JPH06163909A - Vertical field effect transistor - Google Patents

Vertical field effect transistor

Info

Publication number
JPH06163909A
JPH06163909A JP43A JP31702592A JPH06163909A JP H06163909 A JPH06163909 A JP H06163909A JP 43 A JP43 A JP 43A JP 31702592 A JP31702592 A JP 31702592A JP H06163909 A JPH06163909 A JP H06163909A
Authority
JP
Japan
Prior art keywords
base region
field effect
effect transistor
region
vertical field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Masami Sawada
雅己 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP43A priority Critical patent/JPH06163909A/en
Publication of JPH06163909A publication Critical patent/JPH06163909A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enhance breakdown strength against counter electromotive force when a load containing inductance component is driven through a vertical field effect transistor. CONSTITUTION:The base region is constituted of a first base region 10 formed in frame shape for determining the gate cut-off voltage, and a heavily doped second base region 11 formed shallower than the first base region 10, while being connected with the inner periphery thereof. Consequently, the second base region 11 has a lower withstand voltage than the first base region 10 and counter electromotive force, produced upon driving of a load containing inductance component, is absorbed by the second base region 11 so that turn ON of parasitic transistor is retarded thus enhancing breakdown strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は縦型電界効果トランジス
タに関する。
FIELD OF THE INVENTION The present invention relates to a vertical field effect transistor.

【0002】[0002]

【従来の技術】従来の縦型電界効果トランジスタは図3
に示すように、抵抗率が0.01Ω・cmのN+ 型シリ
コン基板1の上に抵抗率が0.05〜5Ω・cmで厚さ
が5〜50μm程度のN型エピタキシャル層2を形成し
た半導体基板のN型エピタキシャル層2の上面に拡散深
さが3〜6μm程度のP型のベース領域3を選択的に設
け、このベース領域3内に拡散深さが0.5〜2.0μ
m程度のN+ 型のソース領域4を選択的に形成する。こ
のソース領域4の上に厚さ30〜200nmの酸化シリ
コン膜からなるゲート酸化膜5を設け、このゲート酸化
膜5の上に、厚さ約500nmの多結晶シリコン膜から
なるゲート電極6をソース領域4に位置合せして設け、
このゲート電極6を含む表面に厚さ500〜1000n
m程度の層間絶縁膜7を堆積してパターニングしベース
領域3の一部、およびソース領域4を含む領域に開孔部
を設け、この開孔部を含む表面に厚さ1.0〜4.0μ
mのアルミニウム膜を被着してソース電極8を設け、シ
リコン基板1の下面にAuSb膜からなるドレイン電極
9を形成している。
2. Description of the Related Art A conventional vertical field effect transistor is shown in FIG.
As shown in FIG. 5, an N type epitaxial layer 2 having a resistivity of 0.05 to 5 Ω · cm and a thickness of about 5 to 50 μm is formed on the N + type silicon substrate 1 having a resistivity of 0.01 Ω · cm. A P-type base region 3 having a diffusion depth of about 3 to 6 μm is selectively provided on the upper surface of the N-type epitaxial layer 2 of the semiconductor substrate, and the diffusion depth within the base region 3 is 0.5 to 2.0 μ.
The N + type source region 4 of about m is selectively formed. A gate oxide film 5 made of a silicon oxide film having a thickness of 30 to 200 nm is provided on the source region 4, and a gate electrode 6 made of a polycrystalline silicon film having a thickness of about 500 nm is sourced on the gate oxide film 5. Aligned with area 4
The surface including the gate electrode 6 has a thickness of 500 to 1000 n
An interlayer insulating film 7 of about m in thickness is deposited and patterned to provide an opening in a part of the base region 3 and the region including the source region 4, and the surface including the opening has a thickness of 1.0 to 4. 0μ
A source electrode 8 is provided by depositing an aluminum film of m, and a drain electrode 9 made of an AuSb film is formed on the lower surface of the silicon substrate 1.

【0003】[0003]

【発明が解決しようとする課題】この従来の縦型電界効
果トランジスタは、モーター等の誘導性負荷を駆動する
場合に、誘導性負荷を有する回路をターンオフしたとき
に生ずる逆起電力がソース・ドレイン間耐圧を越える
と、トランジスタは、アバランシェ降伏により、破壊に
いたる場合がある。
In the conventional vertical field effect transistor, when driving an inductive load such as a motor, a counter electromotive force generated when a circuit having the inductive load is turned off is source / drain. If the breakdown voltage is exceeded, the transistor may be destroyed due to avalanche breakdown.

【0004】図4は縦型電界効果トラジスタの等価回路
である。
FIG. 4 is an equivalent circuit of a vertical field effect transistor.

【0005】図4に示すように、図3のN型エピタキシ
ャル層2をコレクタ、ベース領域3をベース、ソース領
域4をエミッタとする寄生バイポーラトランジスタが縦
型電界効果トランジスタのターンオフ時に生ずる逆起電
力によりオンして電流集中し破壊に至るという問題があ
った。
As shown in FIG. 4, a counter-electromotive force generated at the turn-off of a vertical field effect transistor by a parasitic bipolar transistor having the N-type epitaxial layer 2 as a collector, the base region 3 as a base, and the source region 4 as an emitter in FIG. Due to this, there was a problem that it turned on and current was concentrated, resulting in destruction.

【0006】[0006]

【課題を解決するための手段】本発明の縦型電界効果ト
ランジスタは、一導電型半導体基板の一主面に設けた逆
導電型のベース領域と、前記ベース領域内に設けた一導
電型のソース領域と、前記ソース領域及びベース領域を
含む表面に設けたゲート絶縁膜上に設けたゲート電極と
を有する縦型電界効果トランジスタにおいて、前記ベー
ス領域が枠状に深い拡散深さを有する第1ベース領域
と、前記第1ベース領域の内周に接続して設け前記第1
ベース領域よりも高い不純物濃度を有し且つ前記第1ベ
ース領域よりも浅く形成した第2ベース領域で構成され
る。
A vertical field effect transistor of the present invention comprises a base region of opposite conductivity type provided on one main surface of a semiconductor substrate of one conductivity type, and a base region of one conductivity type provided in the base region. In a vertical field effect transistor having a source region and a gate electrode provided on a gate insulating film provided on a surface including the source region and the base region, the base region has a frame-like deep diffusion depth. The base region and the inner periphery of the first base region are provided so as to be connected to each other.
The second base region has a higher impurity concentration than the base region and is formed shallower than the first base region.

【0007】[0007]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0008】図1は本発明の第1の実施例を示す断面図
である。
FIG. 1 is a sectional view showing a first embodiment of the present invention.

【0009】図1に示すように、抵抗率が0.01Ω・
cm程度のN+ 型シリコン基板1の上に、抵抗率が0.
05〜2Ω・cmで厚さが5〜20μm程度のN型エピ
タキシャル層2を形成した半導体基板のN型エピタキシ
ャル層2の上面に拡散深さが3〜6μm程度の枠形のP
型の第1ベース領域10を選択的に形成する。次に、第
1ベース領域10内に拡散深さが0.5〜2.0μmの
+ 型のソース領域4を形成する。次に、ソース領域4
の内周に隣接し且つ第1のベース領域よりも浅い拡散深
さを有するP+ 型の第2ベース領域11を形成する。以
後、従来例と同様にゲート酸化膜5を介してゲート電極
6を設け、ゲート電極6を被覆する層間絶縁膜7に開孔
部を設けてソース領域4と接続するソース電極8を設
け、シリコン基板1の下面にドレイン電極9を形成す
る。
As shown in FIG. 1, the resistivity is 0.01 Ω.
A N + type silicon substrate 1 having a resistivity of about 0.
A frame-shaped P having a diffusion depth of about 3 to 6 μm on the upper surface of the N type epitaxial layer 2 of the semiconductor substrate on which the N type epitaxial layer 2 having a thickness of about 5 to 20 μm and a thickness of about 5 to 20 μm is formed.
A first base region 10 of the mold is selectively formed. Next, the N + type source region 4 having a diffusion depth of 0.5 to 2.0 μm is formed in the first base region 10. Next, the source region 4
Forming a P + -type second base region 11 adjacent to the inner periphery of the first base region and having a diffusion depth shallower than that of the first base region. Thereafter, similarly to the conventional example, the gate electrode 6 is provided through the gate oxide film 5, the inter-layer insulation film 7 covering the gate electrode 6 is provided with an opening, and the source electrode 8 connected to the source region 4 is provided. The drain electrode 9 is formed on the lower surface of the substrate 1.

【0010】この実施例では、第1ベース領域10は、
ゲートカットオフ電圧等を設定するため1×1013〜2
×1014cm-2程度のドーズ量にて不純物をイオ注入し
た後1140℃程度で熱処理し、所望の不純物プロファ
イルを形成する。
In this embodiment, the first base region 10 is
1 × 10 13 to 2 to set the gate cutoff voltage, etc.
Impurities are ion-implanted at a dose of about × 10 14 cm -2 and then heat-treated at about 1140 ° C. to form a desired impurity profile.

【0011】また、第2のベース領域11は、約5×1
15cm-2のドーズ量で第1ベース領域10よりも浅
く、1〜3μm程度の拡散深さとなるようにイオン注入
して不純物プロファイルを第1ベース領域10のそれよ
りも急峻とする。
The second base region 11 has a size of about 5 × 1.
The impurity profile is made steeper than that of the first base region 10 by ion implantation so that the dose is 0 15 cm −2 , which is shallower than the first base region 10 and has a diffusion depth of about 1 to 3 μm.

【0012】このように形成した縦型電界効果トランジ
スタのソース・ドレイン間耐圧は、第1ベース領域10
のコーナー部にて決定されるのではなく、第2ベース領
域11の濃度プロファイルとエピタキシャル層2の濃度
で決定される。インダクタンス成分を含む負荷をスイッ
チングするときのターンオフ時に逆起電力が発生し、こ
れがソース・ドレイン間耐圧(第2ベース領域の耐圧)
を越えるが、第2ベース領域とソース領域では寄生トラ
ンジスタが介在していないため、寄生トランジスタがオ
ンしにくくなり、破壊耐量が向上する。
The withstand voltage between the source and the drain of the vertical field effect transistor thus formed has the first base region 10
It is not determined by the corner portion of the second base region 11 but by the concentration profile of the second base region 11 and the concentration of the epitaxial layer 2. A counter electromotive force is generated at turn-off when switching a load including an inductance component, and this is the withstand voltage between the source and drain (withstand voltage of the second base region).
However, since the parasitic transistor does not intervene in the second base region and the source region, it is difficult for the parasitic transistor to turn on, and the breakdown resistance is improved.

【0013】図2は本発明の第2の実施例を示す断面図
である。
FIG. 2 is a sectional view showing a second embodiment of the present invention.

【0014】図2に示すように、第1ベース領域10で
囲まれた領域に第2ベース領域11を第1ベース領域1
0よりも浅く形成した後ソース領域10を形成した以外
は第1の実施例と同様の構成を有しており、ソース領域
4の下面に第2ベース領域11が回り込んでいるため、
寄生トランジスタのベース抵抗が小さくでき、逆起電力
耐量が向上する。
As shown in FIG. 2, the second base region 11 is provided in the region surrounded by the first base region 10.
The structure is the same as that of the first embodiment except that the source region 10 is formed after being formed shallower than 0, and the second base region 11 wraps around the lower surface of the source region 4.
The base resistance of the parasitic transistor can be reduced and the back electromotive force withstand capability is improved.

【0015】[0015]

【発明の効果】以上説明したように本発明は、枠形に設
けた第1のベース領域の内側に第1のベース領域よりも
高い不純物濃度の第2のベース領域を第1のベース領域
よりも浅く形成することにより、インダクタンス成分を
含む負荷のスイッチング時の逆起電力耐量を向上できる
という効果を有する。
As described above, according to the present invention, the second base region having an impurity concentration higher than that of the first base region is provided inside the first base region provided in the frame shape. Forming it also shallower has the effect of improving the back electromotive force withstand level when switching a load including an inductance component.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す断面図。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】従来の縦型電界効果トランジスタの一例を示す
断面図。
FIG. 3 is a cross-sectional view showing an example of a conventional vertical field effect transistor.

【符号の説明】[Explanation of symbols]

1 N+ 型シリコン基板 2 N型エピタキシャル層 3 ベース領域 4 ソース領域 5 ゲート酸化膜 6 ゲート電極 7 層間絶縁膜 8 ソース電極 9 ドレイン電極 10 第1ベース領域 11 第2ベース領域1 N + type silicon substrate 2 N type epitaxial layer 3 base region 4 source region 5 gate oxide film 6 gate electrode 7 interlayer insulating film 8 source electrode 9 drain electrode 10 first base region 11 second base region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体基板の一主面に設けた逆
導電型のベース領域と、前記ベース領域内に設けた一導
電型のソース領域と、前記ソース領域及びベース領域を
含む表面に設けたゲート絶縁膜上に設けたゲート電極と
を有する縦型電界効果トランジスタにおいて、前記ベー
ス領域が枠状に深い拡散深さを有する第1ベース領域
と、前記第1ベース領域の内周に接続して設け前記第1
ベース領域よりも高い不純物濃度を有し且つ前記第1ベ
ース領域よりも浅く形成した第2ベース領域で構成され
ることを特徴とする縦型電界効果トランジスタ。
1. A base region of opposite conductivity type provided on one main surface of a semiconductor substrate of one conductivity type, a source region of one conductivity type provided in the base region, and a surface including the source region and the base region. In a vertical field effect transistor having a gate electrode provided on a provided gate insulating film, the base region is connected to a first base region having a frame-like deep diffusion depth and an inner circumference of the first base region. Provided as the first
A vertical field effect transistor, comprising a second base region which has an impurity concentration higher than that of the base region and is formed shallower than the first base region.
JP43A 1992-11-26 1992-11-26 Vertical field effect transistor Pending JPH06163909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163909A (en) 1992-11-26 1992-11-26 Vertical field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163909A (en) 1992-11-26 1992-11-26 Vertical field effect transistor

Publications (1)

Publication Number Publication Date
JPH06163909A true JPH06163909A (en) 1994-06-10

Family

ID=18083587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06163909A (en) 1992-11-26 1992-11-26 Vertical field effect transistor

Country Status (1)

Country Link
JP (1) JPH06163909A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204175A (en) * 1995-01-30 1996-08-09 Nec Yamagata Ltd Vertical mos transistor
WO1997016853A1 (en) * 1995-11-02 1997-05-09 National Semiconductor Corporation Insulated gate semiconductor devices with implants for improved ruggedness
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US5973361A (en) * 1996-03-06 1999-10-26 Magepower Semiconductor Corporation DMOS transistors with diffusion merged body regions manufactured with reduced number of masks and enhanced ruggedness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US5897355A (en) * 1994-08-03 1999-04-27 National Semiconductor Corporation Method of manufacturing insulated gate semiconductor device to improve ruggedness
JPH08204175A (en) * 1995-01-30 1996-08-09 Nec Yamagata Ltd Vertical mos transistor
WO1997016853A1 (en) * 1995-11-02 1997-05-09 National Semiconductor Corporation Insulated gate semiconductor devices with implants for improved ruggedness
KR100360079B1 (en) * 1995-11-02 2003-03-15 내셔널 세미콘덕터 코포레이션 Manufacturing method of insulated gate semiconductor device to improve robustness
US5973361A (en) * 1996-03-06 1999-10-26 Magepower Semiconductor Corporation DMOS transistors with diffusion merged body regions manufactured with reduced number of masks and enhanced ruggedness

Similar Documents

Publication Publication Date Title
US6677622B2 (en) Semiconductor device having insulated gate bipolar transistor with dielectric isolation structure
US5451531A (en) Method of fabricating an insulated gate semiconductor device
JP2002026328A (en) Horizontal semiconductor device
JPH1197680A (en) High breakdown voltage resistance semiconductor device
JPH0687504B2 (en) Semiconductor device
JPH0457111B2 (en)
JP3307112B2 (en) Method for manufacturing semiconductor device
JP3166980B2 (en) Integrated structure and manufacturing method thereof
JP2000509916A (en) Semiconductor device controllable by electric field effect
JP2960506B2 (en) Turn-off type semiconductor device
JPH06163909A (en) Vertical field effect transistor
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP3063278B2 (en) Vertical field-effect transistor
JPH0697448A (en) Field effect transistor
JPH09260648A (en) Semiconductor device and manufacture thereof
JP3180672B2 (en) Semiconductor device
JP3230504B2 (en) MIS type semiconductor device and method of manufacturing the same
JPH0328836B2 (en)
JP3073056B2 (en) Static induction semiconductor device
KR100555444B1 (en) Trench gate-type power semiconductor device and method of fabricating the same
JPH0521442A (en) Semiconductor device
KR0183669B1 (en) High voltage semiconductor device and its manufacturing method
JPH03104284A (en) Insulated gate bipolar transistor
JP2973583B2 (en) Semiconductor device
JPH02172281A (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980901