

(*〉作用 本発明によれば、N4″型エミッタ領域(19〉とPウ
ェル領域(13)とが形成するPN接合を第1,第2の
トレンチ(14)(15)と第3のトレンチ(18)と
が挾み、エミッタ電極〈20〉からチヶンネル部(21
)までの距離が接近するので、Pウェル領域(13)の
抵抗分rが少なくなってPN接合部における電位差の発
生を抑えることができる。
(*> Function) According to the present invention, the PN junction formed by the N4'' type emitter region (19) and the P well region (13) is connected to the first and second trenches (14), (15) and the third trench. (18) are sandwiched between the emitter electrode (20) and the channel part (21).
), the resistance r of the P-well region (13) decreases, making it possible to suppress the generation of potential difference at the PN junction.

(へ〉実施例 以下に本発明の一実施例を図面を参照して詳細に説明す
る。
(F) Example An example of the present invention will be described below in detail with reference to the drawings.

第1図は本実施例による絶縁ゲート型バイボーラトラン
ジスタの断面構造を示す.同図において、(11)はP
+型シリコン単結晶基板、(12)は基板(11)表面
にエビタキシャル成長にて形成したN型半導体層、(1
3〉はN型半導体層《12)の表面に拡散形成したPウ
エル領域、(14)(15)はN型半導体層(12〉の
表面からPウェル領域〈l3〉を貫通してN型半導体層
(12〉に達する第1と第2のトレンチ、《16〉は第
1と第2のトレンチ(14)(15)の内壁に沿って埋
め込まれたシリコン酸化膜(SiOm)等から成るゲー
ト絶縁膜、(17)は第1と第2のトレンチ(14)(
13)内に絶縁膜(16)を挾んで埋め込まれたボノシ
リコン等から成るゲート電極、(18)は第1と第2の
トレンチ〈14〉と(15〉の間のN型半導体層(12
)表面に設けられ、Pウェル領域(13)の途中まで掘
られた第3のトレンチ、(19)は第1,第2のトレン
チ(14)(15)と第3のトレンチ(18)との間に
挾まれたPウェル領域(13〉の表面に形成したN0型
エミッタ領域、(20)は第3のトレンチ(18)内に
埋め込まれ、第3のトレンチ(18〉の内壁でN+型エ
ミッタ領域(19〉とPウェル領域(13)との両方に
才一ミンク接触するエミッタ電極である。
Figure 1 shows the cross-sectional structure of the insulated gate bibolar transistor according to this example. In the same figure, (11) is P
+ type silicon single crystal substrate, (12) is an N type semiconductor layer formed by epitaxial growth on the surface of substrate (11), (1
3> is a P-well region that is diffused and formed on the surface of the N-type semiconductor layer (12), and (14) and (15) are N-type semiconductors that penetrate from the surface of the N-type semiconductor layer (12) through the P-well region (l3). The first and second trenches reach the layer (12), and the gate insulator (16) is made of silicon oxide film (SiOm) etc. buried along the inner walls of the first and second trenches (14) and (15). The membrane (17) is the first and second trench (14) (
(13) is a gate electrode made of bonosilicon or the like embedded with an insulating film (16) in between; (18) is an N-type semiconductor layer (12) between the first and second trenches (14) and (15);
) A third trench (19) is provided on the surface and is dug halfway into the P-well region (13), and (19) is a connection between the first and second trenches (14), (15) and the third trench (18). The N0 type emitter region (20) formed on the surface of the P well region (13) sandwiched between is buried in the third trench (18), and the N+ type emitter region is formed on the inner wall of the third trench (18). It is an emitter electrode that is in close contact with both the region (19) and the P-well region (13).

N+型エミッタ領域〈19〉の側面は、一方が第3のト
レンチ(18〉の側壁に面してエミッタ電極(20)と
コンタクトし、他方は第1と第2のトレンチ(14)(
15)の側壁に面する. N0型エミッタ領域(19〉とN型半導体層(12〉と
で挾まれたPウェル領域(13〉には、ゲート電極(1
7)に制御電圧が加えられた際に第1と第2のトレンチ
(14)(Is)の側壁に沿って反転層が形成され、こ
の部分がチャンネル部(21)となる。
One side of the N+ type emitter region (19) faces the side wall of the third trench (18) and is in contact with the emitter electrode (20), and the other side faces the side wall of the third trench (18) and contacts the emitter electrode (20).
15) facing the side wall. A gate electrode (13) is sandwiched between an N0 type emitter region (19) and an N type semiconductor layer (12).
When a control voltage is applied to 7), an inversion layer is formed along the side walls of the first and second trenches (14) (Is), and this portion becomes a channel portion (21).

第3のトレンチ(18)は、ラッチアップ防止からすれ
ば深い方が好ましいが、素子耐圧がPウェル領域(13
〉とN型半導体層〈12〉との接合耐圧で決まるので、
第3のトレンチ(18)の底部とN型半導体層ク12〉
とで挾まれたPウエル領域(13〉の厚みが素子耐圧を
左右することもあり得る.従って、第3のトレンチ(1
8〉の深さは上記のことを考慮して決定しなければなら
ない. 斯る構成によれば、N1型エミッタ領域(19〉とPウ
ェル領域(13〉とが形成するPN接合において、エミ
ッタ電極(20〉がコンタクトする部分から、前記PN
接合の最も遠い部分、つまりチ勺ンネル部(21)付近
のPN接合までの距離を短くできるので、Pウェル領域
〈13〉の横方向の抵抗成分rの値を従来より減少でき
る.その結果、NI型エミッタ領域(19〉とPウェル
領域(13)との電位差が拡大することを防止し、Pウ
ェル領域(13)からN+型エミッタ領域(19)へと
サイリスタ動作のトリガとなるベース電流が流れること
を防止できるので、素子がサイリスク動作に陥ることを
防止できる. 尚、本実施例はIGBTについて言及したが、P+型シ
リコン単結晶基板をN型基板とした縦型MOSFETに
おいて、コイル負荷駆動時に問題となるアバランシエ耐
量を増大する手段としても有効であるので、縦型MO 
S F ETにも適用できるものである. (ト〉発明の効果 以上に説明した通り、本発明によればPウェル領域(1
3〉の横方向の抵抗成分rを減少し、N1型エミッタ領
域(19〉とPウェル領域(13〉との電位差が0.6
v以上広がることを防止するので、トリガとなる電流が
流れることを防止してサイリスク動作を防止できる利点
を有する. また、第1,第2のトレンチ(14)(15)でチャン
ネル部(21)が縦方向に形成され、第3のトレンチ《
18)でNゝ型エミッタ領域(19〉との接触面積が増
大するので、チップサイズを縮小する又は大電流容量化
を図れる利点をも有する.
The third trench (18) is preferably deep from the viewpoint of latch-up prevention, but the element breakdown voltage is
It is determined by the junction breakdown voltage between 〉 and N-type semiconductor layer 〈12〉,
Bottom of third trench (18) and N-type semiconductor layer 12>
The thickness of the P-well region (13) sandwiched between
The depth of 8〉 must be determined taking the above into account. According to this configuration, in the PN junction formed by the N1 type emitter region (19) and the P well region (13), the PN
Since the farthest part of the junction, that is, the distance to the PN junction near the channel part (21) can be shortened, the value of the lateral resistance component r of the P well region <13> can be reduced compared to the conventional one. As a result, the potential difference between the NI type emitter region (19) and the P well region (13) is prevented from expanding, and the thyristor operation is triggered from the P well region (13) to the N+ type emitter region (19). Since it is possible to prevent the base current from flowing, it is possible to prevent the element from falling into a silica operation.Although this embodiment refers to an IGBT, in a vertical MOSFET using a P+ type silicon single crystal substrate as an N type substrate, Vertical MO
This can also be applied to SFET. (G) Effect of the invention As explained above, according to the invention, the P well region (1
The lateral resistance component r of 3> is reduced, and the potential difference between the N1 type emitter region (19> and P well region
Since it prevents the current from spreading beyond v, it has the advantage of preventing the trigger current from flowing and preventing the risk operation. In addition, channel portions (21) are formed in the vertical direction in the first and second trenches (14) and (15), and in the third trench
18) increases the contact area with the N-type emitter region (19), which has the advantage of reducing chip size or increasing current capacity.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板、およびその表面の逆導電
型の半導体層と、 前記半導体基板の主表面上に形成した一導電型の半導体
層と、 前記半導体基板の表面に形成した前記一導電型の半導体
層を貫通する第1と第2のトレンチと、前記第1と第2
のトレンチ内に絶縁膜を介して埋め込まれた制御電極と
、 前記第1のトレンチと第2のトレンチとの間の前記半導
体基板の表面に形成した前記一導電型の半導体層を貫通
しない第3のトレンチと、 前記第1又は第2のトレンチと前記第3のトレンチに挾
まれた前記一導電型の半導体層の表面に形成した逆導電
型の半導体層と、 前記第3のトレンチ内に埋め込まれ、その側壁で前記一
導電型の半導体層と逆導電型の半導体層との両方にオー
ミック接触する電極とを具備することを特徴とする絶縁
ゲート型バイポーラトランジスタ。
(1) A semiconductor substrate of one conductivity type, a semiconductor layer of an opposite conductivity type on the surface thereof, a semiconductor layer of one conductivity type formed on the main surface of the semiconductor substrate, and the semiconductor layer of the one conductivity type formed on the surface of the semiconductor substrate. first and second trenches penetrating the conductive type semiconductor layer;
a control electrode embedded in the trench via an insulating film; and a third control electrode that does not penetrate the semiconductor layer of one conductivity type formed on the surface of the semiconductor substrate between the first trench and the second trench. a trench, a semiconductor layer of an opposite conductivity type formed on the surface of the semiconductor layer of one conductivity type sandwiched between the first or second trench and the third trench, and a semiconductor layer of an opposite conductivity type formed in the surface of the semiconductor layer of the one conductivity type, which is buried in the third trench. 1. An insulated gate bipolar transistor comprising: an electrode which makes ohmic contact with both the semiconductor layer of one conductivity type and the semiconductor layer of the opposite conductivity type on its sidewall.
(2)前記第3のトレンチは前記第1と第2のトレンチ
より浅いことを特徴とする請求項第1項に記載の絶縁ゲ
ート型バイポーラトランジスタ。
(2) The insulated gate bipolar transistor according to claim 1, wherein the third trench is shallower than the first and second trenches.
JP24401189A 1989-09-19 1989-09-19 Insulated gate bipolar transistor Pending JPH03104284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24401189A JPH03104284A (en) 1989-09-19 1989-09-19 Insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24401189A JPH03104284A (en) 1989-09-19 1989-09-19 Insulated gate bipolar transistor

Publications (1)

Publication Number Publication Date
JPH03104284A true JPH03104284A (en) 1991-05-01

Family

ID=17112387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24401189A Pending JPH03104284A (en) 1989-09-19 1989-09-19 Insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JPH03104284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158356A (en) * 2000-11-21 2002-05-31 Fuji Electric Co Ltd Mis semiconductor device and its manufacturing method
JP2007036299A (en) * 2006-11-13 2007-02-08 Renesas Technology Corp Semiconductor device and method for fabricating the same
US7910985B2 (en) 2000-06-28 2011-03-22 Renesas Electronics Corporation Semiconductor device and method for fabricating the same
CN104701169A (en) * 2013-12-06 2015-06-10 上海华虹宏力半导体制造有限公司 Manufacturing technology method for anti-latch-up groove type insulated gate bipolar transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910985B2 (en) 2000-06-28 2011-03-22 Renesas Electronics Corporation Semiconductor device and method for fabricating the same
JP2002158356A (en) * 2000-11-21 2002-05-31 Fuji Electric Co Ltd Mis semiconductor device and its manufacturing method
JP2007036299A (en) * 2006-11-13 2007-02-08 Renesas Technology Corp Semiconductor device and method for fabricating the same
CN104701169A (en) * 2013-12-06 2015-06-10 上海华虹宏力半导体制造有限公司 Manufacturing technology method for anti-latch-up groove type insulated gate bipolar transistor

Similar Documents

Publication Publication Date Title
JP4761644B2 (en) Semiconductor device
JP3387563B2 (en) Field effect transistor and method of manufacturing the same
US6677622B2 (en) Semiconductor device having insulated gate bipolar transistor with dielectric isolation structure
JP2002280555A (en) Semiconductor device
KR20160133625A (en) Power Semiconductor Device
JPH0357614B2 (en)
JP3704007B2 (en) Semiconductor device and manufacturing method thereof
JP3173268B2 (en) Semiconductor device having MIS field-effect transistor
JP2008047772A (en) Insulated gate bipolar transistor
JP3435635B2 (en) Insulated gate semiconductor device, method of manufacturing the same, and inverter circuit
JPH04251983A (en) Semiconductor device
JPH08213598A (en) Semiconductor device having controllability by electric field effect
KR100278526B1 (en) Semiconductor device
JP2005209811A (en) Semiconductor device
WO2022004084A1 (en) Semiconductor device
US7535075B2 (en) Semiconductor device
KR102088181B1 (en) A semiconductor transistor and method for forming the semiconductor transistor
JP3489404B2 (en) Insulated gate semiconductor device
JP4177229B2 (en) Semiconductor device and manufacturing method thereof
US9525058B2 (en) Integrated circuit and method of manufacturing an integrated circuit
JPH03104284A (en) Insulated gate bipolar transistor
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPH10200104A (en) Voltage-driven semiconductor device and its manufacturing method
JP3371836B2 (en) Semiconductor device
JPH06151728A (en) Semiconductor integrated circuit device