JPS61142757A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61142757A
JPS61142757A JP26452784A JP26452784A JPS61142757A JP S61142757 A JPS61142757 A JP S61142757A JP 26452784 A JP26452784 A JP 26452784A JP 26452784 A JP26452784 A JP 26452784A JP S61142757 A JPS61142757 A JP S61142757A
Authority
JP
Japan
Prior art keywords
layer
film
wiring
insulating layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26452784A
Other languages
Japanese (ja)
Inventor
Koichi Mase
間瀬 康一
Jiro Oshima
次郎 大島
Masayasu Abe
正泰 安部
Masaharu Aoyama
青山 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26452784A priority Critical patent/JPS61142757A/en
Publication of JPS61142757A publication Critical patent/JPS61142757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a highly reliable semiconductor device, in which wiring defects do not occur in a lower wiring layer and an upper wiring layer and the miniaturized upper wiring layer is provided, by providing an insulating layer between the wiring layers having a laminated structure, wherein the lower layer is a heat resisting organic insulating layer and the upper layer is a plasma chemical vapor deposition inorganic insulating layer. CONSTITUTION:On a semiconductor substrate 1, a thermal oxide film 2, from which an impurity region is removed, is formed. A metal film (Al-Si) for a lower wiring layer is deposited on the film 2. Then etching is performed, and a first conducting metal layer 3 is formed. For example, a polyimide resin insulating material is applied on the entire surface, and a heat resisting organic insulating layer 5 is formed. A plasma excited vapor-deposition inorganic insulating layer 4 comprising a P-SiN film is formed on the layer 5. Then, the P-SiN film 4 and the polyimide film 5 are continuously etched, and a window 9 for connecting the upper and lower wirings is penetrated. Thereafter, a metal film (Al-Cu) for upper wiring layer is deposited on the surface of the inorganic insulating film 4. The window 9 is filled by the film at the same time. Selective etching is performed, and a minute second conducting metal layer 6, which is the upper wiring layer, is formed.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、配線層間にv4層絶縁膜を具備した多層配
線構造の半導体装置に関し、特に、配線の平坦化に加え
て、配線欠陥を生ずる恐れがなく、しかも微細化した配
線を形成できる半導体装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor device having a multilayer wiring structure having a V4 layer insulating film between wiring layers, and particularly relates to a semiconductor device having a multilayer wiring structure including a V4 layer insulating film between wiring layers, and in particular, in addition to flattening the wiring, it also reduces the risk of wiring defects. The present invention relates to a semiconductor device that is free of wires and can form finer wiring.

[発明の技術的背景] 従来、配線を平坦化するための多層配線構造の半導体装
置には下記の積層絶縁膜を配線層間絶縁膜として具備し
ているものが知られている。
[Technical Background of the Invention] Conventionally, semiconductor devices having a multilayer wiring structure for planarizing wiring are known to include the following laminated insulating film as an interlayer insulating film.

第2図はその公知の半導体装置の配線構造部分の断面図
である。 同図において、1は半導体基板、2は該半導
体基板1の表面に形成された熱醇化膜(Si02)、3
は該熱酸化1Ii2上に形成された下層配線、4は下層
配線3と熱酸化膜2の上に形成された無機質絶縁膜、5
は無機質絶縁膜4の上に積層された有機質絶縁膜、5A
は有機質絶縁膜5の表層に生じた変質層、6は有機質絶
縁膜5上に形成された上層配線である。 なお、無機質
絶縁膜4にはプラズマ励起化学気相成長法(プラズマC
VD法とも呼ぶ)によって形成されたプラズマ窒化シリ
コン膜(P−8i N膜と略記する)が、また有機質絶
縁膜5にはポリイミド樹脂を主成分とする絶縁膜が常用
される。 6aは上層配置のパターンエツチング部分で
ある。
FIG. 2 is a sectional view of a wiring structure portion of the known semiconductor device. In the figure, 1 is a semiconductor substrate, 2 is a hot melt film (Si02) formed on the surface of the semiconductor substrate 1, and 3
4 is an inorganic insulating film formed on the lower layer wiring 3 and the thermal oxide film 2; 5 is a lower layer wiring formed on the thermal oxide 1Ii2;
5A is an organic insulating film laminated on the inorganic insulating film 4.
6 is an altered layer formed on the surface layer of the organic insulating film 5, and 6 is an upper layer wiring formed on the organic insulating film 5. Note that the inorganic insulating film 4 is formed using a plasma-enhanced chemical vapor deposition method (plasma C
A plasma silicon nitride film (abbreviated as a P-8i N film) formed by a VD method (also called VD method) is commonly used, and an insulating film containing polyimide resin as a main component is commonly used as the organic insulating film 5. 6a is a pattern etched portion arranged in the upper layer.

第2図のごとき従来の半導体装置は下層が無機質絶縁膜
であり上層が有機質絶縁膜である積層構造(重層構造)
の絶縁膜を層間絶縁膜として具備しており、この構造の
絶縁膜は表面の平坦化が容易であるため多層配線構造の
層間絶縁膜として好ましい性質を有している。
A conventional semiconductor device as shown in Figure 2 has a laminated structure (multilayer structure) in which the lower layer is an inorganic insulating film and the upper layer is an organic insulating film.
The insulating film of this structure is provided as an interlayer insulating film, and since the surface of the insulating film of this structure can be easily flattened, it has favorable properties as an interlayer insulating film of a multilayer wiring structure.

前記公知の半導体装置は第3図に示す方法で製造されて
いる。
The known semiconductor device is manufactured by the method shown in FIG.

まず、第3図(A)に示すように下層配置13と熱酸化
!!2の上にプラズマcvD法によって無機質絶縁膜4
 (P−8i N11l)を堆積した後、有機質絶縁物
(ポリイミド樹脂を主成分とする絶縁物)を塗布するた
めの前処理として加熱処理を行って有機質絶縁物を塗布
し更に加熱硬化処理を行い、無機質絶縁膜4の上に有機
質絶縁膜5を積層形成する。
First, as shown in FIG. 3(A), the lower layer arrangement 13 and thermal oxidation! ! An inorganic insulating film 4 is formed on 2 by plasma CVD method.
After depositing (P-8i N11l), heat treatment is performed as a pretreatment for applying an organic insulator (an insulator whose main component is polyimide resin), and the organic insulator is applied, followed by a heat curing treatment. , an organic insulating film 5 is laminated on the inorganic insulating film 4 .

次に第3図(8)に示すように、有機質絶縁膜5上に公
知のフォトエツチングプロセス(PEP)によってレジ
ストパターン7を形成した後、該レジストパターン7を
マスクにして反応性イオンエツチング(RlE)を行う
ことにより、下層配線3上の有機質絶縁膜5と無機質絶
縁膜4とを連続的にエツチングして該絶縁膜にスルーホ
ール8を開口する。 このRlEを行った時に、レジス
トパターン7の表面にレジスト変質層7Aが生じるので
スルーホール形成後、酸素を作用ガスとするRIEを行
って第3図(C)の如くレジスト変質層7Aを取り除い
ておく。 次に有機溶剤によってレジストパターン7を
剥離した後、上層配線を形成するための前処理として加
熱処理を行う。
Next, as shown in FIG. 3(8), a resist pattern 7 is formed on the organic insulating film 5 by a known photoetching process (PEP), and then reactive ion etching (RlE) is performed using the resist pattern 7 as a mask. ), the organic insulating film 5 and inorganic insulating film 4 on the lower wiring 3 are continuously etched to form through holes 8 in the insulating film. When this RlE is performed, a resist deteriorated layer 7A is generated on the surface of the resist pattern 7, so after forming the through hole, RIE is performed using oxygen as a working gas to remove the resist deteriorated layer 7A as shown in FIG. 3(C). put. Next, after the resist pattern 7 is peeled off using an organic solvent, a heat treatment is performed as a pretreatment for forming upper layer wiring.

そしてスルーホール8内での上下配線の接続不良を予防
するためのA「スパッタ処理を行って下層配線3表面の
酸化物除去をした後、連続してスパッタ法により有機質
絶aJl!5上に上層配線用金属11 (AI −Cu
 )を堆積する。 最後に該金属膜を選択的にウェット
エツチングすることにより、第3図(D)に示すように
有機質絶縁15上に上層配線6のパターンを形成する。
Then, after performing sputtering to remove oxides from the surface of the lower layer wiring 3 to prevent connection failures between the upper and lower wires in the through hole 8, the upper layer is successively applied to the organic material aJl!5 using a sputtering method. Wiring metal 11 (AI-Cu
) is deposited. Finally, by selectively wet-etching the metal film, a pattern of upper layer wiring 6 is formed on organic insulation 15 as shown in FIG. 3(D).

 この場合、Arスパッタ処理を行ったために有機質絶
縁yi59表面に有機質絶縁物の変質層5Aが生じてい
る。
In this case, since the Ar sputtering process was performed, a degraded layer 5A of organic insulator is formed on the surface of organic insulator yi59.

[背景技術の問題点] 前記のごとき従来の半導体装置には次のような問題点が
あった。
[Problems of Background Art] The conventional semiconductor device as described above has the following problems.

■ 下層配線3はP−8i N膜によって被覆されてい
るが、P−8iNIIは高い内蔀応カを発生する性質が
あるため、下層配線3には第4図(a )及び(b)に
示すようにくさび状の欠損部3aが発生するのがみられ
る。 このような欠損部3aが生じると、該配線のエレ
クト0マイグレーシヨン耐性が低下して断線を住じゃす
くなる。
■ The lower layer wiring 3 is covered with a P-8i N film, but since P-8i NII has the property of generating high internal stress, the lower layer wiring 3 is coated with a P-8iN film as shown in Figures 4 (a) and (b). As shown, it can be seen that a wedge-shaped defect 3a is generated. When such a defective portion 3a occurs, the resistance to elect-0 migration of the wiring decreases, making it more susceptible to disconnection.

■ 上記の製造方法でみるように、上層配線形成前に有
機質絶縁膜5の表面はArスパッタが行われているため
該有機質絶縁膜表面に変質層5Aが形成され、またこの
変質層5Aの上に上層配線6が乗っていて上層配線パタ
ーンのエツチング部分6a内に該有機質絶縁膜変質層5
Aが露出した状態となっているので、次のような問題が
生じる。
■ As seen in the above manufacturing method, since the surface of the organic insulating film 5 is subjected to Ar sputtering before the formation of the upper layer wiring, an altered layer 5A is formed on the surface of the organic insulating film, and on top of this altered layer 5A. The upper layer wiring 6 is placed on the etched portion 6a of the upper layer wiring pattern, and the organic insulating film deteriorated layer 5 is placed inside the etched portion 6a of the upper layer wiring pattern.
Since A is exposed, the following problem occurs.

(a )上層配線6の下に該変質層5Aが存在している
ため、非素子領域の表面反転しきいm電圧が10〜20
%低下し、しかもその値(表面反転しきい値電圧)のば
らつきが大きくなる。
(a) Since the altered layer 5A exists under the upper layer wiring 6, the surface inversion threshold m voltage of the non-element region is 10 to 20.
%, and the variation in its value (surface inversion threshold voltage) increases.

(b)Arスパッタによる有機質絶縁wA5の変質は炭
化などであるため上層配線相互間6aでり一りが発生す
る。 従って、このようなリークを生じさせないために
は酸素によるRIEを行って該変質層5Aを除去するこ
とが必要であるが、工程増加によって製造コストが上昇
する。
(b) Since the organic insulation wA5 is altered by the Ar sputtering, such as carbonization, unevenness occurs between the upper layer wirings 6a. Therefore, in order to prevent such leakage from occurring, it is necessary to perform RIE using oxygen to remove the altered layer 5A, but this increases the manufacturing cost due to the increase in the number of steps.

■ 上層配線の被覆性を良好にするためには上層配線用
金属Ml (AI −Cu )を380℃以上の高温で
堆積させる必要があるが、このような高温堆積時には有
機質絶縁膜表面に談合ji (AI −Cu )と該有
機質絶縁物(ポリイミド系樹脂)との反応物が生成する
ため、該金属膜をエツチングして形成された上層配置1
fl16aに該反応物が存在しており、上層配線相互間
が短絡してリークを生じる。
■ In order to improve the coverage of the upper layer wiring, it is necessary to deposit the upper layer wiring metal Ml (AI-Cu) at a high temperature of 380°C or higher, but when deposited at such a high temperature, rigging occurs on the surface of the organic insulating film. Because a reaction product between (AI-Cu) and the organic insulator (polyimide resin) is generated, the upper layer arrangement 1 formed by etching the metal film
The reactant is present in fl16a, causing a short circuit between the upper layer wirings and causing leakage.

従って、このようなリークを生じさせないためには上層
配線形成後にArスパッタ等のドライエツチングを行っ
て該反応物を除去することが必要になるが、これも工程
を増加させ製造コストを上昇させることになる。
Therefore, in order to prevent such leakage, it is necessary to perform dry etching such as Ar sputtering after forming the upper layer wiring to remove the reactant, but this also increases the number of steps and increases the manufacturing cost. become.

■ 上層配線微細化のためのRIE加工が次の2つの理
由から採用がむずかしく、従って従来の半導体装置では
上層配線のエツチングにウェットエツチングを採用して
いるため高密度化の要請に応することができなかった。
■ It is difficult to employ RIE processing for finer upper layer wiring for the following two reasons. Therefore, conventional semiconductor devices use wet etching for etching upper layer wiring, making it difficult to meet the demands for higher density. could not.

(a )上層配線用金属膜(AI −Cu )に対して
RIEを行うと、第5図に示すようにRIEのスパッタ
効果により下層配線3上の有機質絶縁膜5が除去されて
しまうので(有機質絶縁膜の厚さはBT特性の安定のた
めフィールド部の絶縁膜の厚さの40%以下、1600
人程度しかない)、この後上層配線6の上にP−5iN
mを最終保護膜として堆積させているが、下層配線3上
には既に堆積されている層間絶縁膜としてのP−3i 
N膜に加えて更に最終保護膜としてのP−8iN膜が積
層されるため下層配線3はフィールド部にくらべて著し
く厚いP−8iN膜で被覆されることになる。
(a) When RIE is performed on the metal film for upper layer wiring (AI-Cu), as shown in FIG. The thickness of the insulating film is 40% or less of the thickness of the insulating film in the field part, 1600 mm, to stabilize the BT characteristics.
After that, P-5iN is placed on top of the upper layer wiring 6.
P-3i is deposited as the final protective film, but P-3i is already deposited on the lower layer wiring 3 as an interlayer insulating film.
In addition to the N film, a P-8iN film is further laminated as a final protective film, so the lower wiring 3 is covered with a significantly thicker P-8iN film than the field portion.

ところが、前記したようにP−8i N膜は内部応力が
高いため、下層配線3を被覆しているP−8iN膜の膜
厚が厚くなる程下層配線3に第4図のごとき欠損部3a
を生じる危険性は大きくなる。
However, as described above, since the internal stress of the P-8iN film is high, the thicker the P-8iN film covering the lower layer wiring 3 is, the more the defective portion 3a as shown in FIG.
The risk of this occurring increases.

(b)RIE法で上層配線形成用金属膜(AIまたはA
1合金)をエツチングする場合に使用する □エツチン
グガスは塩素系ガスであり、この塩素系ガスは上層配線
6の下やフィールド部に残っている有機質絶縁膜中に吸
着されやすいため、吸着された塩素系ガスによって上層
配線6が腐蝕する確率が高くなる。
(b) Metal film (AI or A) for forming upper layer wiring by RIE method
1 alloy) □The etching gas is a chlorine-based gas, and this chlorine-based gas is easily adsorbed into the organic insulating film remaining under the upper layer wiring 6 and in the field area. The probability that the upper layer wiring 6 will be corroded by the chlorine-based gas increases.

■ 上層配線形成後、急激な温度変化のため、有機質絶
縁膜5中に吸収されていた水分がガス化して第6図に示
すように上層配線6の下側に放出され、その結果上層配
線6がバブリング6Aを起こす。 従って、このバブリ
ングを抑制するためには有機質絶縁膜形成から最終像1
膜形成に至るまでの工程において、高l (300℃以
上)加熱処理前には排湿のための長時間(1時間以上)
の低温く200℃以下)ベークが必要となるが、このよ
うな操作は生産性を低下させる。
■ After the upper layer wiring is formed, due to a sudden temperature change, the moisture absorbed in the organic insulating film 5 is gasified and released to the lower side of the upper layer wiring 6 as shown in FIG. 6, and as a result, the upper layer wiring 6 causes bubbling 6A. Therefore, in order to suppress this bubbling, it is necessary to
In the process leading up to film formation, a long period of time (more than 1 hour) is required for moisture removal before high temperature (300°C or more) heat treatment.
However, such operations reduce productivity.

■ スルーホール形成には、有機質絶縁1!5をエツチ
ングした後に無機質絶縁膜4をエツチングすることにな
る。 ところが、有機質絶縁膜の膜厚は平坦化のため変
動があるので平均膜厚に対して80%のオーバーエツチ
ングをしなければならない。
(2) To form through holes, the inorganic insulating film 4 is etched after the organic insulating layers 1 to 5 are etched. However, since the thickness of the organic insulating film varies due to flattening, over-etching must be performed by 80% of the average thickness.

さらに、RIEにおけるポジ型レジストと有機質絶縁膜
のエツチング速度比は(レジスト):(有機質絶縁膜)
−1:0.7であって有機質絶縁膜のエツチング速度は
レジストのそれにくらべて小さい。 そのため、有機質
絶縁膜をポジ型レジストマスクによって80%のオーバ
ーエツチングをすると、有機質絶縁膜のエツチング後に
はレジストマスクの孔は片側で1.0μm程度広がるこ
とになるが、この広がったレジストマスクの孔を基準と
して無機質絶縁膜の孔あけを行うことになるので、スル
ーホール貫通後の無機質絶縁膜の孔は片側で1.2μm
程度広がることになる。 従って、従来の半導体装置で
はスルーホールの微細化が困難であり、結局上層配線の
微細化が不可能であった。
Furthermore, the etching rate ratio of positive resist and organic insulating film in RIE is (resist): (organic insulating film)
-1:0.7, and the etching rate of the organic insulating film is lower than that of the resist. Therefore, if an organic insulating film is over-etched by 80% using a positive resist mask, the holes in the resist mask will expand by about 1.0 μm on one side after the organic insulating film is etched. Since the holes in the inorganic insulating film will be drilled based on
The extent will be expanded. Therefore, in conventional semiconductor devices, it is difficult to miniaturize through holes, and ultimately it is impossible to miniaturize upper layer wiring.

[発明の目的] この発明は前記のごとき従来の半導体装置に存する問題
点を解決するためになされたものであり、この発明の目
的は、配線の平坦化に加えて、下層配線及び上層配線に
配線欠陥を生じる恐れがなく且つ従来よりも微細化した
上層配線を有するとともに高い信頼性を有する半導体装
置を提供することである。
[Object of the Invention] The present invention was made to solve the problems that exist in the conventional semiconductor device as described above, and the purpose of the invention is to flatten the wiring as well as flatten the lower layer wiring and the upper layer wiring. It is an object of the present invention to provide a semiconductor device which is free from wiring defects, has an upper layer wiring which is finer than the conventional one, and has high reliability.

す [発明の概要] この発明による半導体装置は、下層が耐熱性有機絶縁層
で上層がプラズマ化学気相成長無機絶縁層である積層構
造の配線層間絶縁膜を具備していることを特徴とするも
のである。 この構造の絶縁膜を具備している本発明の
多局配線構造の半導体装置においては、従来装置の平坦
化効果をそこなわずに、しかも下層配線及び上層配線に
欠陥が生じる恐れは全くなく、また従来装置よりも微細
化した上層配線を形成することができる。
[Summary of the Invention] A semiconductor device according to the present invention is characterized in that it includes a wiring interlayer insulating film having a laminated structure in which the lower layer is a heat-resistant organic insulating layer and the upper layer is a plasma chemical vapor deposition inorganic insulating layer. It is something. In the semiconductor device of the present invention having the multi-station wiring structure, which is equipped with an insulating film having this structure, the flattening effect of the conventional device is not impaired, and there is no fear of defects occurring in the lower layer wiring and the upper layer wiring. Furthermore, it is possible to form finer upper layer wiring than in conventional devices.

[発明の実施例〕 以下に第1図を参照して本発明の多層配線構造の半導体
装置及びその製造方法について説明する。
[Embodiments of the Invention] A semiconductor device having a multilayer wiring structure and a method for manufacturing the same according to the present invention will be described below with reference to FIG.

なお、第1図において第3図と同じ符号で表示されてい
る部分は第3図の従来の半導体装置に関して説明した部
分と同じ部分を表している。
Note that in FIG. 1, the parts indicated by the same reference numerals as in FIG. 3 represent the same parts as those described with respect to the conventional semiconductor device in FIG.

本発明による半導体装置はたとえば以下の工程によって
製造される。 まず、複数の不純物領域を有する半導体
基板1上に不純物領域を除いて絶縁物層である熱酸化膜
2が形成され、該絶縁物層2の上にスパッタリングによ
って厚さ1μlの下層配線用金属III (AI −8
i )を堆積した後、該金属膜上に形成したレジストパ
ターンをマスクにして該金属膜をRIE法でエツチング
することにより下層配線である前記不純物領域に設け前
記絶縁物層2に延長する第1導電性金属層3を形成する
The semiconductor device according to the present invention is manufactured, for example, by the following steps. First, a thermal oxide film 2, which is an insulating layer, is formed on a semiconductor substrate 1 having a plurality of impurity regions except for the impurity regions, and a 1 μl thick layer of lower wiring metal III is formed on the insulating layer 2 by sputtering. (AI-8
i) is deposited, the metal film is etched by RIE using the resist pattern formed on the metal film as a mask, thereby forming a first layer extending to the insulating layer 2, which is provided in the impurity region serving as the lower wiring. A conductive metal layer 3 is formed.

ついで、加熱前処理を行った後、全面に有機質絶縁物(
ポリイミド樹脂系絶縁物)を塗布し、更に所定のベータ
処理(150℃−30分、250℃−60分、400℃
−60分、すべてN2雰囲気中)をすることにより、第
1導電性金属113を含む前記絶縁物層2を被覆する厚
さ0.4μ量の耐熱性有機絶縁層5を形成させる。 続
いて、プラズマCVD法により該耐熱性有機絶縁115
の上にP−8i N膜から成る厚さ1μmのプラズマ励
起気相成長無機絶縁層4を形成(形成条件はガス流IS
i H,/N H3= 60/ 30O5CCI、キャ
リアガスAr700SOCI、圧力87Pa、温度33
0℃、RF出力320W)すると、第1図(a )の状
態となる。
Next, after pre-heating treatment, an organic insulating material (
Polyimide resin insulator) was applied, and then subjected to the prescribed beta treatment (150°C - 30 minutes, 250°C - 60 minutes, 400°C
-60 minutes, all in an N2 atmosphere), thereby forming a heat-resistant organic insulating layer 5 having a thickness of 0.4 μm and covering the insulating layer 2 including the first conductive metal 113. Subsequently, the heat-resistant organic insulation 115 is formed by plasma CVD method.
On top of the inorganic insulating layer 4 made of P-8iN film and having a thickness of 1 μm, plasma-enhanced vapor phase growth was formed (formation conditions were gas flow IS).
i H,/N H3=60/30O5CCI, carrier gas Ar700SOCI, pressure 87Pa, temperature 33
0° C. and RF output of 320 W), the state shown in FIG. 1(a) is obtained.

このように、有機絶縁層の膜厚は無機絶縁層の膜厚の0
.6以下とすることが望ましい。 これはBT処理後も
電気的安定性を保つことができるからであり、この値が
0.6以上の場合にはBT処理後の電気的特性が変動す
る可能性があるからである。
In this way, the thickness of the organic insulating layer is equal to 0 of the thickness of the inorganic insulating layer.
.. It is desirable to set it to 6 or less. This is because electrical stability can be maintained even after the BT treatment, and if this value is 0.6 or more, the electrical characteristics after the BT treatment may vary.

次に第1図(b)に示すように、無機絶縁層4の上に厚
さ1.6μlのポジレジスト膜を塗布し常法によりレジ
ストパターン7を形成した後、レジストパターン7をマ
スクにしてRIE法で無機絶縁層であるP−8iN膜4
と耐熱性有機絶縁層であるポリイミド膜5を連続的にエ
ツチング(エツチング条件はP−8i N膜についてガ
ス流層S F 、 80SCCO+、圧力10Pa 、
出力450W 、ボリイ、ミド膜についてガスN1に0
260sccm、圧力2.3Pa、出力520W)シて
上下配線接続用の窓つまりスルーホール9を該両絶縁膜
に貫通させる。
Next, as shown in FIG. 1(b), a positive resist film with a thickness of 1.6 μl is applied on the inorganic insulating layer 4 and a resist pattern 7 is formed by a conventional method, and then the resist pattern 7 is used as a mask. P-8iN film 4 which is an inorganic insulating layer by RIE method
and the polyimide film 5, which is a heat-resistant organic insulating layer, are continuously etched (the etching conditions are gas flow layer SF, 80SCCO+, pressure 10Pa,
Output 450W, 0 for gas N1 for Boli and Mido membranes
(260 sccm, pressure 2.3 Pa, output 520 W) and windows or through holes 9 for connecting upper and lower wiring are penetrated through both of the insulating films.

ついで、有機溶剤を用いて該レジストパターン7を剥離
した後加熱を行い、続いてA「スパッタ処理を行って露
出した下層配線表面の酸化物を除去した後、これに引き
続いてスパッタ法により厚さ1μmの上層配線用金属膜
(AI −Cu )を無機絶縁膜4の表面に堆積させる
と同時に該金属膜をスルーホール9内に充填させる。 
そして、該金属膜をRIE法によって選択的にエツチン
グすることにより第1図(C)に示すように上層配線で
ある微細な第2の導電性金属層6を形成して本発明の半
導体装置の配線構造を完成する。
Next, the resist pattern 7 is peeled off using an organic solvent, heated, and then sputtered to remove the oxide on the exposed lower wiring surface. A metal film (AI-Cu) for upper layer wiring having a thickness of 1 μm is deposited on the surface of the inorganic insulating film 4, and at the same time, the through holes 9 are filled with the metal film.
Then, by selectively etching the metal film by RIE method, a fine second conductive metal layer 6, which is an upper layer wiring, is formed as shown in FIG. Complete the wiring structure.

なお、前記実施例では、耐熱性有機絶縁層としてポリイ
ミド樹脂系の絶縁物を用い、また無機絶縁層としてP−
8i N膜を用いているが、有機絶縁層及び無機絶縁層
の構成素材をこれらに限定する必要はなく、それぞれ種
々の素材を用いることができる。 同様に、下層配線や
上層配線の構成成分をAl−8iやAl−Cu等のA1
合金だけでなく、他の素材たとえばシリサイドや高融点
金属及び純A1等の金属で構成してもよいことは勿論で
ある。 そしてまた、積層絶縁膜のスルーホール9の各
層エツチングには連続的なRIEを採用したが、RIE
以外のケミカルドライエツチング法、ウェットエツチン
グ法等他のエツチング方法を各層個別に採用しても良く
、それらの場合にも前記実施例の主要な効果が達せられ
ることを確認している。
In the above embodiment, a polyimide resin-based insulator was used as the heat-resistant organic insulating layer, and P-
Although the 8i N film is used, the constituent materials of the organic insulating layer and the inorganic insulating layer do not need to be limited to these, and various materials can be used for each. Similarly, the constituent components of the lower layer wiring and upper layer wiring are Al-8i, Al-Cu, etc.
It goes without saying that it may be made of not only alloys but also other materials such as silicide, high melting point metals, and metals such as pure A1. Furthermore, although continuous RIE was used for etching each layer of the through hole 9 in the laminated insulating film, RIE
Other etching methods such as chemical dry etching and wet etching may be used for each layer individually, and it has been confirmed that the main effects of the above embodiments can be achieved in these cases as well.

[発明の効果] 以下に本発明の半導体装置によって得られる効果を列挙
する。
[Effects of the Invention] Effects obtained by the semiconductor device of the present invention are listed below.

(I)  下層配線が耐熱性有機絶縁層を介し無機絶縁
層で被覆されているので下層配線が無機絶縁層の内部応
力によって破壊される恐れがなく、従ってエレクトロマ
イグレーション耐性が高く、断線の危険性が少ない半導
体装置が得られる。
(I) Since the lower layer wiring is covered with an inorganic insulating layer via a heat-resistant organic insulating layer, there is no risk that the lower layer wiring will be destroyed by the internal stress of the inorganic insulating layer, so it has high electromigration resistance and there is no risk of disconnection. A semiconductor device with a small amount of noise can be obtained.

(I)  上層配線は無機絶縁層の上に形成されるので
、苛酷な配線形成条件による絶縁膜の変質が有機絶縁層
に比較して格段に少ないため、上層配線相互間に短絡や
リークを生じる危険性がない。 また、該変質を生じな
いので変質層を除去するための工程の必要がなく、従っ
て製造工程が短縮される。
(I) Since the upper layer wiring is formed on the inorganic insulating layer, the deterioration of the insulating film due to harsh wiring formation conditions is much less than that of the organic insulating layer, which causes short circuits and leaks between the upper layer wiring. There is no danger. Further, since the deterioration does not occur, there is no need for a process for removing the deterioration layer, and therefore the manufacturing process is shortened.

(DI)  有機絶縁層は無機絶縁層によって保護され
ているので、上層配線形成前にArスパッタ処理などを
行っても有機絶縁層に変質層が形成されることがなく、
従って非素子領域の表面反転しきい値電圧の低下がなく
、また表面反転しきい値電圧のばらつきが小さい半導体
装置が得られる。 また、BT処理による表面反転しき
い値電圧の変動幅が小さい半導体装置が得られ、特に温
度変化に対する変動幅が従来の半導体装置にくらべて3
0%程度低いため、信頼性の高い半導体装置が得られる
(DI) Since the organic insulating layer is protected by the inorganic insulating layer, no altered layer is formed on the organic insulating layer even if Ar sputtering is performed before forming the upper layer wiring.
Therefore, a semiconductor device can be obtained in which there is no drop in the surface inversion threshold voltage of the non-element region and the variation in the surface inversion threshold voltage is small. Furthermore, a semiconductor device can be obtained in which the fluctuation range of the surface inversion threshold voltage due to the BT process is small, and in particular, the fluctuation range with respect to temperature changes is 3.
Since it is about 0% lower, a highly reliable semiconductor device can be obtained.

(TV>  有機絶縁層が無機絶縁層の下にあるため、
上層配線の形成を容易にRIE法で(テうことができ、
従って従来の半導体装置よりも微細な上層配線及びスル
ーホールを有した半導体装置が得られる。
(TV> Since the organic insulating layer is under the inorganic insulating layer,
Upper layer wiring can be easily formed using the RIE method.
Therefore, a semiconductor device having finer upper layer wiring and through holes than conventional semiconductor devices can be obtained.

(V)  無機質絶縁膜の形成後は有機質絶縁膜が外部
に露出しないので有機質絶縁膜への水分や塩素の吸着が
なく、従って排湿のための低温ベーク処理が不要であり
、また、有機質絶縁膜及びレジストの表面に変質層が生
じないので該変質層を除去するための工程が不要となる
ため、従来方法よりも短縮した工程で半導体装置を製造
することができ、その結果従来の半導体装置よりも信頼
性が高い半導体装置を従来より低コストで製造すること
ができる。
(V) After the inorganic insulating film is formed, the organic insulating film is not exposed to the outside, so there is no adsorption of moisture or chlorine to the organic insulating film, so there is no need for low-temperature baking treatment to remove moisture. Since no altered layer is formed on the surface of the film or resist, there is no need for a process to remove the altered layer, so semiconductor devices can be manufactured in a shorter process than conventional methods, and as a result, semiconductor devices can be manufactured using shorter steps than conventional methods. It is possible to manufacture a semiconductor device with higher reliability than before at a lower cost than before.

また、本発明の積層絶縁膜は層間絶縁膜である場合、以
上説明したように特に有効であるが、本発明と同じ積層
構造の絶縁膜が最終保護膜として利用できるこ、とは明
らかである。
Furthermore, when the laminated insulating film of the present invention is an interlayer insulating film, it is particularly effective as explained above, but it is clear that an insulating film having the same laminated structure as the present invention can be used as the final protective film. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置及びその製造方法を工程順
に断面で示した図、第2図は従来の半導体装置の要部断
面図、第3図は従来装置の製造方法を工程順に断面で示
した図、第4図(a )は従来の半導体装置の配線に生
じる欠陥を示した平面図、第4図(b )は第4図(a
)のb−b矢視断面図、第5図は従来の半導体装置の製
造工程で生じうる現象を示した図、第6図は従来の半導
体装置の製造工程で生じる配線欠陥を示した図である。 1・・・半導体基板、 2・・・絶縁物層、 3・・・
第1導電性金属層(下層配線)、 4・・・プラズマ励
起化学気相成長無機絶縁層、 5・・・耐熱性有機絶縁
層、 5A・・・変質層、 6・・・第2導電性金属層
(上層配線)、 7・・・レジストパターン、 8゜9
・・・窓(スルーホール)。 第1図 第2図 第3図 只 第4図 第5図 第6図
FIG. 1 is a cross-sectional view showing the semiconductor device of the present invention and its manufacturing method in order of process, FIG. 2 is a cross-sectional view of the main part of a conventional semiconductor device, and FIG. 4(a) is a plan view showing defects occurring in the wiring of a conventional semiconductor device, and FIG. 4(b) is a plan view showing defects occurring in the wiring of a conventional semiconductor device.
), FIG. 5 is a diagram showing phenomena that may occur in the manufacturing process of conventional semiconductor devices, and FIG. 6 is a diagram showing wiring defects that occur in the manufacturing process of conventional semiconductor devices. be. 1... Semiconductor substrate, 2... Insulator layer, 3...
First conductive metal layer (lower wiring), 4... Plasma-enhanced chemical vapor deposition inorganic insulating layer, 5... Heat-resistant organic insulating layer, 5A... Altered layer, 6... Second conductive layer Metal layer (upper layer wiring), 7... Resist pattern, 8°9
...Window (through hole). Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板と、この一主面より内部に導
入する反対導電型の複数の不純物領域と、この不純物領
域を除く前記半導体基板の一主面に形成する絶縁物層と
、前記不純物領域に設け前記絶縁物層に延長する第1導
電性金属層と、この第1導電性金属層を含む前記絶縁物
層を被覆する耐熱性有機絶縁層と、この耐熱性有機絶縁
層に積層するプラズマ励起化学気相成長無機絶縁層と、
この無機絶縁層及び前記耐熱性有機絶縁膜とを貫通して
第1導電性金属層を露出する窓と、この窓に設ける第2
の導電性金属層とを具備することを特徴とする半導体装
置。
1. A semiconductor substrate of one conductivity type, a plurality of impurity regions of opposite conductivity type introduced into the interior from this one main surface, an insulating layer formed on one main surface of the semiconductor substrate excluding the impurity regions, and the impurity a first conductive metal layer provided in a region and extending to the insulating layer; a heat-resistant organic insulating layer covering the insulating layer including the first conductive metal layer; and a heat-resistant organic insulating layer laminated on the heat-resistant organic insulating layer. a plasma-enhanced chemical vapor deposition inorganic insulating layer;
a window that penetrates the inorganic insulating layer and the heat-resistant organic insulating film to expose the first conductive metal layer; and a second conductive metal layer provided in the window.
1. A semiconductor device comprising: a conductive metal layer.
JP26452784A 1984-12-17 1984-12-17 Semiconductor device Pending JPS61142757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26452784A JPS61142757A (en) 1984-12-17 1984-12-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26452784A JPS61142757A (en) 1984-12-17 1984-12-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61142757A true JPS61142757A (en) 1986-06-30

Family

ID=17404494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26452784A Pending JPS61142757A (en) 1984-12-17 1984-12-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61142757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642337A (en) * 1987-06-24 1989-01-06 Nec Corp Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642337A (en) * 1987-06-24 1989-01-06 Nec Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
KR950000867B1 (en) Fabricating method of semiconductor device
US5963827A (en) Method for producing via contacts in a semiconductor device
JP2701751B2 (en) Method for manufacturing semiconductor device
JPH0226055A (en) Manufacture of semiconductor device
WO1987002828A1 (en) Glass intermetal dielectric
JPS61142757A (en) Semiconductor device
JP3087692B2 (en) Method for manufacturing semiconductor device
JP3394155B2 (en) Metal thin film forming method
JPH0642481B2 (en) Manufacturing method of semiconductor device
JPH04731A (en) Semiconductor device and manufacture thereof
JPH05121564A (en) Semiconductor device and manufacture thereof
JPH01200651A (en) Manufacture of semiconductor device
JPS61203654A (en) Semiconductor device and its production
JPH07106323A (en) Semiconductor device and its manufacture
JPS59217341A (en) Manufacture of semiconductor integrated circuit device
JP2776397B2 (en) Method for manufacturing semiconductor device
JPS62269340A (en) Method of filling contact hole drilled in insulating isolation layer with tungsten
JPH0226054A (en) Manufacture of semiconductor device
JPH0878518A (en) Fabrication of semiconductor device
JPH06349828A (en) Manufacture of integrated circuit device
KR19980033828A (en) Method for forming an interlayer insulating film of a semiconductor device
JPH04216629A (en) Semiconductor device
JPH09115906A (en) Manufacture of semiconductor device
JPS6251243A (en) Manufacture of semiconductor device
JPH06302703A (en) Fabrication of semiconductor device