JPS6115350A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6115350A
JPS6115350A JP13588284A JP13588284A JPS6115350A JP S6115350 A JPS6115350 A JP S6115350A JP 13588284 A JP13588284 A JP 13588284A JP 13588284 A JP13588284 A JP 13588284A JP S6115350 A JPS6115350 A JP S6115350A
Authority
JP
Japan
Prior art keywords
wiring layer
width
wiring
current path
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13588284A
Other languages
Japanese (ja)
Inventor
Katsuyuki Yokoi
横井 勝之
Katsuhiko Ishida
勝彦 石田
Sadahito Hamada
濱田 禎人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP13588284A priority Critical patent/JPS6115350A/en
Publication of JPS6115350A publication Critical patent/JPS6115350A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To inhibit cracks and the like of a PSG by a method wherein a wiring layer is split into a plurality of N current paths of the same length parallel at the connection part, and the width of the current path is set at the 1/N of the case of non-split wiring layer. CONSTITUTION:An impurity diffused region 12 and a field insulation film 14 made of SiO2 or the like are formed on the surface of a semiconductor substrate 10. After a contact hole to the region 12 is provided in the film 4, Al is adhered and the first wiring layer 16 having five parallel current paths 16a-16e is formed by patterning this Al film. Besides, the width of these current paths 16a-16e is: a width = Ws/5 when a wiring width of Ws is necessary as a single wiring layer, and connection parts C1 and C2 are connected to each other with five current paths 16a-16e having the same length L.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 この発明は、微細配線を有するrc(集積回路)装置等
の半導体装置に関し、アルミニウム(i)又はアルミニ
ウム系合金からなる配線層を複数の並列な電流路部分を
有するパターンで形成したことにより製造歩留及び信頼
性の向上を図ったものである。
Detailed Description of the Invention [Field of Sedentary Application] The present invention relates to a semiconductor device such as an RC (integrated circuit) device having fine wiring. The manufacturing yield and reliability are improved by forming a pattern having parallel current path portions.

〔従来の技術〕[Conventional technology]

従来、(C装置等にあっては、Al 又はAl 系合金
(例えばIJ −S i合金)からなる配線層が広く使
用されているが、いずれも単一の非分割の配線層であっ
たつ 〔発明が解決しようとする間跪点〕 発明者の研究によれば、上記従来技術には次のような問
題点があることが判明した。
Conventionally, wiring layers made of Al or Al-based alloys (for example, IJ-Si alloys) have been widely used in (C devices, etc.), but all of them have been single, undivided wiring layers. Points to be solved by the invention] According to the inventor's research, it has been found that the above-mentioned prior art has the following problems.

(1)Al又はAJ系合金からなる配線層の上にリンケ
イ酸ガラス(PSG)膜YCVD(ケミカル・イーパー
−デポジション)法により被着した場合、PSG膜には
クランクが発生することがあるが、このようなりラック
は配線層の幅が大きい#1ど発生しやすい。
(1) When a phosphosilicate glass (PSG) film is deposited on a wiring layer made of Al or AJ-based alloy by YCVD (chemical vapor deposition), cranks may occur in the PSG film. , Such a rack is likely to occur in #1 where the width of the wiring layer is large.

(21kl又はAl系合金からなる配線層の上に上記の
ようにりSG膜を被着したり、又はプ多ズマCVD法に
よりシリコンナイトライド膜を被着したすすると、配線
層にはヒロ″ツクが成長することが、このようテヒロソ
クは配線層の幅が大きいほど大きく成長する。
(If an SG film is deposited as described above on a wiring layer made of 21kl or an Al-based alloy, or a silicon nitride film is deposited by plasma CVD, the wiring layer will have a "hero" In this way, the wiring layer grows larger as the width of the wiring layer increases.

(311C動作時においてAl又はAl系合金がらな、
る配線層にはエレクトロマイグレーションが起こること
があるが、このようなエレクトロマイグレーションは配
線層の幅がブレーンサイズよシ十分大さいときは配線層
の幅が大きいほど起こりにくく、配線層の幅がグンーン
サイズ程度になると配線層の幅が大きいほど起こりやす
くなる。
(Al or Al-based alloy during 311C operation,
Electromigration may occur in wiring layers that are large enough to be larger than the brain size, but such electromigration is less likely to occur as the width of the wiring layer is larger than the brain size. When it comes to a certain degree, the larger the width of the wiring layer, the more likely it is to occur.

上記のようなりラック発生やヒロック成長は装置の製造
歩留を低下させるものであシ、エレクトロマイグレーシ
ョンは装置の信頼性ケ低下させるものである。そこで、
製造歩留や信頼性を向上させるためには、配線幅を小さ
くすればよいが、配#!幅は′電流密度、配線抵抗等を
考慮に入れて決定されるものであるため、大電流を扱う
IC装置等では配線幅を大きくとることが必要であって
、上記El)〜(3)のような配線幅が大きいゆえに生
ずる不都合を回避するのが困難であった。
As described above, rack generation and hillock growth reduce the manufacturing yield of the device, and electromigration reduces the reliability of the device. Therefore,
In order to improve manufacturing yield and reliability, it is possible to reduce the wiring width, but wiring #! Width is determined by taking current density, wiring resistance, etc. into consideration, so in IC devices that handle large currents, it is necessary to have a large wiring width, and the above El) to (3). It has been difficult to avoid the inconvenience caused by such a large wiring width.

〔問題A2解決するための手段〕 この発明は、上記した問題点を解決するためになされた
ものであって、半導体基板をおおう絶縁膜上にA7又は
A7系合金からなる配線層を設けて成る半導体装置にお
いて、該配線層ケミ流の流れる接触部間で互いに並列1
つ長さ同一の複数Nの電流路部分ケ有するように分割し
て形成すると共に各電流路部分の幅を前記配線層を単一
の非分割の配線層とした場合に必要とづれる配線幅の1
/Nにしたことを特徴とするものである。
[Means for solving problem A2] This invention was made to solve the above-mentioned problems, and is made by providing a wiring layer made of A7 or an A7-based alloy on an insulating film covering a semiconductor substrate. In a semiconductor device, one parallel to each other between the contact parts through which the wiring layer chemical flow flows.
The width of each current path is determined by dividing the wiring into a plurality of N current path portions having the same length, and the width of each current path portion is the wiring width required when the wiring layer is made into a single undivided wiring layer. No. 1
/N.

〔作用〕[Effect]

幅WS の配線層が必要な場合、上記のようにWS/N
  なる同一幅を有する複数の並列な分割配線にすると
、配線幅が大きいゆえに生した前述のクラック、ヒロッ
ク、エレクトロマイグレーション等の発生を抑制するこ
とができるので、製造歩留及び信頼性を向上嘔せること
かできる。、、また、各電流路部分の幅はWs/N  
と小さいので、電流路部分間の間隔をフォトリソグラフ
ィ技術による加工限界程度に不埒くすることによ、り単
一の非分割の配線層にした場合に比べて全体としての配
線幅増加を最小限に抑えることができ、配線の微細化が
阻害でれる(配線スペースが増大する)のを実質的に回
避することができる。なお、複数の電流路部分について
長でt同じくすると共に幅を同じくしたのは、電流分布
が不均一になって配線寿命が短かくなるのン防ぐためで
ある。
If a wiring layer of width WS is required, WS/N is
By creating multiple parallel divided wirings with the same width, it is possible to suppress the occurrence of the aforementioned cracks, hillocks, electromigration, etc. that occur due to the large wiring width, thereby improving manufacturing yield and reliability. I can do it. ,, Also, the width of each current path portion is Ws/N
Therefore, by making the spacing between current path parts as unconscionable as the processing limit of photolithography technology, the increase in overall wiring width can be minimized compared to the case of using a single undivided wiring layer. Therefore, it is possible to substantially avoid hindering the miniaturization of wiring (increasing the wiring space). The reason why the plurality of current path portions are made to have the same length t and the same width is to prevent the current distribution from becoming non-uniform and shortening the wiring life.

〔実施例〕〔Example〕

第1図(al及び(blは、この発明の一実施例による
配線構造を示すものである。
FIG. 1 (al and (bl) show a wiring structure according to an embodiment of the present invention.

半導体基板10の表面には、トランジスタ等の回路素子
を形成するために不純物拡散領域12が設けられている
。1だ、基板100表面には、5i02等からなるフィ
ールド絶縁膜14が形成されている。
An impurity diffusion region 12 is provided on the surface of the semiconductor substrate 10 for forming circuit elements such as transistors. 1. On the surface of the substrate 100, a field insulating film 14 made of 5i02 or the like is formed.

絶縁膜14に拡散領域12の一部乞露呈埒せるようなコ
ンタクト孔ン設けた後、基板上全面に例えばAd 乞#
着法等により被着する。そして、被着これたAl膜ン通
常のフォトリソグラフィ技術により第1図(a)のよう
な1層目配線パターンにしたがってバターニングするこ
とにより5つの並列電流路部分16a−16eを有する
1層目の配線層16ヲ形成する。第1図(a)において
、C1は配線層16と拡散領域12との接触部χ示す。
After forming a contact hole in the insulating film 14 to expose a portion of the diffusion region 12, for example, Ad is formed on the entire surface of the substrate.
Depends on how you wear it. Then, by patterning the deposited Al film according to the first layer wiring pattern as shown in FIG. A wiring layer 16 is formed. In FIG. 1(a), C1 indicates a contact portion χ between the wiring layer 16 and the diffusion region 12.

この後、基板上面に層間絶縁膜18ヲ形成した後、接触
部C2に対応したコンタクト孔を絶縁膜18に設ける。
Thereafter, an interlayer insulating film 18 is formed on the upper surface of the substrate, and then a contact hole corresponding to the contact portion C2 is provided in the insulating film 18.

そして、1層目の場合と同様にして2層目の配線層20
ヲ形成1−る。なお、絶縁膜18と12では、CVD法
によるPSG膜又はプラズマCVD法によるシリコンナ
イトライド膜等ン用いることができる。
Then, in the same manner as the first layer, the second wiring layer 20
Formation 1-ru. Note that for the insulating films 18 and 12, a PSG film formed by a CVD method, a silicon nitride film formed by a plasma CVD method, or the like can be used.

第2図は、従来の1層目配線パターンを配線層16との
対比において示すもので、16′は」層目配線層、01
′及びC2′は接触部であるつ1−なわち、従来は、配
線層16’が電流の流れる接触部C,/及びC2′間で
単一の非分割の配線層として形成されていたものであシ
、配線幅Ws は−例として100〔μm〕であった。
FIG. 2 shows the conventional first-layer wiring pattern in comparison with the wiring layer 16, where 16' is the ``first wiring layer'', 01
' and C2' are contact parts 1- That is, in the past, the wiring layer 16' was formed as a single undivided wiring layer between the contact parts C and/or C2' through which current flows. As an example, the wiring width Ws was 100 [μm].

このため、前述したようK PSG膜にクランクが発生
したシ、A7配線層16′ にヒロックが成長したシす
る不都合が生じていた。
As a result, as mentioned above, cranks were generated in the K PSG film and hillocks were grown in the A7 wiring layer 16'.

゛ この発明の実施例によれば、単一の配線層16’と
して100〔μm〕 の配線幅が必要な場合、配線層1
6は電流の流れる接触部自 及びC2′間において互い
に並列で月つ長さLが同一の5つの並列電流路部分16
a%16e”<有するように分割形成され、各電流路部
分の幅WはWS15二A〔μm〕とされる。
According to the embodiment of the present invention, when a wiring width of 100 [μm] is required for a single wiring layer 16', wiring layer 1
Reference numeral 6 denotes five parallel current path portions 16 which are parallel to each other and have the same length L between the contact portion through which the current flows and C2'.
The current path portion is divided and formed so that the current path portion has a width W of WS152A [μm].

捷た、となり合う電流路部分間の間隔はフォトリングラ
フィ技術の加工限界(例えば1〔μm〕)程度にする。
The interval between the twisted and adjacent current path portions is set to about the processing limit of photolithography technology (for example, 1 [μm]).

このようにすると、前赴のPSGクラック発生及びヒロ
ック成長が第2図の場合より低減芒れると共に電流容献
、配線スペース等は第2図の場合と、はぼ同等になる。
In this way, the occurrence of PSG cracks and hillock growth in the previous stage are reduced compared to the case shown in FIG. 2, and the current capacitance, wiring space, etc. become almost the same as in the case shown in FIG.

他の実施例として、エレクトロマイグレーション欠低減
略せるには、例えば4〔μm〕幅の単−配線層とてるよ
りも2〔μm〕幅の2つの′電流路部分を有する配線層
とじた方がよいことが判明した。
As another example, in order to reduce electromigration defects, it is better to form a wiring layer having two current path portions with a width of 2 [μm] than to remove a single wiring layer with a width of 4 [μm]. It turned out to be good.

すなわち、Al−8層合金からなる配線層で配線幅を1
0〔μm〕、4[:μm)、2[μm〕としてエレクト
ロマイグレーションに対する強さヲ調べたところ、4〔
μm〕幅のものが最も弱く、10[μm3幅のものが七
の次で、2〔μm〕幅のものが最も強かった。
In other words, the wiring width is 1 in the wiring layer made of Al-8 layer alloy.
When we investigated the strength against electromigration as 0 [μm], 4 [: μm), and 2 [μm], we found that the resistance to electromigration was 4 [μm].
The one with a width of [μm] was the weakest, the one with a width of 3 [μm] of 10 [μm] was the second strongest, and the one with a width of 2 [μm] was the strongest.

従って、4〔μm〕幅の単一配線より2〔μm〕幅の配
線を2木蓮列にした方がエレクトロマイグレーションに
強い配線乞実現することができる。
Therefore, it is possible to realize a wire that is more resistant to electromigration by forming two magnolia rows of wires each having a width of 2 [μm] than a single wire having a width of 4 [μm].

上記実施例では、配線材料として、A、l及びAl−8
層合金を例示したが、A7− Cu 、 fiJ −T
i等を配線材料として用い′る場合にもこの発明を】市
川することができる。
In the above embodiment, A, 1 and Al-8 are used as wiring materials.
Although the layer alloys are illustrated, A7-Cu, fiJ-T
The present invention can also be applied when using I as a wiring material.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれは、配線層を電流の流れ
る接触部間で互いに並列月つ長さ同一の複数Nの電流路
部分を有するように分割して形成すると共に各電流路部
分の幅を前記配線層を単一の非分割の配線層とした場合
に必要ときれる配線幅のl/Nにしたので、次のような
曖れた作用効果が得られる、 (1)配線幅が大きいゆえに生ずるPSGのクランク、
A7又はM系合金のヒロック成長及びエレクトロマイグ
レーション等が抑制場オシ、製造歩留及びイg順性が向
上する。
As described above, according to the present invention, a wiring layer is formed by dividing it into a plurality of N current path portions that are parallel to each other and have the same length between contact portions through which current flows, and each current path portion is Since the width is set to l/N of the required wiring width when the wiring layer is a single undivided wiring layer, the following ambiguous effects are obtained: (1) The wiring width is The PSG crank is caused by its large size.
Hillock growth and electromigration of A7 or M-based alloys are suppressed, and manufacturing yield and conformability are improved.

(2)各電流路部分の暢乞単−配線に要する幅の1/N
にしたので、配線の微細化が阻害芒れるの乞実質的に回
避することができる。
(2) Width of each current path section - 1/N of the width required for wiring
Therefore, it is possible to substantially avoid the problem of hindering the miniaturization of wiring.

(3)複数の電流路部分について長でを同じくすると共
に幅を同じくしたので、配線寿命の短縮を防止すること
ができる。
(3) Since the plurality of current path portions have the same length and width, shortening of the wiring life can be prevented.

図面の簡単な飲り1 第1図(a)及び(b)は、この発明の一実施例による
配線構造を示すもので、(a)は1層目配線十面図、(
blは基板断面図、 mj: 2図は、従来の配線パターン7示す平■図であ
る。
Brief explanation of the drawings 1 Figures 1(a) and 1(b) show a wiring structure according to an embodiment of the present invention, where (a) is a ten-sided diagram of the first layer wiring;
bl is a cross-sectional view of the board, and mj: 2 is a plan view showing a conventional wiring pattern 7.

10・・・半導体基板、1/l 、 18・・・絶縁膜
、16.16’。
10... Semiconductor substrate, 1/l, 18... Insulating film, 16.16'.

加・・・配線層、16a〜168・・・電流路部分、C
,、c1’ 。
Addition... Wiring layer, 16a to 168... Current path portion, C
,,c1'.

C2,C2′・・・接触部。C2, C2'...Contact portion.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板をおおう絶縁膜上にアルミニウム又はアルミ
ニウム系合金からなる配線層を設けて成る半導体装置に
おいて、前記配線層を電流の流れる接触部間で互いに並
列且つ長さ同一の複数Nの電流路部分を有するように分
割して形成すると共に各電流路部分の幅を前記配線層を
単一の非分割の配線層とした場合に必要とされる配線幅
の1/Nにしたことを特徴とする半導体装置。
In a semiconductor device in which a wiring layer made of aluminum or an aluminum-based alloy is provided on an insulating film covering a semiconductor substrate, a plurality of N current path portions parallel to each other and having the same length are provided between contact portions through which current flows through the wiring layer. A semiconductor characterized in that the semiconductor is formed by dividing the wiring layer so that the wiring layer has a single undivided wiring layer, and the width of each current path portion is set to 1/N of the wiring width required when the wiring layer is a single undivided wiring layer. Device.
JP13588284A 1984-06-30 1984-06-30 Semiconductor device Pending JPS6115350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13588284A JPS6115350A (en) 1984-06-30 1984-06-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13588284A JPS6115350A (en) 1984-06-30 1984-06-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6115350A true JPS6115350A (en) 1986-01-23

Family

ID=15161980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13588284A Pending JPS6115350A (en) 1984-06-30 1984-06-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6115350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174948A (en) * 1986-01-28 1987-07-31 Mitsubishi Electric Corp Semiconductor device
EP0379170A2 (en) * 1989-01-20 1990-07-25 Kabushiki Kaisha Toshiba Semiconductor device comprising wiring layers
US5185651A (en) * 1989-07-14 1993-02-09 U.S. Philips Corporation Integrated circuit with current detection
JPH0590628A (en) * 1991-09-27 1993-04-09 Nec Yamagata Ltd Semiconductor device
US5828134A (en) * 1994-05-11 1998-10-27 United Microelectronics Corporation Metallization to improve electromigration resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893352A (en) * 1981-11-30 1983-06-03 Nec Corp Integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893352A (en) * 1981-11-30 1983-06-03 Nec Corp Integrated circuit device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174948A (en) * 1986-01-28 1987-07-31 Mitsubishi Electric Corp Semiconductor device
EP0379170A2 (en) * 1989-01-20 1990-07-25 Kabushiki Kaisha Toshiba Semiconductor device comprising wiring layers
US5402005A (en) * 1989-01-20 1995-03-28 Kabushiki Kaisha Toshiba Semiconductor device having a multilayered wiring structure
US5185651A (en) * 1989-07-14 1993-02-09 U.S. Philips Corporation Integrated circuit with current detection
JPH0590628A (en) * 1991-09-27 1993-04-09 Nec Yamagata Ltd Semiconductor device
US5828134A (en) * 1994-05-11 1998-10-27 United Microelectronics Corporation Metallization to improve electromigration resistance

Similar Documents

Publication Publication Date Title
US20010039111A1 (en) Semiconductor devices and methods for manufacturing the same
JPH11330231A (en) Metal coat structure
JPS6343349A (en) Multilayer thin-film interconnection
US20010034119A1 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JPS6115350A (en) Semiconductor device
JP2752863B2 (en) Semiconductor device
JPH05152448A (en) Semiconductor device and manufacture thereof
JP2001274338A (en) Semiconductor integrated circuit device
JP2782801B2 (en) Wiring structure of semiconductor device
JP2616063B2 (en) Manufacturing method of bump electrode
JP2765871B2 (en) Semiconductor device
JP2630845B2 (en) Semiconductor integrated circuit
JPH02183536A (en) Semiconductor device
JP2005064193A (en) Semiconductor device and its manufacturing method
JPH0338832A (en) Wiring structure of semiconductor device
JPS62241373A (en) Semiconductor device
JPH02114657A (en) Multilayer interconnection structure of semiconductor device
JPH04188753A (en) Multilayer interconnection semiconductor device
JPH05175196A (en) Wiring structure of semiconductor device
JPH03209823A (en) Resin-sealed semiconductor device
JPH04348054A (en) Manufacture of semiconductor device
JPH0547764A (en) Semiconductor device and its manufacture
JPH0697299A (en) Semiconductor device
JPS62136857A (en) Manufacture of semiconductor device
JPH02170431A (en) Manufacture of semiconductor device