JPS61152078A - Schottky gate type fet - Google Patents

Schottky gate type fet

Info

Publication number
JPS61152078A
JPS61152078A JP27282384A JP27282384A JPS61152078A JP S61152078 A JPS61152078 A JP S61152078A JP 27282384 A JP27282384 A JP 27282384A JP 27282384 A JP27282384 A JP 27282384A JP S61152078 A JPS61152078 A JP S61152078A
Authority
JP
Japan
Prior art keywords
region
source
channel region
type
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27282384A
Other languages
Japanese (ja)
Inventor
Munetoshi Fukui
宗利 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27282384A priority Critical patent/JPS61152078A/en
Publication of JPS61152078A publication Critical patent/JPS61152078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce effectively the short channel effect caused by shortening of gate by installing the buried region of inverse conduction type to the source region and the drain region in the position which is close to the channel region in the source/drain region and deeper than the position of the channel region. CONSTITUTION:The N<+> type source region 4 and the N<+> type drain region 5 are formed on bath sides of the channel region 3 directly under the gate electrode 2. These source region 4 and drain region 5 can be formed by the ion injection, but the larger injection energy is applied than that of the formation of the channel region 3. The P type buried region 6 is formed in the place which is close to the channel region in the N<+> type regions 4 and 5 and deeper than the channel region 3. This P type buried region is formed also by the ion injection and Zn or Be, for example, is applied to the ion for injection. Thus the high impurity density region of source and drain can be separated by the P-N junction, so that the leak current through the substrate can be extremely reduced.

Description

【発明の詳細な説明】 [技術分野] 本発明は、高速かつ高集積化に適したショットキゲート
型FET (MESFET)に関し、特に。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a Schottky gate FET (MESFET) suitable for high speed and high integration.

短チヤネル効果を低減する上で有効な技術に関するもの
である。
The present invention relates to techniques effective in reducing short channel effects.

[背景技術] MESFETはガリウムひ素(GaAs)の集積化に適
した素子構造として知られている。このMESFETの
高速化のためには短ゲート化が効果的である。
[Background Art] MESFET is known as an element structure suitable for integration of gallium arsenide (GaAs). In order to increase the speed of this MESFET, shortening the gate is effective.

しかし、短ゲート化に伴なって相互コンダクタンスの低
下をはじめとした素子特性の劣化、いわゆる短チヤネル
効果の問題が生じてくる。短チヤネル効果を低減する従
来の技術として、ソースおよびドレインの各領域を成す
N4″型の高濃度層を浅く形成する方法が知られている
(以上、加藤、他:電子ビーム露光によるG a A 
sセルファライン(SAINT)MESFET、信学技
報5S−D、82−128、p51〜56参照)。
However, as gates become shorter, the problem of so-called short channel effect arises, which is deterioration of device characteristics such as a decrease in mutual conductance. As a conventional technique for reducing the short channel effect, a method is known in which N4'' type high concentration layers forming the source and drain regions are formed shallowly.
s Self Line (SAINT) MESFET, see IEICE Technical Report 5S-D, 82-128, p51-56).

本発明者はこうした短チヤネル効果およびその低減のた
めの技術について種々検討したところ、次のようなこと
を見い出した。すなわち、一つに、短チヤネル効果は、
前記N+型の高濃度層の、ゲート側に位置するエツジ部
分に電界集中が生じ、それにより基板にリーク電流が流
れることによって生じていること、また一つに、前記高
濃度層を浅く形成することは、短チヤネル効果の低減に
有効ではあるが、浅くすると、ソース、ドレイン電極の
オーミック接触抵抗の低下、ソース、ドレイン領域のシ
ート抵抗の低下による寄生抵抗の増加、ゲートからのリ
ークによる耐圧の低下などのおそれがあること、である
The inventor of the present invention has conducted various studies on such short channel effects and techniques for reducing them, and has discovered the following. That is, for one thing, the short channel effect is
This is caused by electric field concentration occurring at the edge portion of the N+ type high concentration layer located on the gate side, which causes a leakage current to flow into the substrate, and also because the high concentration layer is formed shallowly. Although this is effective in reducing the short channel effect, making it shallower reduces the ohmic contact resistance of the source and drain electrodes, increases the parasitic resistance due to the decrease in sheet resistance of the source and drain regions, and reduces the withstand voltage due to leakage from the gate. This is because there is a risk of a decline.

[発明の目的] 本発明の目的は、耐圧劣化のおそれのない、短チヤネル
効果の低減技術を提供することにある。
[Object of the Invention] An object of the present invention is to provide a technique for reducing the short channel effect without fear of voltage deterioration.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[発明の概要コ 本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
[Summary of the Invention A brief outline of typical inventions disclosed in this application is as follows.

前記接触抵抗、シート抵抗、耐圧の劣化を防止するには
、ソースおよびドレインを成す高濃度層を深く形成する
ことが有効である。そこで5.それら高濃度層を深く形
成している。
In order to prevent the deterioration of the contact resistance, sheet resistance, and breakdown voltage, it is effective to form deeply the highly doped layers forming the source and drain. So 5. These high concentration layers are formed deep.

そして、そうしたソース、ドレインの各領域のうち、チ
ャネル領域側に近接する部分であって、チャネル領域よ
りも深い位置に、ソース、ドレインとは逆導電型の埋込
み領域を形成している。したがって、ソース、ドレイン
間をPN接合によって分離することができ、基板を通し
てのリーク電流を非常に小さくすることができ、短チヤ
ネル効果を有効に低減することができる。
A buried region of a conductivity type opposite to that of the source and drain is formed in a portion of each of the source and drain regions close to the channel region and deeper than the channel region. Therefore, the source and drain can be separated by the PN junction, the leakage current through the substrate can be made very small, and the short channel effect can be effectively reduced.

[実施例] 第1図は本発明の一実施例であるGaAsLS■のME
SFET部分の断面構造図である。
[Example] Figure 1 shows an ME of GaAsLS■, which is an example of the present invention.
FIG. 3 is a cross-sectional structural diagram of an SFET portion.

G a A sから成る半絶縁性基板1の一面には。On one side of the semi-insulating substrate 1 made of G.a.A.s.

タングステンから成るゲート電極2が形成されている。A gate electrode 2 made of tungsten is formed.

このゲート電極2は公知のスパッタリングおよびホトエ
ツチングあるいはりフトオフ技術によって形成される。
This gate electrode 2 is formed by known sputtering and photoetching or lift-off techniques.

ゲート電極2のある基板1の表層部分には、予めシリコ
ン、スズ、セレンなどのイオンが注入され、N型のチャ
ネル領域3が形成されている。チャネル領域3は打込み
エネルギーの制御によって、比較的浅く形成されている
Ions of silicon, tin, selenium, etc. are implanted in advance into the surface layer portion of the substrate 1 where the gate electrode 2 is located, and an N-type channel region 3 is formed. The channel region 3 is formed to be relatively shallow by controlling the implantation energy.

ゲート電極2の直下のチャネル領域3の両側には、N+
型のソースおよびドレインの各領域4゜5が形成されて
いる。これらソースおよびドレインの各領域4,5もイ
オン打込み技術によって形成できるが、打込みエネルギ
ーは前記チャネル領域3を形成するときよりも高く設定
される。というのは、前述したとおり、接触抵抗の劣下
、シート抵抗の低下、ゲートからのリークを防止するた
め、ソースおよびドレインの各領域4,5は、チャネル
領域3よりも深く形成すること、もう少し具体的にいう
と、不純物濃度のピークをチャネル領域3のピーク部分
よりも深く形成することを要するからである。なお、こ
れらの各領域4,5を形成する際、イオン打込みに対す
るマスクとして、ゲート電極2および図示しないホトレ
ジストを利用することができる。
On both sides of the channel region 3 directly under the gate electrode 2, N+
Type source and drain regions 4.5 are formed. These source and drain regions 4 and 5 can also be formed by ion implantation, but the implantation energy is set higher than when forming the channel region 3. This is because, as mentioned above, in order to prevent deterioration in contact resistance, sheet resistance, and leakage from the gate, each of the source and drain regions 4 and 5 should be formed deeper than the channel region 3. Specifically, this is because the impurity concentration peak needs to be formed deeper than the peak portion of the channel region 3. Note that when forming each of these regions 4 and 5, the gate electrode 2 and a photoresist (not shown) can be used as a mask for ion implantation.

二こで、こうしたNゝ型の各領域4,5のうち、チャネ
ル領域3に近接する部分であって、チャネル領域3より
も深い位置に、P型の埋込み領域6が形成されている。
Two, in each of these N type regions 4 and 5, a P type buried region 6 is formed in a portion close to the channel region 3 and at a position deeper than the channel region 3.

P型の埋込み領域6もイオン打込み技術によって形成す
るが、注入すべきイオンとして、たとえばZn(亜鉛)
あるいはBe(ベリリウム)等を用いる。この選択的な
イオン注入は、たとえばホトレジストをマスクとし、し
かも打込みエネルギーを適正に制御することによって行
なうことは勿論である。なお、符号7および8は、ソー
スおよびドレイン各領域4,5に対してオーミックコン
タクトされたソース電極およびドレイン電極である。
The P-type buried region 6 is also formed by ion implantation technology, and the ions to be implanted include, for example, Zn (zinc).
Alternatively, Be (beryllium) or the like is used. Of course, this selective ion implantation can be performed by using, for example, a photoresist as a mask and appropriately controlling the implantation energy. Note that reference numerals 7 and 8 are source electrodes and drain electrodes that are in ohmic contact with the source and drain regions 4 and 5, respectively.

[効果] ソース、ドレインの各領域のうち、チャネル領域側に近
接する部分であって、チャネル領域よりも深い位置に、
それらの領域とは逆導電型の埋込み領域を設けているの
で、ソースおよびドレインの高濃度不純物領域間をPN
接合によって分離することができ、基板を通してのリー
ク電流を大幅に小さくすることができる。したがって、
前記短ゲート化に伴なう短チヤネル効果を有効に低減す
ることができる。
[Effect] In the source and drain regions, in a portion close to the channel region side and deeper than the channel region,
Since there is a buried region of the opposite conductivity type to those regions, there is a PN between the high concentration impurity regions of the source and drain.
They can be separated by bonding, and leakage current through the substrate can be significantly reduced. therefore,
The short channel effect accompanying the short gate can be effectively reduced.

また、ソースおよびドレインの各領域は、チャネル領域
よりも深く形成しているので、接触抵抗の劣下、シート
抵抗の低下、ゲートからのリークをも有効に防止するこ
とができ、寄生抵抗耐圧の面でも好ましい素子構造であ
る。
In addition, since the source and drain regions are formed deeper than the channel region, it is possible to effectively prevent contact resistance deterioration, sheet resistance deterioration, and leakage from the gate, thereby reducing parasitic resistance breakdown voltage. This is a preferable device structure in terms of aspects as well.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は上記実施例に限定されるも
のではなく、その要旨を通説しない範囲で種々変更可能
であることはいうまでもない、たとえば、ゲート電極2
をタングステン以外の他の耐熱性の純金属あるいはシリ
サイド等の合金によって形成することができるし、また
半絶縁性基板1としては、G a A s基板のほか、
他の化合物半導体の各基板をも用いることができる。
Although the invention made by the present inventor has been specifically explained above based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples, and can be modified in various ways without getting across the gist of the invention. For example, gate electrode 2
The semi-insulating substrate 1 can be formed of a heat-resistant pure metal other than tungsten or an alloy such as silicide, and the semi-insulating substrate 1 can be formed of a GaAs substrate,
Other compound semiconductor substrates can also be used.

[利用分野] 本発明は、MESFETにおける短チヤネル効果の低減
技術として広範に利用することができる。
[Field of Application] The present invention can be widely used as a technique for reducing short channel effects in MESFETs.

特に、ゲート長が1〜2μmあるいはそれ以下のG a
 A s L S Iに応用して大きな効果を得ること
ができる。
In particular, Ga with a gate length of 1 to 2 μm or less
Great effects can be obtained by applying it to ASLS I.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図である。 FIG. 1 is a sectional view showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、半絶縁性基板の一面に形成されたゲート電極と、こ
のゲート電極の両側に形成され、第1導電型の不純物を
高濃度に含んだソースおよびドレインの各領域と、これ
らソースおよびドレインの各領域の間に位置し、第1導
電型の不純物を低濃度に含んだチャネル領域とを備え、
前記ソース、ドレインの各領域が前記チャネル領域に比
べて、前記半絶縁性基板の一面に深く形成されているシ
ョットキゲート型FETにおいて、前記ソース、ドレイ
ンの各領域のうち、前記チャネル領域側に近接する部分
であって、チャネル領域よりも深い位置に、前記第1導
電型とは逆導電型である第2導電型の埋込み領域を有す
ることを特徴とするショットキゲート型FET。
1. A gate electrode formed on one surface of a semi-insulating substrate, source and drain regions formed on both sides of the gate electrode containing a high concentration of first conductivity type impurities, and a channel region located between each region and containing a first conductivity type impurity at a low concentration;
In the Schottky gate FET, in which the source and drain regions are formed deeper on one surface of the semi-insulating substrate than the channel region, the source and drain regions are close to the channel region side. 1. A Schottky gate type FET comprising a buried region of a second conductivity type, which is a conductivity type opposite to the first conductivity type, at a position deeper than the channel region.
JP27282384A 1984-12-26 1984-12-26 Schottky gate type fet Pending JPS61152078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27282384A JPS61152078A (en) 1984-12-26 1984-12-26 Schottky gate type fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27282384A JPS61152078A (en) 1984-12-26 1984-12-26 Schottky gate type fet

Publications (1)

Publication Number Publication Date
JPS61152078A true JPS61152078A (en) 1986-07-10

Family

ID=17519255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27282384A Pending JPS61152078A (en) 1984-12-26 1984-12-26 Schottky gate type fet

Country Status (1)

Country Link
JP (1) JPS61152078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222270A (en) * 1985-03-28 1986-10-02 Toshiba Corp Field effect transistor and manufacture thereof
JPS6279673A (en) * 1985-10-03 1987-04-13 Mitsubishi Electric Corp Field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222270A (en) * 1985-03-28 1986-10-02 Toshiba Corp Field effect transistor and manufacture thereof
JPS6279673A (en) * 1985-10-03 1987-04-13 Mitsubishi Electric Corp Field effect transistor

Similar Documents

Publication Publication Date Title
US5248627A (en) Threshold adjustment in fabricating vertical dmos devices
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
JPH04127480A (en) High breakdown strength low resistance semiconductor device
JPH04260337A (en) Field effect transistor and its manufacture
JPS61152078A (en) Schottky gate type fet
KR970024284A (en) Production Method for Ion-implanted MESFET Comprising Self-aligned Lightly Doped Drain Structure and T-gate
JPH0656855B2 (en) Insulated gate type field effect transistor
JPH0428149B2 (en)
JPS6115369A (en) Semiconductor device and manufacture thereof
JPH0715018A (en) Field-effect transistor
JPH06105715B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JP2937016B2 (en) Conductivity modulation type field effect transistor
JPS63160280A (en) Gallium arsenioe semiconductor device
JP2732841B2 (en) Method for manufacturing field effect transistor
JPS62159468A (en) Semiconductor device
JPS61159767A (en) Insulated gate type field-effect transistor
JPS60234374A (en) Manufacture of semiconductor device
JP2642769B2 (en) Compound semiconductor device
JPH07135219A (en) Field-effect transistor
JPS60100472A (en) Field effect transistor
JPH1154526A (en) Semiconductor device and manufacture thereof
JPS62211959A (en) Semiconductor device
JPS5814574A (en) Mos field effect transistor
JPS6123366A (en) Field effect transistor