JPH06112216A - High breakdown strength semiconductor device - Google Patents

High breakdown strength semiconductor device

Info

Publication number
JPH06112216A
JPH06112216A JP25658692A JP25658692A JPH06112216A JP H06112216 A JPH06112216 A JP H06112216A JP 25658692 A JP25658692 A JP 25658692A JP 25658692 A JP25658692 A JP 25658692A JP H06112216 A JPH06112216 A JP H06112216A
Authority
JP
Japan
Prior art keywords
semiconductor device
junction
electrode
high breakdown
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25658692A
Other languages
Japanese (ja)
Other versions
JP3297087B2 (en
Inventor
Mitsuhiko Kitagawa
光彦 北川
Ichiro Omura
一郎 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25658692A priority Critical patent/JP3297087B2/en
Publication of JPH06112216A publication Critical patent/JPH06112216A/en
Application granted granted Critical
Publication of JP3297087B2 publication Critical patent/JP3297087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region

Abstract

PURPOSE:To provide a high breakdown strength semiconductor device which provides high breakdown strength even with a substrate of smaller diffusion coefficient where no p-n junction exists or it is difficult to form p-n junction at the end of conjunction. CONSTITUTION:A main current area 1 of an n-type SiC substrate on which Schottky barrier diode is formed, and a groove 2 electrically separated from an anode electrode formed in a junction end area 3 of the n-type SiC substrate are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高耐圧半導体装置に係
り、特に接合終端部に十分なpn接合が無い高耐圧半導
体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high breakdown voltage semiconductor device, and more particularly to a high breakdown voltage semiconductor device in which a junction termination portion does not have a sufficient pn junction.

【0002】[0002]

【従来の技術】パワー素子は、電流増幅,電源装置,電
動制御などに使われ、高耐圧で大電流動作を目的とした
構造設計がなされる。
2. Description of the Related Art A power element is used for current amplification, a power supply device, electric control, etc., and has a structural design designed for high withstand voltage and large current operation.

【0003】高耐圧化のためには、例えば、バイポーラ
トランジスタの場合、コレクタ低不純物濃度層を厚く高
抵抗にして降状電圧を上げ、ベース層を大きくとってパ
ンチパンチスールーを防ぐ手法がある。しかし、この種
の手法は大電流化や高速化と相反するので、トランジス
タの使用目的に応じた最適のトレードオフ設計がなされ
る。
In order to increase the breakdown voltage, for example, in the case of a bipolar transistor, there is a method in which a collector low impurity concentration layer is thickened to have high resistance to increase the breakdown voltage and a large base layer is used to prevent punch punch sulu. However, since this kind of method conflicts with a large current and a high speed, an optimum trade-off design is made according to the purpose of use of the transistor.

【0004】また、高耐圧化のためには、従来より、フ
ィールドプレートやガードリングなどの手法が用いられ
ている。
In order to increase the breakdown voltage, methods such as field plates and guard rings have been conventionally used.

【0005】フィールドプレートは、図9(a)に示す
ように、ベース電極81をn型コレクタ層82の上部8
3まで引き出すことにより、空乏層84をn型コレクタ
層82の上部83まで延ばし、p型ベース層85とn型
コレクタ層82とのpn接合部分、つまり、接合終端部
の空乏層電界を緩和し、電界集中を防止する。なお、図
中、86はn型エミッタ層,87は酸化膜を示してい
る。
In the field plate, as shown in FIG. 9A, the base electrode 81 is formed on the upper portion 8 of the n-type collector layer 82.
By pulling up to 3, the depletion layer 84 is extended to the upper portion 83 of the n-type collector layer 82, and the depletion layer electric field at the pn junction between the p-type base layer 85 and the n-type collector layer 82, that is, the junction termination portion is relaxed. , Prevent electric field concentration. In the figure, 86 is an n-type emitter layer and 87 is an oxide film.

【0006】ガードリングは、図9(b)に示すよう
に、p型ベース層85を囲んで1ないし数個のフローテ
ィングガードリング88を設けることにより、接合終端
部の空乏層電界を緩和する。
As shown in FIG. 9B, the guard ring is provided with one or several floating guard rings 88 surrounding the p-type base layer 85 to relax the electric field of the depletion layer at the junction termination portion.

【0007】しかしながら、このような高耐圧化の手法
には次のような問題がある。
However, such a method of increasing the breakdown voltage has the following problems.

【0008】即ち、素子の主接合がpn接合ではないパ
ワー素子、例えば、ショットキーバリアダイオード,U
−MOS,埋込みゲート構造MOSサイリスタ,埋込み
ゲート構造IGBTなどの接合終端部は高耐圧化に必要
な十分なpn接合を素子の主な工程とは別に作る必要が
ある。また、Siなどのように不純物拡散が比較的容易
な材料からなる基板の場合には、素子部とは別にpn接
合を形成するのは可能であるが、SiCなどの化合物半
導体や、ダイヤモンドのように不純物拡散が困難な材料
からなる基板の場合には、従来のpn接合を前提とした
高耐圧化の手法は使用が困難である。
That is, a power element whose main junction is not a pn junction, such as a Schottky barrier diode, U
In a junction termination portion such as -MOS, buried gate structure MOS thyristor, buried gate structure IGBT, etc., it is necessary to form a sufficient pn junction required for high breakdown voltage separately from the main process of the device. Further, in the case of a substrate made of a material such as Si which is relatively easy to diffuse impurities, it is possible to form a pn junction separately from the element portion, but a compound semiconductor such as SiC or diamond. In the case of a substrate made of a material in which impurity diffusion is difficult, it is difficult to use the conventional method of increasing the breakdown voltage based on the pn junction.

【0009】[0009]

【発明が解決しようとする課題】上述の如く、従来の半
導体パワー素子の高耐圧化の手法は、接合終端部がpn
接合の場合を前提にしたものであった。このため、接合
終端部に十分なpn接合が無く、拡散係数が小さい基板
の場合には、半導体パワー素子の高耐圧化が困難である
という問題があった。
As described above, in the conventional method for increasing the withstand voltage of the semiconductor power element, the junction termination portion is pn.
It was based on the case of joining. Therefore, there is a problem that it is difficult to increase the breakdown voltage of the semiconductor power element in the case of a substrate having a small diffusion coefficient without a sufficient pn junction at the junction termination portion.

【0010】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、接合終端部に十分なp
n接合が無い場合でも、高耐圧を実現できる構造の高耐
圧半導体装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a sufficient p
It is an object of the present invention to provide a high breakdown voltage semiconductor device having a structure capable of realizing a high breakdown voltage even when there is no n-junction.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の高耐圧半導体装置は、半導体基板に形成
された素子の主電流が流れる領域と、前記主電流の流れ
る領域を囲むように形成され、前記主電流の流れる領域
を囲むように形成され、且つ前記主電流が流れる電極と
電気的に分離された溝を内部に有する接合終端領域とを
備えたことを特徴とする。
In order to achieve the above object, a high breakdown voltage semiconductor device of the present invention surrounds a region in which a main current of an element formed on a semiconductor substrate flows and a region in which the main current flows. And a junction terminating region having a groove inside which is formed so as to surround the region in which the main current flows and which is electrically isolated from the electrode in which the main current flows.

【0012】なお、接合終端領域とは、素子の主電流が
流れる領域以外の領域であって、耐圧を大きくするため
の構造を有する領域である。
The junction termination region is a region other than the region through which the main current of the element flows, and has a structure for increasing the breakdown voltage.

【0013】[0013]

【作用】本発明によれば、接合終端領域内に設けられ
た、主電流が流れる電極と電気的に分離された溝により
接合終端部の空乏層電界の集中が緩和される。このた
め、接合終端部にpn接合が無くても、高耐圧化でき
る。
According to the present invention, the concentration of the depletion layer electric field at the junction termination portion is relaxed by the groove provided in the junction termination region and electrically isolated from the electrode through which the main current flows. Therefore, even if there is no pn junction at the junction termination portion, high breakdown voltage can be achieved.

【0014】[0014]

【実施例】以下、図面を参照しながら実施例を説明す
る。
Embodiments will be described below with reference to the drawings.

【0015】図1は、本発明の第1の実施例に係る高耐
圧半導体装置の平面図である。
FIG. 1 is a plan view of a high breakdown voltage semiconductor device according to the first embodiment of the present invention.

【0016】図中、1は素子の主電流が流れる領域を示
しており、この主電流領域1の回りの領域3は接合終端
領域を示している。接合終端領域3の内部には、複数の
リング状の溝2が主電流領域1と同心的に形成されてい
る。なお、溝の数は、必要な耐圧等に応じて決まるもの
で1個の場合もある。
In the figure, 1 indicates a region where the main current of the device flows, and region 3 around the main current region 1 indicates a junction termination region. Inside the junction termination region 3, a plurality of ring-shaped grooves 2 are formed concentrically with the main current region 1. The number of grooves is determined depending on the required breakdown voltage and the like, and may be one.

【0017】図2は、図1の一点鎖線で囲まれた領域の
より詳しい図であり、図2(a)は平面図、図2(b)
は図2(a)のA−A´断面図である。
FIG. 2 is a more detailed view of the area surrounded by the alternate long and short dash line in FIG. 1, FIG. 2 (a) being a plan view and FIG. 2 (b).
FIG. 3 is a sectional view taken along the line AA ′ of FIG.

【0018】図中、10は低濃度のn型SiC基板を示
しており、このn型SiC基板10の主電流領域1の表
面には、内面がSiO2 膜5で被覆された溝4が形成さ
れている。なお、2つの溝4の間のn型SiC基板の表
面には、SiO2 膜5は形成されていない。そして、溝
4の内部は金属材料で充填され、2つの溝4はこの金属
材料で繋がっている。
In the figure, 10 indicates a low-concentration n-type SiC substrate. On the surface of the main current region 1 of this n-type SiC substrate 10, a groove 4 whose inner surface is covered with a SiO 2 film 5 is formed. Has been done. The SiO 2 film 5 is not formed on the surface of the n-type SiC substrate between the two grooves 4. The inside of the groove 4 is filled with a metal material, and the two grooves 4 are connected by this metal material.

【0019】即ち、金属材料が充填された2つの溝4の
中に形成された電極に接してアノード電極6が形成さ
れ、そして、このアノード電極6とn型SiC基板10
とのショットキー接合により、ショットキーバリアダイ
オードが形成されている。このショットキーバリアダイ
オードの主電流が流れる電極はアノード電極6である。
That is, the anode electrode 6 is formed in contact with the electrodes formed in the two grooves 4 filled with the metal material, and the anode electrode 6 and the n-type SiC substrate 10 are formed.
A Schottky barrier diode is formed by the Schottky junction with and. The electrode through which the main current of this Schottky barrier diode flows is the anode electrode 6.

【0020】一方、接合終端領域3の溝2も同様にその
内面がSiO2 膜5で被覆され、その内部が金属材料で
充填され、2つの溝2が金属材料で繋がっている。
On the other hand, similarly, the groove 2 of the junction termination region 3 has its inner surface covered with the SiO 2 film 5, the inside thereof is filled with a metal material, and the two grooves 2 are connected by the metal material.

【0021】即ち、2つの溝2ごとに電位の浮いた電極
7が1つ形成されている。
That is, one electrode 7 having a floating potential is formed for each of the two grooves 2.

【0022】また、n型SiC基板10の裏面には、高
濃度のn型半導体膜からなるコンタクト層8を介してカ
ソード電極9が設けられている。このカソード電極9に
は主電流は流れない。
A cathode electrode 9 is provided on the back surface of the n-type SiC substrate 10 via a contact layer 8 made of a high-concentration n-type semiconductor film. No main current flows through this cathode electrode 9.

【0023】このようなショットキーバリアダイオード
からなる高耐圧半導体装置に高電圧の逆バイアス電圧が
印加されると、n型SiC基板10内に大きい空乏層が
形成され、高電界が生じる。
When a high reverse bias voltage is applied to the high breakdown voltage semiconductor device composed of such a Schottky barrier diode, a large depletion layer is formed in the n-type SiC substrate 10 and a high electric field is generated.

【0024】ここで、溝2が無いと各電位の電気力線が
全てアノード電極6の端部下部11に集中し、素子が破
壊される。
If the groove 2 is not provided, the lines of electric force of each potential are concentrated on the lower portion 11 of the end portion of the anode electrode 6 and the element is destroyed.

【0025】一方、本実施例のように、溝2を設ける
と、各1対の溝ごとに等電位の電気力線が集まり、そし
て、アノード電極11から遠い1対の溝ほど高い電位の
電気力線が集まる。この結果、基板表面の電界強度が小
さくなり、素子の破壊を防止できる。
On the other hand, when the groove 2 is provided as in this embodiment, lines of electric force of equal potential are gathered in each pair of grooves, and the electric potential of the pair of grooves farther from the anode electrode 11 is higher. The lines of force gather. As a result, the electric field strength on the surface of the substrate is reduced, and the element can be prevented from being destroyed.

【0026】かくして本実施例によれば、SiCのよう
に不純物拡散が難しい材料からなる半導体基板を用い、
接合終端部にpn接合が無い場合でも、接合終端領域3
に形成され、アノード電極11と電気的に分離された溝
2により、接合部分の空乏層電界を緩和でき、電界集中
による素子破壊を防止できる。
Thus, according to this embodiment, a semiconductor substrate made of a material such as SiC, which is difficult to diffuse impurities, is used.
Even if there is no pn junction at the junction termination portion, the junction termination region 3
The groove 2 formed in the first electrode and electrically separated from the anode electrode 11 can alleviate the electric field of the depletion layer at the junction portion and prevent the element from being destroyed due to the electric field concentration.

【0027】図3は、本発明の第2の実施例に係る高耐
圧半導体装置の構造を示す素子断面図である。なお、以
下、前出の図の高耐圧半導体装置と対応する部分には前
出の図と同一符号を付し、詳細な説明は省略する。
FIG. 3 is an element sectional view showing the structure of a high breakdown voltage semiconductor device according to the second embodiment of the present invention. Note that, in the following, the portions corresponding to the high breakdown voltage semiconductor device in the above-mentioned figure are denoted by the same reference numerals as those in the above-mentioned figure, and detailed description will be omitted.

【0028】本実施例の高耐圧半導体装置が先の実施例
のそれと異なる点は、接合終端領域3内の電位の浮いた
電極7を抵抗体12を介してカソード電極9に接続し、
電極7の電位を固定したことにある。
The high withstand voltage semiconductor device of this embodiment is different from that of the previous embodiment in that the electrode 7 having a floating potential in the junction termination region 3 is connected to the cathode electrode 9 via the resistor 12,
This is because the potential of the electrode 7 was fixed.

【0029】このように構成された高耐圧半導体装置で
も先の実施例のそれと同様な効果が得られるのは勿論の
こと、本実施例では、電極7の電位がアノード電位とカ
ソード電位との間の電位に固定されているので、確実に
アノード電極6に遠い1対の溝2ほど大きい電位の電気
力線を集めることができ、空乏層電界を緩和できる電界
分布を確実に形成できる。
The high withstand voltage semiconductor device constructed as described above can obtain the same effect as that of the previous embodiment, and in this embodiment, the potential of the electrode 7 is between the anode potential and the cathode potential. Since the electric field lines having a larger electric potential are more reliably collected in the pair of grooves 2 farther from the anode electrode 6, the electric field distribution capable of relaxing the depletion layer electric field can be surely formed.

【0030】これは先の実施例のように電位に浮いた電
極7の電位が固定されていないと、電極7に電荷が溜ま
った場合に、溝2により形成された電界分布が変化し、
接合終端部の空乏層電界が強くなる恐れがあるからであ
る。
This is because the electric field distribution formed by the groove 2 changes when electric charges are accumulated in the electrode 7 unless the electric potential of the electrode 7 floating at the electric potential is fixed as in the previous embodiment.
This is because the electric field of the depletion layer at the junction termination portion may become strong.

【0031】なお、抵抗体12の代わりにキャパシタ等
を用いても良い。
A capacitor or the like may be used instead of the resistor 12.

【0032】図4は、本発明の第3の実施例に係る高耐
圧半導体装置の平面図である。また、図5は、図4の一
点鎖線で囲まれた領域のより詳しい図であり、図5
(a)は平面図、図5(b)は図5(a)のB−B´断
面図である。
FIG. 4 is a plan view of a high breakdown voltage semiconductor device according to the third embodiment of the present invention. 5 is a more detailed view of the area surrounded by the one-dot chain line in FIG.
5A is a plan view, and FIG. 5B is a sectional view taken along line BB ′ of FIG.

【0033】本実施例の高耐圧半導体装置がこれまでの
実施例のそれと異なる点は、主電流領域1の回りに連続
したリング状の溝の代わり、断続したリング状の溝2a
を設けたことにある。
The high withstand voltage semiconductor device of this embodiment is different from that of the previous embodiments in that instead of the continuous ring-shaped groove around the main current region 1, the interrupted ring-shaped groove 2a is formed.
Has been established.

【0034】このような構成にしても先の実施例と同様
な効果が得られる。なお、図3のように電位の浮いた電
極7aを固定しても良い。また、リング状の代わりに
は、散乱的に溝2aを設けても良い。
Even with such a configuration, the same effect as that of the previous embodiment can be obtained. The electrode 7a having a floating electric potential may be fixed as shown in FIG. Further, instead of the ring shape, the grooves 2a may be provided in a scattered manner.

【0035】図6は、本発明の第4の実施例に係る高耐
圧半導体装置の断面図である。
FIG. 6 is a sectional view of a high breakdown voltage semiconductor device according to the fourth embodiment of the present invention.

【0036】本実施例の高耐圧半導体装置が先の実施例
と異なる点は、1つの溝2bに1つの電位の浮いた電極
7bを設ける共に、電位の浮いた電極7bが溝2bから
横方向に引き出されていることにある。
The high withstand voltage semiconductor device of this embodiment is different from the previous embodiments in that one groove 2b is provided with one electrode 7b with a floating potential, and the electrode 7b with a floating potential extends laterally from the groove 2b. Has been pulled out to.

【0037】このように構成された高耐圧半導体装置で
は、電極7bがフイールドプレートの機能を果たすの
で、先の実施例に比べて、より高い空乏層電界の緩和が
期待できる。
In the high breakdown voltage semiconductor device having such a structure, since the electrode 7b functions as a field plate, a higher relaxation of the depletion layer electric field can be expected as compared with the previous embodiment.

【0038】図7は、本発明の第5の実施例に係る高耐
圧半導体装置の断面図である。
FIG. 7 is a sectional view of a high breakdown voltage semiconductor device according to the fifth embodiment of the present invention.

【0039】図中、31は低濃度のn型SiC基板を示
しており、その裏面側にはp型の半導体からなるコンタ
クト層32を介してアノード電極33が設けられてい
る。
In the figure, reference numeral 31 denotes a low-concentration n-type SiC substrate, on the back side of which an anode electrode 33 is provided via a contact layer 32 made of a p-type semiconductor.

【0040】n型SiC基板31の表面下部にはSiO
2 膜等の絶縁膜34が埋め込まれている。また、主電流
領域1のn型SiC基板31上には絶縁層35に埋めこ
まれたゲート電極36が設けられ、そして、カソード電
極37がn型SiC基板31に接して設けられている。
このカソード電極37とn型SiC基板31とでショッ
トキー接合が形成され、先の実施例と同様にショットキ
ーバリアダイオードが形成されいてる。
SiO is formed below the surface of the n-type SiC substrate 31.
An insulating film 34 such as two films is embedded. A gate electrode 36 embedded in an insulating layer 35 is provided on the n-type SiC substrate 31 in the main current region 1, and a cathode electrode 37 is provided in contact with the n-type SiC substrate 31.
A Schottky junction is formed by the cathode electrode 37 and the n-type SiC substrate 31, and a Schottky barrier diode is formed as in the previous embodiment.

【0041】一方、接合終端領域3のn型SiC基板3
1上には絶縁膜38が設けられ、この絶縁膜38は電位
の浮いた電極39で覆われている。この電位の浮いた電
極39は絶縁層40によって互いに電気的に分離されて
いる。
On the other hand, the n-type SiC substrate 3 in the junction termination region 3
An insulating film 38 is provided on the first electrode 1, and the insulating film 38 is covered with an electrode 39 having a floating potential. The electrodes 39 having this floating potential are electrically separated from each other by the insulating layer 40.

【0042】また、主電流領域1と接合終端領域3と境
界ではゲート電極36a,絶縁層35aを共有している
場合もある。
The gate electrode 36a and the insulating layer 35a may be shared at the boundary between the main current region 1 and the junction termination region 3.

【0043】このように構成された高耐圧半導体装置に
高電圧の逆バイアス電圧が印加されると、接合終端領域
3内の基板表面の絶縁膜38と基板中の2つの絶縁膜3
とからなる1組の絶縁膜が先の実施例の1対の溝と同様
な機能を果たす。
When a high reverse bias voltage is applied to the high breakdown voltage semiconductor device thus configured, the insulating film 38 on the substrate surface in the junction termination region 3 and the two insulating films 3 in the substrate.
A pair of insulating films consisting of and fulfills the same function as the pair of grooves in the previous embodiment.

【0044】この結果、接合終端部の空乏層電界を緩和
でき、電界集中による素子破壊を防止できる。なお、主
電流領域の絶縁膜34は無くても良いが、あったほうが
空乏層電界を緩和する効果が高くなる。
As a result, the electric field of the depletion layer at the junction termination portion can be relaxed and the element breakdown due to the electric field concentration can be prevented. Note that the insulating film 34 in the main current region may be omitted, but if it is present, the effect of alleviating the depletion layer electric field becomes higher.

【0045】図8は、本発明の第6の実施例に係る高耐
圧半導体装置の断面図である。
FIG. 8 is a sectional view of a high breakdown voltage semiconductor device according to the sixth embodiment of the present invention.

【0046】本実施例の高耐圧半導体装置が先の実施例
と主として異なる点は、n型SiC基板31内にp型半
導体層42を設けたことにある。
The high withstand voltage semiconductor device of this embodiment is mainly different from the previous embodiments in that the p-type semiconductor layer 42 is provided in the n-type SiC substrate 31.

【0047】即ち、p型半導体層42と絶縁膜34、p
型半導体層42と絶縁膜38、p型半導体層42と電極
39とが接触するようにn型SiC基板31内にp型半
導体層42を設け、確実に絶縁膜34と絶縁膜38と電
極39とが同電位になるようにしたことにある。これに
よって、絶縁膜34と絶縁膜38と電極39による空乏
層電界の緩和の効果を向上することができる。
That is, the p-type semiconductor layer 42 and the insulating film 34, p
The p-type semiconductor layer 42 is provided in the n-type SiC substrate 31 so that the p-type semiconductor layer 42 and the insulating film 38 are in contact with each other and the p-type semiconductor layer 42 and the electrode 39 are in contact with each other. This is because they have the same potential. Thereby, the effect of relaxing the depletion layer electric field by the insulating film 34, the insulating film 38, and the electrode 39 can be improved.

【0048】また、図中、34は紙面に垂直な方向にp
型半導体層とn型半導体層とが交互に並んだ半導体層を
示している。即ち、本実施例では、ショットキーバリア
ダイオードでなくIGBTが形成されている。
In the figure, 34 is p in the direction perpendicular to the paper surface.
A semiconductor layer in which the type semiconductor layers and the n-type semiconductor layers are alternately arranged is shown. That is, in this embodiment, the IGBT is formed instead of the Schottky barrier diode.

【0049】なお、本発明は上述した実施例に限定され
るものではない。例えば、上記実施例では、2つの溝ご
とに1つの電位が浮いた電極を設けた実施例があった
が、3つ,4つ或いはそれ以上の溝ごとに1つの電位が
浮いた電極を設けても良い。
The present invention is not limited to the above embodiment. For example, in the above-described embodiment, there is an embodiment in which one electrode having a floating potential is provided for every two grooves, but one electrode having a floating potential is provided for each of three, four, or more grooves. May be.

【0050】更に、2つの溝ごとに1つの電位が浮いた
電極と3つの溝ごとに1つの電位が浮いた電極とのよう
に、溝数の異なる電位の浮いた電極が混在しても良い。
Furthermore, floating electrodes having different potentials may be mixed, such as an electrode in which one potential is floated for every two grooves and an electrode in which one potential is floated for every three grooves. .

【0051】なお、上記実施例では溝内に金属材料を充
填したが、金属以外の導電材料、更には絶縁材料であっ
ても良い。
Although the groove is filled with a metal material in the above embodiment, a conductive material other than metal or an insulating material may be used.

【0052】更にまた、上記実施例を適宜組み合わせて
も良い。例えば、主電流領域のコーナー部では溝を断続
的(散乱的)に形成し、他の部分では連続な溝を形成す
る。これは特にコーナー部の曲率が大きい場合に有効で
ある。何故なら曲率が大きい部分があると連続したリン
グ状の溝の形成が困難になるからである。また、従来の
技術と組み合わせても良い。また、本発明は、SiCや
ダイヤモンドなど不純物拡散のしにくいものについて特
に効果があるが、Si等でも良い。
Furthermore, the above embodiments may be combined appropriately. For example, grooves are formed intermittently (scatteringly) at the corners of the main current region, and continuous grooves are formed at other portions. This is especially effective when the curvature of the corner is large. This is because it is difficult to form a continuous ring-shaped groove if there is a portion having a large curvature. Further, it may be combined with a conventional technique. Further, the present invention is particularly effective for those such as SiC and diamond which are less likely to diffuse impurities, but Si or the like may be used.

【0053】その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施できる。
In addition, various modifications can be made without departing from the scope of the present invention.

【0054】[0054]

【発明の効果】以上詳述したように本発明によれば、接
合終端部にpn接合が無い場合や、pn接合の形成が困
難な拡散係数が小さい基板を用いた場合でも、耐圧が十
分大きい高耐圧半導体装置が得られる。
As described in detail above, according to the present invention, the breakdown voltage is sufficiently high even when there is no pn junction at the junction termination portion or when a substrate having a small diffusion coefficient which makes it difficult to form a pn junction is used. A high breakdown voltage semiconductor device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る高耐圧半導体装置
の平面図。
FIG. 1 is a plan view of a high breakdown voltage semiconductor device according to a first embodiment of the present invention.

【図2】図1の一点鎖線で囲まれた領域のより詳しい
図。
FIG. 2 is a more detailed view of the area surrounded by the alternate long and short dash line in FIG.

【図3】本発明の第2の実施例に係る高耐圧半導体装置
の断面図。
FIG. 3 is a sectional view of a high breakdown voltage semiconductor device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例に係る高耐圧半導体装置
の平面図。
FIG. 4 is a plan view of a high breakdown voltage semiconductor device according to a third embodiment of the present invention.

【図5】図4の一点鎖線で囲まれた領域のより詳しい
図。
5 is a more detailed view of the area surrounded by the alternate long and short dash line in FIG.

【図6】本発明の第4の実施例に係る高耐圧半導体装置
の断面図。
FIG. 6 is a sectional view of a high breakdown voltage semiconductor device according to a fourth embodiment of the present invention.

【図7】本発明の第5の実施例に係る高耐圧半導体装置
の断面図。
FIG. 7 is a sectional view of a high breakdown voltage semiconductor device according to a fifth embodiment of the present invention.

【図8】本発明の第6の実施例に係る高耐圧半導体装置
の断面図。
FIG. 8 is a sectional view of a high breakdown voltage semiconductor device according to a sixth embodiment of the present invention.

【図9】従来の高耐圧化の手法を説明するための図。FIG. 9 is a diagram for explaining a conventional method of increasing the withstand voltage.

【符号の説明】[Explanation of symbols]

1…主電流領域、2,2a…溝、3…接合終端領域、4
…溝、5…SiO2 膜、6…アノード電極、7,7a…
電位の浮いた電極、8…コンタクト層、9…カソード電
極、10…n型SiC基板、12…抵抗体、31…n型
SiC基板、32…コンタクト層、33…アノード電
極、34…絶縁膜、35…絶縁層、36…ゲート電極、
37…カソード電極、38…絶縁膜、39…電位の浮い
た電極、40…絶縁層、41…p型半導体層。
1 ... Main current region, 2, 2a ... Groove, 3 ... Junction termination region, 4
... Grooves, 5 ... SiO 2 film, 6 ... Anode electrode, 7, 7a ...
Electrodes with floating potential, 8 ... Contact layer, 9 ... Cathode electrode, 10 ... N-type SiC substrate, 12 ... Resistor, 31 ... N-type SiC substrate, 32 ... Contact layer, 33 ... Anode electrode, 34 ... Insulating film, 35 ... Insulating layer, 36 ... Gate electrode,
37 ... Cathode electrode, 38 ... Insulating film, 39 ... Electrode with floating potential, 40 ... Insulating layer, 41 ... P-type semiconductor layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板に形成された素子の主電流が流
れる領域と、 前記主電流の流れる領域を囲むように形成され、且つ前
記主電流が流れる電極と電気的に分離された溝を内部に
有する接合終端領域とを具備してなることを特徴とする
高耐圧半導体装置。
1. A region formed in a semiconductor substrate, in which a main current flows, and a groove formed so as to surround the region in which the main current flows and electrically isolated from an electrode in which the main current flows. A high breakdown voltage semiconductor device, comprising:
JP25658692A 1992-09-25 1992-09-25 High voltage semiconductor device Expired - Fee Related JP3297087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25658692A JP3297087B2 (en) 1992-09-25 1992-09-25 High voltage semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25658692A JP3297087B2 (en) 1992-09-25 1992-09-25 High voltage semiconductor device

Publications (2)

Publication Number Publication Date
JPH06112216A true JPH06112216A (en) 1994-04-22
JP3297087B2 JP3297087B2 (en) 2002-07-02

Family

ID=17294692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25658692A Expired - Fee Related JP3297087B2 (en) 1992-09-25 1992-09-25 High voltage semiconductor device

Country Status (1)

Country Link
JP (1) JP3297087B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373848A2 (en) * 1988-12-13 1990-06-20 Sumitomo Chemical Company, Limited Electrically conductive zirconia-based sintered body and process for the production thereof
JP2003068761A (en) * 2001-08-29 2003-03-07 Denso Corp Silicon carbide semiconductor device and manufacture thereof
JP2006190882A (en) * 2005-01-07 2006-07-20 Shindengen Electric Mfg Co Ltd Sic semiconductor device
JP2013055347A (en) * 2012-11-08 2013-03-21 Sanken Electric Co Ltd Semiconductor device
US9099378B2 (en) 2012-09-14 2015-08-04 Hyundai Motor Company Schottky barrier diode and method of manufacturing the same
WO2023112619A1 (en) * 2021-12-19 2023-06-22 新電元工業株式会社 Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373848A2 (en) * 1988-12-13 1990-06-20 Sumitomo Chemical Company, Limited Electrically conductive zirconia-based sintered body and process for the production thereof
EP0373848A3 (en) * 1988-12-13 1991-01-16 Sumitomo Chemical Company, Limited Electrically conductive zirconia-based sintered body and process for the production thereof
JP2003068761A (en) * 2001-08-29 2003-03-07 Denso Corp Silicon carbide semiconductor device and manufacture thereof
JP2006190882A (en) * 2005-01-07 2006-07-20 Shindengen Electric Mfg Co Ltd Sic semiconductor device
JP4527550B2 (en) * 2005-01-07 2010-08-18 新電元工業株式会社 SiC semiconductor device
US9099378B2 (en) 2012-09-14 2015-08-04 Hyundai Motor Company Schottky barrier diode and method of manufacturing the same
JP2013055347A (en) * 2012-11-08 2013-03-21 Sanken Electric Co Ltd Semiconductor device
WO2023112619A1 (en) * 2021-12-19 2023-06-22 新電元工業株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP3297087B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US6407413B1 (en) Semiconductor device with guard ring and Zener diode layer thereover
US6184545B1 (en) Semiconductor component with metal-semiconductor junction with low reverse current
JPH0582070B2 (en)
JP2018120990A (en) Semiconductor device
JPH04283968A (en) Insulating gate type bipolar transistor
JP2950025B2 (en) Insulated gate bipolar transistor
JP4416288B2 (en) Reverse conduction thyristor
JP3297087B2 (en) High voltage semiconductor device
JPH0795565B2 (en) Static electricity protection device for complementary MIS integrated circuit
JPH06283727A (en) Power semiconductor element
JP2581149B2 (en) Thin film high voltage semiconductor device
JPH0888357A (en) Lateral igbt
JPH0195568A (en) Semiconductor device
JP2001274414A (en) Power semiconductor element and drive method thereof
US20190259864A1 (en) Vertical bidirectional insulated gate turn-off device
JP2002237605A (en) Semiconductor element
JPH0974187A (en) High withstand voltage lateral type semiconductor device
JP7246423B2 (en) semiconductor equipment
JPS6257250A (en) Semiconductor device
JPH07105495B2 (en) Insulated gate type semiconductor device
JPS6327865B2 (en)
JPH0453169A (en) Semiconductor protective device
JP4248203B2 (en) Semiconductor device
JPH02202061A (en) Reverse conduction gate turn off thyristor
JP2676958B2 (en) Vertical field effect transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100412

LAPS Cancellation because of no payment of annual fees