JPS61144506A - Survey instrument of shielding machine - Google Patents

Survey instrument of shielding machine

Info

Publication number
JPS61144506A
JPS61144506A JP26702184A JP26702184A JPS61144506A JP S61144506 A JPS61144506 A JP S61144506A JP 26702184 A JP26702184 A JP 26702184A JP 26702184 A JP26702184 A JP 26702184A JP S61144506 A JPS61144506 A JP S61144506A
Authority
JP
Japan
Prior art keywords
convex lens
distance
target
light
half mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26702184A
Other languages
Japanese (ja)
Other versions
JPH0262164B2 (en
Inventor
Sumio Nozaki
野崎 澄男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKUMURA CONSTR CO Ltd
Original Assignee
OKUMURA CONSTR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKUMURA CONSTR CO Ltd filed Critical OKUMURA CONSTR CO Ltd
Priority to JP26702184A priority Critical patent/JPS61144506A/en
Publication of JPS61144506A publication Critical patent/JPS61144506A/en
Publication of JPH0262164B2 publication Critical patent/JPH0262164B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To know simultaneously a deflection and a deflection angle of a front position of a shielding machine by providing successively the first and the second half mirrors vertically to an optical axis of a convex lens, by positioning them at the convex lens side from its focus, in front of the convex lens. CONSTITUTION:When a focusing light C for projecting a tunnel plan center line is inclined by an angle alpha against a center shaft 3 of a shielding machine, the light C passes through the second half mirror 9, a part of said light is reflected by the first half mirror 10, and travels to the direction of the second half mirror 9, and on the other hand, the remaining light passes through. Also, as for a light spot which passes first the first mirror 10 placed at a lens 6 side at a distance X from a focus 7 of a convex lens 6 of a focal distance (f) and is irradiated to a target 8, its position is read by a scale plate 11, and its light spot shows a deflection of a point to be measured A. Also, a light spot B' which is reflected once by the second mirror 9, reaches the first mirror 10 and is irradiated to the target 8 is equal to a light spot B which passes through by a distance X from the first mirror 10. The distance from the optical axis of this light spot B' is f.tanalpha which is the same as the spot B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシールド工法において、シールドトンネルの計
画中心線に対するシールド機の偏位並びに偏角を同時に
測量するシールド機の測量装置の改良に関するものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an improvement in a shield machine surveying device for simultaneously measuring the deflection and declination angle of the shield machine with respect to the planned center line of a shield tunnel in the shield construction method. be.

(従来例の構成とその問題点) 従来から、シールド工事におけるシールド機の測量は、
シールド機の後端に取り付けたターゲ。
(Conventional configuration and its problems) Traditionally, shield machine surveys in shield construction work have been carried out using
A target attached to the rear end of the shield machine.

トにトンネル後方からトンネル計画中心線を投影する集
束光線を照射し、ターゲットの目盛りを判読してシール
ド機後端の偏位のみを求め、偏角を求めるには別途に傾
斜計を取り付けていた。
A focused beam of light that projected the center line of the tunnel plan was irradiated onto the target from behind the tunnel, and the scale of the target was read to determine only the deflection of the rear end of the shield machine, and a separate inclinometer was installed to determine the declination angle. .

又、最近では、後続管に一定間隔を存して2個のターゲ
9トを設け、シールド機中心軸とトンネル計画中6駿゛
を投影する集束光線を2個のターゲットに照射し、その
読値から演算によってシールド工事前方位置の偏゛位と
偏角を求めることが行われている。
Recently, two targets have been installed at a certain interval in the trailing tube, and the two targets are irradiated with a focused beam that projects the center axis of the shield machine and the tunnel plan, and the readings are recorded. The deviation and declination of the position in front of the shield construction are calculated by calculation.

一般に、シールド工法におけるトンネル掘削工事におい
てシールド機の方向制御を行うためにはシールド機中心
軸線上前方位置でのトンネル計画中心線に対するトンネ
ル断面方向の偏位と偏角を知ることが必要である。何故
ならば、例えばシーも、シールド機中心軸が計画中心線
と一致しないと、シールド機の先端、即ちm掘削部にお
いて計画中心線からずれていることとなり、このような
場合には、このまま掘進すると、トンネルは計画線より
も大きくずれて掘削されることになり、従ってシールド
機後端の偏位をi量するだけでは、正確な掘削作業がで
きない。又、シールド後端の偏位とシールド機の偏角を
測量しても、方向修正をする場合、シールド機は概ねそ
の重心を中心として回転するので、重心点における偏位
を計算して求めるか、経験によって求めなけnばならな
い。
Generally, in order to control the direction of a shield machine in tunnel excavation work using the shield method, it is necessary to know the deviation and declination of the tunnel cross-sectional direction with respect to the tunnel planning center line at the forward position on the shield machine center axis. This is because, for example, if the shield machine center axis of the shield machine does not match the planned center line, the tip of the shield machine, that is, the m excavation part, will deviate from the planned center line. In this case, the tunnel will be excavated with a large deviation from the planned line, and therefore, accurate excavation work cannot be performed simply by calculating the deviation of the rear end of the shield machine by i. Also, even if you measure the deflection of the rear end of the shield and the declination of the shield machine, when correcting the direction, the shield machine generally rotates around its center of gravity, so it is necessary to calculate the deflection at the center of gravity. , must be determined by experience.

これをなくするために、本m出願人は持久w3j9−/
2961号公報に開示したように、偏位と偏角とを同時
に測量できる装置を開発した。
In order to eliminate this, the present m applicant has developed a durable w3j9-/
As disclosed in Japanese Patent No. 2961, we have developed a device that can measure deviation and declination simultaneously.

即ち、トンネルの計画中心線上に集束光線を照射してシ
ールド機の優位及び偏角を1111jlする装置におい
て、凸レンズの前方に該凸レンズの光軸に対して傾斜し
た反射面を有する上下一対の反射鏡を介して前記凸レン
ズの光軸に対して直角な面を有する上方ターゲ9トと下
方ターゲットを配設し、上方の反射鏡の反射面を前記凸
レンズに対向させると共に下方の反射鏡の反射面を上方
の反射鏡の反射面と対向させ、ざらに前記上方のターゲ
ットを凸レンズの焦点位置よりも該凸レンズ側に配設す
ると共に凸レンズを通過した集束光線が反射鏡で反射し
て下方のターゲットに達する距離を凸レンズの焦点拒離
に等しくなるようにし、凸レンズと上下反射鏡及び上下
ターゲットを枠体に取付けて一体的に構成した装置であ
る。
That is, in a device that irradiates a focused beam onto the planned center line of a tunnel to obtain an advantage and a deflection angle of 1111jl of a shield machine, a pair of upper and lower reflecting mirrors each having a reflecting surface tilted with respect to the optical axis of the convex lens is provided in front of a convex lens. An upper target 9 and a lower target having surfaces perpendicular to the optical axis of the convex lens are disposed through the convex lens, and the reflective surface of the upper reflective mirror faces the convex lens, and the reflective surface of the lower reflective mirror faces the convex lens. The upper target is arranged to face the reflecting surface of the upper reflecting mirror, and the upper target is arranged roughly closer to the convex lens than the focal position of the convex lens, and the focused light beam that passes through the convex lens is reflected by the reflecting mirror and reaches the lower target. This is a device in which the distance is made equal to the focus separation of the convex lens, and the convex lens, upper and lower reflectors, and upper and lower targets are attached to a frame and configured integrally.

しかしながら、この装置は上下にターゲットを配設して
いるので、装置全体の上下幅が大きくなり、小口径のシ
ールド機内に設置することは困難であるという問題点が
あった。
However, since this device has targets arranged above and below, the vertical width of the entire device becomes large, and there is a problem in that it is difficult to install it inside a small-diameter shield machine.

(発明の目的) 本願発明はこのような問題点に鑑みてなされたもので、
上下方向の#Aは勿論、トンネル長ざ方向の寸法も極め
て小さくして装置全体をコンパクトに形成し、シ〒ルド
機に取り付けてシールド機の前方位置の偏位と偏角を演
算によることなく、目視によって同時に知ることができ
るようにしたシールド機の測量装置を提供するものであ
る。
(Object of the invention) The present invention was made in view of these problems,
Not only the #A in the vertical direction but also the dimension in the longitudinal direction of the tunnel are made extremely small to make the entire device compact, and when attached to the shield machine, it is possible to calculate the deflection and declination of the front position of the shield machine without having to calculate it. The purpose of the present invention is to provide a shield machine surveying device that allows simultaneous visual observation.

(発明の構成) 上記目的を達成するために本発明のシールド機の測量装
置は、トンネルの計画線に平行に、集束光線を照射して
シールド機の優位及び偏角を測量する装置において、焦
点拒離fの凸レンズの前方に、該凸レンズの焦点から凸
レンズ側に位置させて第1のハーフミラ−と第2のハー
フミラ−とを凸レンズの光軸に対して直角に順次配設す
ると共に第1のハーフミラ−にターゲットを密接、配設
し、このターゲ9トと凸レンズの焦点までの距離をt2
/(f+L)(但し、Lは凸レンズと被測点間の距離)
に、ターゲットと第2の八−7ミラーまでの距liヲ)
/gn(但し、Xは第1のハーフミラ−と凸レンズの焦
点間の距離、nは正の整数)になるように配設して、凸
レンズから前方距離りの光軸線上の位置における偏位及
び偏角を測定するように構成したものである。
(Structure of the Invention) In order to achieve the above object, the shield machine surveying device of the present invention measures the dominance and declination angle of the shield machine by irradiating a focused beam parallel to the planned line of the tunnel. A first half mirror and a second half mirror are sequentially disposed in front of a convex lens having a separation distance f and located on the side of the convex lens from the focal point of the convex lens at right angles to the optical axis of the convex lens. A target is placed closely on the half mirror, and the distance between this target and the focal point of the convex lens is t2.
/(f+L) (L is the distance between the convex lens and the measured point)
Then, the distance between the target and the second 8-7 mirror)
/gn (where X is the distance between the focal point of the first half mirror and the convex lens, and n is a positive integer), and the deviation and It is configured to measure the declination angle.

(実施例の説明) 本発明の実施例を図面によって説明すれば、第2図に示
すように、本発明の測量装置(1)は、シールド機(2
)の後端に取り付けらn、シールド機中心軸(3)上に
おける被測点四でのトンネル計画中心線(4)に対する
トンネル断面方向の優位とシールド機中心軸のトンネル
計画中心線方向に対する偏角を測量するもので、トンネ
ル後方の固定点に設置した集束光線発生器(5)から発
生するトンネル計画中心を投影する集束光線を、シール
ド機後端のシールド機中心軸線上に取り付けた測量装置
(13に照射することによって行うものである。
(Description of Embodiments) An embodiment of the present invention will be described with reference to the drawings. As shown in FIG.
) is attached to the rear end of the shield machine, and the predominance of the tunnel cross-sectional direction with respect to the tunnel plan center line (4) at the measured point 4 on the shield machine center axis (3) and the deviation of the shield machine center axis with respect to the tunnel plan center line direction. A surveying device that measures corners, and has a focused light beam that projects the center of the tunnel plan generated from a focused light beam generator (5) installed at a fixed point at the rear of the tunnel, mounted on the center axis of the shield machine at the rear end of the shield machine. (This is done by irradiating 13.

測量装置(1)は第1図及び第3図に示すように、枠体
(1a)の適所に凸レンズ(6ンを配設すると共にどの
凸レンズ(6ンの焦点(7)から該凸レンズ(6ン側へ
距離Xだけ近づけた位置にすりガラスのような半透明の
ターゲット(8)を、該ターゲット(8)面が凸レンズ
(6)の光軸に対して直角となるように配設し、このタ
ーゲット(8)の前面に透明な目盛板側の目盛を付した
面を、その目盛中心を光軸と一致させて密着させている
と共に凸レンズ(6)側の後面(対向面)ニ第1のハー
フミラ−(至)をその蒸着面を密接させて配しである。
As shown in Figs. 1 and 3, the surveying device (1) has a convex lens (6) disposed at an appropriate position on a frame (1a), and which convex lens (6) is connected from the focal point (7) to the convex lens (6). A translucent target (8) such as ground glass is placed at a position a distance X closer to the lens side so that the surface of the target (8) is perpendicular to the optical axis of the convex lens (6). The front surface of the target (8) with the scale on the transparent scale plate side is brought into close contact with the center of the scale aligned with the optical axis, and the rear surface (opposite surface) on the convex lens (6) side is attached to the first surface. Half mirrors are arranged with their vapor deposition surfaces in close contact with each other.

さらに、ターゲフト(8)と凸レンズ(6)との間に、
ターゲット(8)からガの距離を存して第2のハーフミ
ラ−(9)をターゲフト(8)と平行にして直列に配設
しである。
Furthermore, between the target foot (8) and the convex lens (6),
A second half mirror (9) is disposed in series in parallel with the target (8) at a distance from the target (8).

前述した距離Xはターゲット(8)のレンズ面から凸レ
ンズ(6)の焦点までの寸法であり、第2ハーフミラ−
(9)の蒸着面がターゲ9)(8)からx/2の距離に
配設されているものである。
The distance X mentioned above is the dimension from the lens surface of the target (8) to the focal point of the convex lens (6), and the distance
The vapor deposition surface of (9) is arranged at a distance of x/2 from target 9) (8).

又、目盛板(6)の側方に光源(ロ)を配設して目盛板
(6)内に光を入射し、目盛板(ロ)内で全反射させる
ようにして目盛1mlに)のみ輝光するようにしである
In addition, a light source (b) is placed on the side of the scale plate (6), and the light enters the scale plate (6) and is totally reflected within the scale plate (b) so that only the scale is 1 ml). It is made to shine brightly.

に)は目盛板(6)の前方(凸レンズと反対側)に設置
したテレビカメラで、目盛(財)を読み取るものである
0 凸レンズ(6)は環状保持部材(ロ)の内周面に嵌着さ
れ、この保持部材(ロ)は枠体穐)の内周面に設けた螺
子部に)に螺して光軸方向に移動可能となってあり、タ
ーゲフト(8)との距離を調節可能にしである。
2) is a television camera installed in front of the scale plate (6) (on the opposite side from the convex lens) to read the scale. This holding member (B) is screwed onto a thread provided on the inner circumferential surface of the frame body (A) so that it can be moved in the optical axis direction, and the distance from the target foot (8) can be adjusted. It's Nishide.

ざらに、ターゲット(8)は枠体(la)内に固定され
た支持筒体に)に取付けられ、この支持筒体−の内周面
に第2ハーフミラ−(9)の保持具(ホ)を光軸方向に
移動調節可能に装着しである。
Roughly speaking, the target (8) is attached to a support tube fixed within the frame (la), and a holder (e) of the second half mirror (9) is attached to the inner peripheral surface of the support tube. It is mounted so that it can be moved and adjusted in the optical axis direction.

上記のように構成した測定装置(1)は前記のようにシ
ールド機(2)の後端に取り付けて、第3図に示すよう
に凸レンズ(5)の光軸に)がシールド機の中心軸(3
)と一致するようにし、シールド機の前方において凸レ
ンズ(6)からLの距離にあるシールド機の中心軸(3
)上の被濁点四でのトンネル計画中心!(4)とのトン
ネル断面方向の偏位量及びシールド機の偏角を測量する
ものである。
The measuring device (1) configured as above is attached to the rear end of the shield machine (2) as described above, and as shown in Figure 3, the optical axis of the convex lens (5)) is aligned with the central axis of the shield machine. (3
), and the central axis (3
) Focus on tunnel planning at turbidity point 4 above! (4) The amount of deviation in the cross-sectional direction of the tunnel and the declination angle of the shield machine are measured.

今、トンネル計画中心M(4)に対してシールド機の中
心軸(3)が角度■だけ傾斜しており、シールド機の前
方の被測点(6)で偏位がない場合について説明する。
Now, a case will be explained in which the central axis (3) of the shield machine is inclined by an angle ■ with respect to the tunnel planning center M (4), and there is no deviation at the measured point (6) in front of the shield machine.

前記の集束光線発生装置(5)から発生してトンネル計
画中心線を投影する集束光1i (0)が、シ−ルド機
中心軸(3)と角度に)だけ傾斜しているとき、集束光
線(C)がシールド機中心軸(3)と、凸レンズ(6)
の光軸(ロ)を一致させ、且つ焦点拒離(f)を有する
凸レンズ(6)を通過すると、集束光!! (0)は屈
折して第2のハーフミラ−(9)を通過し、第1のハー
フミラ−■に達してその一部が反射し、該反射光線は第
2のハーフミラ−(9)の方向に向かう一方、残りの光
線は通過する。
When the focused light beam 1i (0) generated from the focused light beam generating device (5) and projecting the tunnel plan center line is inclined by an angle with respect to the shield machine center axis (3), the focused light beam (C) is the shield machine center axis (3) and the convex lens (6)
When it passes through a convex lens (6) that makes the optical axes (b) coincide with each other and has a focal point rejection (f), the focused light! ! (0) is refracted and passes through the second half mirror (9), reaches the first half mirror (■), and a part of it is reflected, and the reflected light beam is directed toward the second half mirror (9). while the remaining rays pass through.

凸レンズ(6)の光軸(ロ)に平行に入射する光線の総
ては、第1のハーフミラ−(1)を通過すると他の障害
物がなければ凸レンズ(6)の焦点位置における光軸に
対する直角面では焦点に集まるが、角度搗だけ傾斜して
入射する総ての光線はf、tallcLだけ焦点位置(
7)から距った点Bを通過する。
All the rays incident parallel to the optical axis (b) of the convex lens (6), when passing through the first half mirror (1), will be directed toward the optical axis at the focal position of the convex lens (6) if there are no other obstacles. On a right-angled plane, all rays converge at the focal point, but all incident rays that are inclined by an angle of
7) Pass through point B, which is far away from

又、凸レンズ(6)を介して屈折した集束光!! (0
)と凸レンズ(6)の光軸(ロ)との交点を(A)とし
、凸レンズ(6)と被測点(勾との距離をLとすれば、
(At点の凸レンズ(6)の焦点位置(7)からの距離
内はf2/(f+L )となる。なお、この式でf及び
Lは定数であるからXも定数となりA点は被測点(3)
の偏位を表わすことになる。
Also, the focused light is refracted through the convex lens (6)! ! (0
) and the optical axis (b) of the convex lens (6) is (A), and the distance between the convex lens (6) and the point to be measured (angle is L),
(The distance from the focal point (7) of the convex lens (6) to point At is f2/(f+L). In this equation, since f and L are constants, X is also a constant, and point A is the measured point. (3)
This represents the deviation of

従って、焦点(7)から距離Xを存して凸レンズ(6)
側に配した第7のハーフミラ−■に最初に通過してター
ゲット(8)に照射された光点は、目盛板(11)の目
盛(財)によってその位置が読み取られる。その光点は
被測点Aの偏位を表わし、その偏位置は目盛板(6)の
中心から8・t/< t+L )だけ距った距離Mに縮
小される。このため、目盛板(6)の中心1点として半
径8′・f/ (f+L、 ) (ゴは/ On 、、
20n”””と一定間隔の数値を表わす)の同心円の目
盛を付しておけば集束光it (0)の照射点の目盛を
判読することによって、直ちに被測点(6)での偏位量
を求めることができる。
Therefore, at a distance X from the focal point (7), the convex lens (6)
The position of the light spot that first passes through the seventh half mirror (2) placed on the side and is irradiated onto the target (8) is read by the scale of the scale plate (11). The light spot represents the deviation of the point A to be measured, and its deviation position is reduced to a distance M which is 8·t/<t+L) from the center of the scale plate (6). Therefore, the center point of the scale plate (6) has a radius of 8'・f/ (f+L, ) (Go is / On,,
If a scale of concentric circles of 20n""" (expressing numerical values at regular intervals) is attached, the deviation at the measured point (6) can be immediately determined by reading the scale of the irradiation point of the focused light (0). You can find the quantity.

次に、第1のハーフミラ−■で反射した一部の光線は第
2のハーフミラ−(9)に達してその一部は通過するが
、残りの光線は第2ハーフミラ−(9)で反射して第7
のハーフミラ−■に達する。そして第7のハーフミラ−
■を通過した光線はターゲット(8)で光点として照射
され、このような反射及び通過の繰返しによってターゲ
ット(8)上に、光点は入射角の方向に一定間隔の点と
して直線上に照射現出する。
Next, some of the light rays reflected by the first half mirror (■) reach the second half mirror (9) and pass through, but the remaining light rays are reflected by the second half mirror (9). 7th
Reach the half mirror ■. And the seventh half mirror
The light beam that has passed through ■ is irradiated as a light spot on the target (8), and by repeating such reflection and passage, the light spot is irradiated onto the target (8) on a straight line as points at regular intervals in the direction of the incident angle. appear.

この時、第1のハーフミラ−(ト)と第2のハーフミラ
−(9)間の距離を/2とすると、第2のハーフミラ−
(9)で一度反射して第1のハーフミラ−(7)に達し
ターゲy)(8)に照射した光点、即ち、ターゲラ)(
8)上の2番目の光点Bは、第1のハーフミラ−(4)
から距@Xだけ通過した点の光点、即ち、前述した焦点
(7)下方の光点βに等しい。この第2tr目の光点B
′の光軸から距った距離は前記点Bと同じものを示すこ
とになる。
At this time, if the distance between the first half mirror (g) and the second half mirror (9) is /2, then the second half mirror
(9), reaches the first half mirror (7), and illuminates the target (8), that is, the target
8) The second light spot B on the top is the first half mirror (4)
The light point at a point passing by a distance @X from , that is, equal to the light point β below the focal point (7) described above. This second tr light point B
The distance from the optical axis of ' is the same as point B.

従って、光軸からretancLだけ距っており、目盛
板(ロ)に該目盛板の中心を中心点として半径がfta
n d+ (daはjo、1o0−−−一という一定間
隔の角度を表わす)の同心円の目盛を付しておけば照射
点の目盛を判読することによって直ちにシールド機の偏
角−を求めることができる。
Therefore, it is distanced from the optical axis by retancL, and the radius is fta with the center of the scale plate (b) as the center point.
If a scale of concentric circles of n d+ (da represents angles at regular intervals such as jo, 1o0---1) is attached, the declination angle of the shield machine can be immediately determined by reading the scale of the irradiation point. can.

なお、第1と第2のハーフミラ−(9)(1)間の距離
をI/、とするだけでなく、x/2n(nは正の整数)
とすれば、ターゲットに照射される(n+1)番目の光
点が角dを表わすことになる。
Note that the distance between the first and second half mirrors (9) and (1) is not only I/, but also x/2n (n is a positive integer)
Then, the (n+1)th light spot irradiated onto the target represents the angle d.

このようにしてターゲット(8)上に照射した光点は7
番目の光点から入射方向に一定間隔を存して順次直線上
に並ぶものであるが、これらの光点の大きざと輝度にも
一定の変化が生じている。
The number of light spots irradiated on the target (8) in this way is 7
They are arranged in a straight line sequentially at a constant interval in the incident direction from the th light spot, but the size and brightness of these light spots also change to a certain degree.

即ち、大きさは(n+1)番目までは次第に小さくなる
が(n+2)番目以降は次第に大きくなり、一方、輝度
はハーフミラ−での光量の透過度合とレンズによる光の
集束度合との関係で、(n+1)番目まではその変化は
明確でないが、(n+2)番目以降は次第に減じられる
のである。このような光点の大きさと輝度の関係から、
1番目と(n+1)番目の光点を光源(ロ)によって浮
き上った目盛に)と共にテレビカメラに)で見分けるこ
とができ、偏位(大きいl番目の光点)、偏角(最も小
ざい(n+1)番目の光点)を読み取ることができる。
In other words, the size gradually decreases up to the (n+1)th, but gradually increases after the (n+2)th, while the brightness is determined by the relationship between the degree of light transmission through the half mirror and the degree of light convergence by the lens. The change is not clear up to the (n+1)th, but it gradually decreases after the (n+2)th. From this relationship between the size of the light spot and the brightness,
The 1st and (n+1)th light points can be distinguished by the scale raised by the light source (b)) and the TV camera), and the deviation (larger l-th light point) and declination angle (the smallest (n+1)th light spot) can be read.

又、凸レンズ(6)と第2のハーフミラ−(9)との距
Il!illを適宜に調整することによって、即ち、l
=ニル機の被測点Aの変化にも対応できる。
Also, the distance Il between the convex lens (6) and the second half mirror (9)! By adjusting ill accordingly, i.e.
= It can also respond to changes in the measured point A of the Niru machine.

ざらに、ターゲット(8)を座標の定った光電検出装置
にすることによって電気的に偏位、偏角の測定をするこ
とができ、シールドの自動運転にも使用することができ
るものである。
In general, by making the target (8) a photoelectric detection device with fixed coordinates, it is possible to electrically measure deflection and declination, and it can also be used for automatic shield operation. .

(発明の効果) 以上のように本発明のシールド機の測量装置によれば、
一台の装置でシールド機前方部の偏位と偏角を同時に測
量できるのは勿論、第1のハーフミラ−をレンズの焦点
拒離よりもレンズに近づけて配設しているので、装置全
体の長さを短かくすることができ、ざらに、一枚のター
ゲットで偏位と偏角の両方が測定できるので、装置全体
の巾も小さく形成でき、全体をコンパクトにして小口径
シールド機に容易に取付けることができるものである。
(Effects of the Invention) As described above, according to the shield machine surveying device of the present invention,
Not only can the deflection and declination of the front part of the shield machine be measured simultaneously with one device, but the first half mirror is placed closer to the lens than the focal point of the lens. Since the length can be shortened and both deflection and declination can be measured with a single target, the width of the entire device can be made small, making it compact and easy to use as a small-diameter shield machine. It can be installed on.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図はその縦断
側面図、第2図は測量状態を示す簡略側面図、第3図は
原理説明図、第μ図はターゲットの正面図である。
The drawings show an embodiment of the present invention; Fig. 1 is a vertical side view thereof, Fig. 2 is a simplified side view showing the surveying state, Fig. 3 is a diagram explaining the principle, and Fig. μ is a front view of the target. be.

Claims (1)

【特許請求の範囲】[Claims] トンネルの計画線に平行に集束光線を照射してシールド
機の偏位及び偏角を測量する装置において、焦点拒離f
の凸レンズの前方に、該凸レンズの焦点から凸レンズ側
に位置させて第1のハーフミラーと第2のハーフミラー
とを凸レンズの光軸に対して直角に順次配設すると共に
第1のハーフミラーにターゲットを密接、配設し、この
ターゲットと凸レンズの焦点までの距離をf^2/(f
+L)(但し、Lは凸レンズと被測点間の距離)に、タ
ーゲットと第2のハーフミラーまでの距離をX/2n(
但し、Xは第1のハーフミラーと凸レンズの焦点間の距
離、nは正の整数)になるように配設したことを特徴と
するシールド機の測量装置。
In a device that measures the deflection and declination of a shield machine by irradiating a focused beam parallel to the planned line of the tunnel, the focus rejection f
In front of the convex lens, a first half mirror and a second half mirror are sequentially disposed at right angles to the optical axis of the convex lens, and are positioned on the convex lens side from the focal point of the convex lens, and the first half mirror is located in front of the convex lens. The target is placed closely, and the distance between this target and the focal point of the convex lens is f^2/(f
+L) (where L is the distance between the convex lens and the measured point), and the distance between the target and the second half mirror by X/2n(
A shield surveying device characterized in that X is the distance between the focal point of the first half mirror and the convex lens, and n is a positive integer.
JP26702184A 1984-12-18 1984-12-18 Survey instrument of shielding machine Granted JPS61144506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26702184A JPS61144506A (en) 1984-12-18 1984-12-18 Survey instrument of shielding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26702184A JPS61144506A (en) 1984-12-18 1984-12-18 Survey instrument of shielding machine

Publications (2)

Publication Number Publication Date
JPS61144506A true JPS61144506A (en) 1986-07-02
JPH0262164B2 JPH0262164B2 (en) 1990-12-25

Family

ID=17438951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26702184A Granted JPS61144506A (en) 1984-12-18 1984-12-18 Survey instrument of shielding machine

Country Status (1)

Country Link
JP (1) JPS61144506A (en)

Also Published As

Publication number Publication date
JPH0262164B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
US4412746A (en) Optical noncontacting detector
EP0248479A1 (en) Arrangement for optically measuring a distance between a surface and a reference plane
JPS63241336A (en) Particle size measuring apparatus
US3345120A (en) Light spot apparatus
JPS62197711A (en) Optically image forming type non-contacting position measuring apparatus
NO883924D0 (en) OPTIONS FOR MEASURING CURVATION VARIATION.
JPS597926B2 (en) position detection device
US4641961A (en) Apparatus for measuring the optical characteristics of an optical system to be examined
JPS61144506A (en) Survey instrument of shielding machine
JP2677351B2 (en) 3D object external inspection system
JPS581120A (en) Telecentric beam generator and measurement of dimensions and position of object
SU1675827A1 (en) Microscope
JPS58169008A (en) Optical position measuring device
JPS6125011A (en) Optical distance measuring device
JPS5912965B2 (en) Shield machine surveying equipment
JPS57199909A (en) Distance measuring device
FR2402185A1 (en) METHOD OF GAUGING THE SURFACE OF A PROFILE
SU932447A1 (en) Scanning device
SU1707485A1 (en) Device for determining brightness temperature of heated bodies
JPH05296768A (en) Direction measuring device for shield machine
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JPH0344504A (en) Method and apparatus for measuring three-dimensional shape of surface
SU1601513A1 (en) Optical device for measuring roughness of surface
SU1048307A1 (en) Scanning interferential device having background compensation capability
RU2086945C1 (en) Method of measurement of divergence angle of collimated bundle of rays

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term