JPH07106323A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH07106323A
JPH07106323A JP24964293A JP24964293A JPH07106323A JP H07106323 A JPH07106323 A JP H07106323A JP 24964293 A JP24964293 A JP 24964293A JP 24964293 A JP24964293 A JP 24964293A JP H07106323 A JPH07106323 A JP H07106323A
Authority
JP
Japan
Prior art keywords
film
electrode wiring
insulating film
oxide film
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24964293A
Other languages
Japanese (ja)
Inventor
Iku Mikagi
郁 三ケ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24964293A priority Critical patent/JPH07106323A/en
Publication of JPH07106323A publication Critical patent/JPH07106323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve stress migration withstand of electrode wiring, by forming a second insulating film which covers the side surface of the electrode wiring and has compression stress, and a third insulating film which covers the surface of the electrode wiring and has tensile stress. CONSTITUTION:A first silicon oxide film 2 (first insulating film) forms either field oxide film or an interlayer insulating film which are formed by a thermal oxidizing method. A second silicon oxide film 4A having compression stress is formed on electrode wiring 3A and the first silicon oxide film 2. By etching back the second silicon oxide film 4A, it is left on only the electrode wiring side wall part, and a spacer 4Aa having a forward taper shape is formed. A silicon oxynitride film 5A as a third insulating film which has tensile stress is formed. Generation of stress migration can be restrained by the mutual buffering action of the compression stress of the insulating spacer 4Aa and the tensile stress of the silicon oxynitride film 5A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置とその製造方
法に関し、特に微細な電極配線を有する半導体装置とそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having fine electrode wiring and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の半導体装置は特開昭63−164
344号公報に示すような構造が知られている。図2
(a)〜(d)は、この従来の半導体装置についてその
製造工程に沿って説明するための工程順断面図である。
2. Description of the Related Art A conventional semiconductor device is disclosed in JP-A-63-164.
A structure as shown in Japanese Patent No. 344 is known. Figure 2
(A)-(d) is process order sectional drawing for demonstrating this conventional semiconductor device along with the manufacturing process.

【0003】まず図2(a)に示すようにシリコン基板
1上に第1酸化シリコン膜2を形成した後、電極配線3
Bを形成する。
First, as shown in FIG. 2A, after forming a first silicon oxide film 2 on a silicon substrate 1, electrode wiring 3 is formed.
Form B.

【0004】続いて図2(b)に示すように圧縮応力を
有する第2酸化シリコン膜4BをプラズマCVD法ある
いはスパッタ法により電極配線を被覆するように形成
し、その上にフォトレジスト膜6を塗布法により形成す
る。
Subsequently, as shown in FIG. 2B, a second silicon oxide film 4B having a compressive stress is formed by plasma CVD or sputtering so as to cover the electrode wiring, and a photoresist film 6 is formed thereon. It is formed by a coating method.

【0005】さらに図2(c)に示すように電極配線上
部のフォトレジスト膜および第2酸化シリコン膜を反応
性イオンエッチング法により除去する。こうして電極配
線3B間を埋めるスペーサ4Baを形成する。
Further, as shown in FIG. 2C, the photoresist film and the second silicon oxide film above the electrode wiring are removed by the reactive ion etching method. Thus, the spacer 4Ba filling the space between the electrode wirings 3B is formed.

【0006】つぎにこの工程で除去されずに残ったフォ
トレジスト膜を除去する。さらに図2(d)に示すよう
に、引張応力を有する第3酸化シリコン膜5Bをプラズ
マCVD法、低圧CVD法あるいは常圧CVD法により
形成する。
Next, the photoresist film left unremoved in this step is removed. Further, as shown in FIG. 2D, a third silicon oxide film 5B having a tensile stress is formed by a plasma CVD method, a low pressure CVD method or an atmospheric pressure CVD method.

【0007】上述の発明の他にも特開平3−16782
8号公報で述べられているものがある。この従来技術に
ついてシリコンゲートMOSメモリの絶縁保護膜に適用
した場合を例として説明する。まず図3(a)に示すよ
うにシリコン基板1に形成された拡散層7とシリコンや
銅を1%程度含有したアルミニウム系合金膜からなる電
極配線3Cがフィールド酸化膜8や第1酸化シリコン膜
2に開口したコンタクトホール9を介して接合される構
造を形成する。さらに枚葉式CVD装置により370〜
380℃、10Torr以下の圧力でTEOS〔Si
(O2 3 O)4〕とO2 をプラズマ反応させて約50
0nm厚の第2酸化シリコン膜を形成し、450℃の5
%H2 のAr雰囲気中で20〜30分の熱処理を施す。
次にC2 6 とCHF3 を含む混合ガスを用いた反応性
ドライエッチングによりエッチバックして第2酸化シリ
コン膜のスペーサ4Caを形成する。
In addition to the above-mentioned invention, JP-A-3-16782
There is one described in Japanese Patent Publication No. 8. This prior art will be described by taking as an example the case where it is applied to an insulating protective film of a silicon gate MOS memory. First, as shown in FIG. 3A, the diffusion layer 7 formed on the silicon substrate 1 and the electrode wiring 3C made of an aluminum alloy film containing about 1% of silicon or copper are the field oxide film 8 and the first silicon oxide film. A structure is formed which is joined through the contact hole 9 opened in 2. Furthermore, with a single-wafer CVD apparatus,
TEOS [Si at 380 ° C. and a pressure of 10 Torr or less
(O 2 H 3 O) 4 ] and O 2 are plasma-reacted to about 50
A second silicon oxide film having a thickness of 0 nm is formed, and the second silicon oxide film at 450 ° C.
Heat treatment is performed for 20 to 30 minutes in an Ar atmosphere of% H 2 .
Next, the spacer 4Ca of the second silicon oxide film is formed by etching back by reactive dry etching using a mixed gas containing C 2 F 6 and CHF 3 .

【0008】続いて図3(b)に示すようにSiH4
2 、PH3 を反応させて1層目の保護膜となるPSG
膜5Cを500nmの厚みで成長する。
Then, as shown in FIG. 3B, SiH 4 ,
PSG that reacts with O 2 and PH 3 to form the first protective film
The film 5C is grown to a thickness of 500 nm.

【0009】続いて図3(c)に示すようにSiH4
NH3 、N2 を含むガスを用い、370℃、5Torr
の条件で平行平板式プラズマCVD装置により厚さ約6
00nmの2層目の保護膜となる窒化シリコン膜10を
形成し、さらにフォトレジストを用いたドライエッチン
グ法により外部電極取り出し用ボンディングパッド11
を形成する。
Then, as shown in FIG. 3C, SiH 4 ,
Using a gas containing NH 3 and N 2 , 370 ° C., 5 Torr
Thickness of about 6 by parallel plate plasma CVD equipment under the conditions of
A silicon nitride film 10 serving as a second protective film having a thickness of 00 nm is formed, and a bonding pad 11 for extracting an external electrode is further formed by a dry etching method using a photoresist.
To form.

【0010】[0010]

【発明が解決しようとする課題】特開昭63−1643
44号公報に開示された発明の場合、電極配線間を埋め
るスペーサ4BaをCVD法とエッチバック法により形
成しているが、この手法はCVD膜のオーバーハング形
状が影響を及ぼさない幅広い配線スペースに対してのみ
有効な手法である。ストレスマイグレーションによる断
線発生の可能性が高く、その防止策が特に必要となる微
細な配線スペースに適用した場合、CVD膜のオーバー
ハング形状化によりCVD膜形成時にCVD膜中ボイド
が形成される。このCVD膜中のボイドの存在はスペー
サの本来の機能であるストレスマイグレーション発生原
因となる応力の緩和作用を低下させるため微細な配線パ
ターンへの適用は難しい。
Problems to be Solved by the Invention JP-A-63-1643
In the case of the invention disclosed in Japanese Laid-Open Patent Publication No. 44-44, the spacer 4Ba filling the space between the electrode wirings is formed by the CVD method and the etch back method. However, this method has a wide wiring space which is not affected by the overhang shape of the CVD film. This is an effective method only for. When applied to a fine wiring space where there is a high possibility of occurrence of disconnection due to stress migration and a preventive measure for it is required, voids in the CVD film are formed during the formation of the CVD film due to the overhang shape of the CVD film. The presence of voids in the CVD film reduces the stress relaxation effect that causes stress migration, which is the original function of the spacer, and is therefore difficult to apply to a fine wiring pattern.

【0011】特開平3−167828号公報に開示され
た発明の場合、電極配線側壁に有機シラン(TEOS)
をソースとしたプラズマCVD法により酸化シリコン膜
を形成し、異方性エッチバックによりスペーサ化し、そ
の上層に酸化シリコン膜と窒化シリコン膜を形成するも
のであるが、この窒化シリコン膜は比誘電率が酸化シリ
コン膜と比較して高い(成膜方法にもよるが酸化シリコ
ン膜の比誘電率はおよそ3.6〜5、窒化シリコン膜で
は約8)ため、層間容量の増大を招き、半導体装置の動
作速度を低下させる。
In the case of the invention disclosed in Japanese Patent Laid-Open No. 3-167828, organosilane (TEOS) is formed on the side wall of the electrode wiring.
A silicon oxide film is formed by a plasma CVD method using a silicon oxide as a source, a spacer is formed by anisotropic etchback, and a silicon oxide film and a silicon nitride film are formed on the silicon oxide film, and the silicon nitride film has a relative dielectric constant. Is higher than that of a silicon oxide film (the relative dielectric constant of the silicon oxide film is about 3.6 to 5 and about 8 for a silicon nitride film, depending on the film formation method), but this causes an increase in interlayer capacitance, resulting in a semiconductor device. Reduce the operating speed of.

【0012】[0012]

【課題を解決するための手段】本発明の半導体装置は、
半導体基板上の所定の第1絶縁膜を選択的に被覆する電
極配線と、前記電極配線の側面を被覆し圧縮応力を有す
る第2絶縁膜と、前記電極配線の表面及び前記第2絶縁
膜を被覆する引張応力を有する第3絶縁膜とを有すると
いうものである。
The semiconductor device of the present invention comprises:
An electrode wiring that selectively covers a predetermined first insulating film on a semiconductor substrate; a second insulating film that covers the side surface of the electrode wiring and has a compressive stress; a surface of the electrode wiring and the second insulating film; And a third insulating film having a tensile stress for covering.

【0013】また、本発明の半導体装置の製造方法は、
半導体基板上の所定の第1絶縁膜を選択的に被覆する電
極配線を形成する工程と、圧縮応力を有する第2絶縁膜
を被着した後少なくとも前記電極配線の側面部を除く表
面を露出させる工程と、全面に引張応力を有する第3絶
縁膜を形成する工程とを有するというものである。
A method of manufacturing a semiconductor device according to the present invention is
A step of forming an electrode wiring selectively covering a predetermined first insulating film on a semiconductor substrate, and exposing at least a surface of the electrode wiring except a side surface after depositing a second insulating film having a compressive stress. It includes a step and a step of forming a third insulating film having a tensile stress on the entire surface.

【0014】[0014]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0015】図1(a)〜(d)は本発明の第1の実施
例について説明するための工程順断面図である。
1 (a) to 1 (d) are sectional views in order of steps for explaining a first embodiment of the present invention.

【0016】まず、図1(a)に示すように、シリコン
基板1に図示しないMOSトランジスタ等の素子を形成
する。第1酸化シリコン膜2(第1絶縁膜)は熱酸化法
で形成したフィールド酸化膜や層間絶縁膜のいずれかを
代表して示すものである。ここでは例えばSiH4 とN
2 Oを用いたプラズマCVD法により厚さ約500nm
の厚みで形成する。続いてタングステンにチタンが10
wt%添加された厚さ100〜200nmのチタン−タ
ングステン膜と500〜1000nmのアルミニウム膜
をスパッタ法により形成し、既知の手法であるリソグラ
フィー技術とドライエッチング技術を用いてパターニン
グしてチタン−タングステン膜とアルミニウム膜より構
成される幅600nmの電極配線3Aを形成する。チタ
ン−タングステン膜はアルミニウムの能動領域への拡散
防止やアルミニウムのエレクトロマイグレーションやス
トレスマイグレーションの発生を抑制する事を目的とし
て設ける。アルミニウム膜は電極配線の主導電層となる
もので、アルミニウムに限らず他に金や銅またはこれら
の合金等の低い電気抵抗を有するものを用いてもよい。
First, as shown in FIG. 1A, elements such as MOS transistors (not shown) are formed on the silicon substrate 1. The first silicon oxide film 2 (first insulating film) is a representative one of a field oxide film formed by a thermal oxidation method and an interlayer insulating film. Here, for example, SiH 4 and N
Thickness of about 500 nm by plasma CVD method using 2 O
It is formed with the thickness of. Next, 10 titanium is added to tungsten.
A titanium-tungsten film having a thickness of 100 to 200 nm and an aluminum film having a thickness of 500 to 1000 nm added by wt% is formed by a sputtering method, and patterned by using a known technique such as a lithography technique and a dry etching technique. An electrode wiring 3A having a width of 600 nm and formed of an aluminum film is formed. The titanium-tungsten film is provided for the purpose of preventing diffusion of aluminum into the active region and suppressing the occurrence of aluminum electromigration and stress migration. The aluminum film serves as the main conductive layer of the electrode wiring, and not only aluminum but also a material having a low electric resistance such as gold, copper or alloys thereof may be used.

【0017】さらに図1(b)に示すように、電極配線
3Aおよび第1酸化シリコン膜上に、異なる発振周波数
を有する複数のRF電源とSiH4 、N2 O、N2 ガス
を用いたプラズマCVD法により第2絶縁膜である5〜
10×109 dyne/cm2 の圧縮応力を有する第2
酸化シリコン膜4Aを例えば100nmの厚みで形成す
る。この厚さは、電極配線間のスペースの半分を越えな
いように設定する。この第2酸化シリコン膜を形成する
際、高周波RF電源と低周波RF電源の2つのRF電源
の出力比を変化させる事により形成される膜の応力を引
張から圧縮まで変化させる事が可能である。例えば1
3.56MHzの高周波RF電源と200〜500KH
zの低周波RF電源の出力比を3:1〜4:1とした場
合、SiH4 ガスとN2 Oガスの流量比が1:0.5〜
1:1.5の条件で上述の値の応力を有する酸化シリコ
ン膜が形成できる。
Further, as shown in FIG. 1B, a plasma using a plurality of RF power sources having different oscillation frequencies and SiH 4 , N 2 O and N 2 gases is formed on the electrode wiring 3A and the first silicon oxide film. The second insulating film of 5 to 5 is formed by the CVD method.
Second having a 10 × 10 9 dyne / cm 2 compressive stress
The silicon oxide film 4A is formed with a thickness of 100 nm, for example. This thickness is set so as not to exceed half of the space between the electrode wirings. When forming this second silicon oxide film, it is possible to change the stress of the formed film from tension to compression by changing the output ratio of two RF power supplies, a high frequency RF power supply and a low frequency RF power supply. . Eg 1
High frequency RF power supply of 3.56MHz and 200 ~ 500KH
When the output ratio of the low frequency RF power source of z is 3: 1 to 4: 1, the flow rate ratio of SiH 4 gas and N 2 O gas is 1: 0.5 to.
A silicon oxide film having a stress of the above value can be formed under the condition of 1: 1.5.

【0018】さらに図1(c)に示すように、CF4
2 6 、CHF3 等のフッ素系ガスを用いた異方性エ
ッチバック法により第2酸化シリコン膜4Aをエッチバ
ックして電極配線側壁部のみに残すことにより順テーパ
形状を有するスペーサ4Aaを形成する。さらに図1
(d)に示すように異なる発振周波数を有する複数のR
F電源とSiH4 、N2 O、NH3 ガスを用いたプラズ
マCVD法より第3絶縁膜である0.5〜2×109
yne/cm2 の引張応力を有する酸窒化シリコン膜5
Aを500〜1000nmの厚みで形成する。この際に
は13.56MHzの高周波RF電源と200〜500
KHzの低周波RF電源の出力比を1〜2:1、SiH
4 ガスとN2 OガスとNH3 ガスの流量比が1:0.5
〜1.5:0.5〜1.5の条件で上述の値の応力を有
する酸窒化シリコン膜が形成できる。この酸窒化シリコ
ン膜を形成する際、電極配線は側壁のスペーサ4Aaに
より全体として順テーパ形状となっているために微細な
配線スペースでもボイドを生じにくく、微細な半導体装
置への適用も容易である。
Further, as shown in FIG. 1 (c), CF 4 ,
The second silicon oxide film 4A is etched back by an anisotropic etchback method using a fluorine-based gas such as C 2 F 6 or CHF 3 to leave the spacer 4Aa having a forward tapered shape only on the side wall of the electrode wiring. Form. Furthermore, FIG.
A plurality of Rs having different oscillation frequencies as shown in (d)
A third insulating film of 0.5 to 2 × 10 9 d is formed by a plasma CVD method using an F power source and SiH 4 , N 2 O, and NH 3 gas.
Silicon oxynitride film 5 having tensile stress of yne / cm 2
A is formed to a thickness of 500 to 1000 nm. At this time, a high-frequency RF power source of 13.56 MHz and 200 to 500
Output ratio of low frequency RF power source of KHz is 1-2: 1, SiH
The flow rate ratio of 4 gas, N 2 O gas, and NH 3 gas is 1: 0.5.
~ 1.5: A silicon oxynitride film having a stress of the above value can be formed under the condition of 0.5 to 1.5. When this silicon oxynitride film is formed, the electrode wiring has a forward taper shape as a whole due to the spacers 4Aa on the sidewalls, so that voids are unlikely to occur even in a fine wiring space, and application to a fine semiconductor device is easy. .

【0019】上述の手法により形成された半導体装置は
電極配線側壁部の絶縁膜スペーサの圧縮応力とその上層
に形成されている酸窒化シリコン膜の引張応力の相互緩
衝作用によりストレスマイグレーション発生を抑制でき
る。また酸窒化シリコン膜は窒化シリコン膜と同等のパ
ッシベーション性を有し、窒化シリコン膜よりも低比誘
電率である。そのために層間容量低減による半導体装置
の特性改善がはかれ、かつパッシベーション性が変わら
ないため半導体装置の長期信頼性も低下しない。本発明
の半導体装置は、MOS、バイポーラ等の半導体装置の
種類を選ばず適用する事ができる。
In the semiconductor device formed by the above-mentioned method, stress migration can be suppressed by the mutual buffering action of the compressive stress of the insulating film spacer on the side wall of the electrode wiring and the tensile stress of the silicon oxynitride film formed thereabove. . Further, the silicon oxynitride film has a passivation property equivalent to that of the silicon nitride film and has a lower relative dielectric constant than the silicon nitride film. Therefore, the characteristics of the semiconductor device can be improved by reducing the interlayer capacitance, and the long-term reliability of the semiconductor device does not decrease because the passivation property does not change. The semiconductor device of the present invention can be applied regardless of the type of semiconductor device such as MOS or bipolar.

【0020】続いて本発明の第2の実施例について説明
する。
Next, a second embodiment of the present invention will be described.

【0021】この実施例は第2酸化シリコン膜の形成方
法が第1の実施例と相違しているが他は同じである。
This embodiment is the same as the first embodiment except that the method of forming the second silicon oxide film is different.

【0022】すなわち、第1酸化シリコン膜上に電極配
線を形成した後異なる発振周波数を有する複数のRF電
源とTEOS〔SiO2 3 O)4 〕とオゾン(O3
を用いたプラズマCVD法により第2絶縁膜となる5〜
10×109 dyne/cm2 の圧縮応力を有する第2
酸化シリコン膜を100〜300nmの厚みで形成す
る。
That is, after forming the electrode wiring on the first silicon oxide film, a plurality of RF power sources having different oscillation frequencies, TEOS [SiO 2 H 3 O) 4 ], and ozone (O 3 ).
Forming a second insulating film by the plasma CVD method using
Second having a 10 × 10 9 dyne / cm 2 compressive stress
A silicon oxide film is formed with a thickness of 100 to 300 nm.

【0023】TEOS〔Si(O2 3 O)4 とオゾン
(O3 ) を用いたプラズマCVD法の場合、SiH4
ガスを用いた場合よりも配線段差に対する酸化シリコン
膜の被覆性(ステップカバレッジ)が良好であった。そ
のためSiH4 系ガスを用いた場合よりも微細な配線ス
ペースへの空洞を生じない絶縁膜形成が可能であった。
[0023] TEOS [Si (O 2 H 3 O) 4 and ozone (O 3) when the plasma CVD method using the coating of the silicon oxide film to the wiring step than with the SiH 4 based gas (step The coverage was good. Therefore, it is possible to form an insulating film that does not form a cavity in a finer wiring space than in the case of using SiH 4 system gas.

【0024】[0024]

【発明の効果】以上説明したように本発明の半導体装置
は、電極配線の側面に圧縮応力を有する第2絶縁膜を設
け、電極配線の表面を露出させて引張応力を有する第3
絶縁膜を設けることにより圧縮応力と引張応力との相互
緩衝作用により電極配線のストレスマイグレーションを
抑制できるので半導体装置の長期信頼性を改善できる効
果がある。
As described above, in the semiconductor device of the present invention, the second insulating film having the compressive stress is provided on the side surface of the electrode wiring, and the third insulating film having the tensile stress is exposed by exposing the surface of the electrode wiring.
By providing the insulating film, it is possible to suppress the stress migration of the electrode wiring due to the mutual buffering effect of the compressive stress and the tensile stress, and thus it is possible to improve the long-term reliability of the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例について説明するため
(a)〜(d)に分図して示す工程順断面図である。
1A to 1D are cross-sectional views in order of the processes, illustrated in FIGS. 1A to 1D for illustrating a first embodiment of the present invention.

【図2】一従来例について説明するため(a)〜(d)
に分図して示す工程順断面図である。
FIG. 2 is a view for explaining a conventional example (a) to (d).
FIG. 7 is a sectional view in order of the processes, which is divided into FIGS.

【図3】他の従来例について説明するため(a)〜
(c)に分図して示す工程順断面図である。
FIG. 3A is a diagram for explaining another conventional example.
It is a process order sectional view divided and shown in (c).

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 第1酸化シリコン膜 3A,3C,3D 電極配線 4A,4C 第2酸化シリコン膜 4Aa,4Ca,4Da スペーサ 5A,5B 酸窒化シリコン膜 5C 第3酸化シリコン膜 5D PSG膜 6 フォトレジスト膜 7 拡散層 8 フィールド酸化膜 9 コンタクトホール 10 窒化シリコン膜 11 ボンディングパッド 1 Silicon Substrate 2 First Silicon Oxide Film 3A, 3C, 3D Electrode Wiring 4A, 4C Second Silicon Oxide Film 4Aa, 4Ca, 4Da Spacer 5A, 5B Silicon Oxynitride Film 5C Third Silicon Oxide Film 5D PSG Film 6 Photoresist Film 7 Diffusion layer 8 Field oxide film 9 Contact hole 10 Silicon nitride film 11 Bonding pad

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上の所定の第1絶縁膜を選択
的に被覆する電極配線と、前記電極配線の側面を被覆し
圧縮応力を有する第2絶縁膜と、前記電極配線の表面及
び前記第2絶縁膜を被覆する引張応力を有する第3絶縁
膜とを有することを特徴とする半導体装置。
1. An electrode wiring selectively covering a predetermined first insulating film on a semiconductor substrate, a second insulating film covering a side surface of the electrode wiring and having a compressive stress, a surface of the electrode wiring and the A semiconductor device comprising: a third insulating film having a tensile stress, which covers the second insulating film.
【請求項2】 電極配線がアルミニウム、金または銅も
しくはその合金からなる単層もしくは複層の導電膜を含
む請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the electrode wiring includes a single-layer or multi-layer conductive film made of aluminum, gold, copper or an alloy thereof.
【請求項3】 半導体基板上の所定の第1絶縁膜を選択
的に被覆する電極配線を形成する工程と、圧縮応力を有
する第2絶縁膜を被着した後少なくとも前記電極配線の
側面部を除く表面を露出させる工程と、全面に引張応力
を有する第3絶縁膜を形成する工程とを有することを特
徴とする半導体装置の製造方法。
3. A step of forming an electrode wiring selectively covering a predetermined first insulating film on a semiconductor substrate, and at least a side surface portion of the electrode wiring after depositing a second insulating film having a compressive stress. A method of manufacturing a semiconductor device, comprising: a step of exposing a surface to be removed; and a step of forming a third insulating film having a tensile stress on the entire surface.
JP24964293A 1993-10-06 1993-10-06 Semiconductor device and its manufacture Pending JPH07106323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24964293A JPH07106323A (en) 1993-10-06 1993-10-06 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24964293A JPH07106323A (en) 1993-10-06 1993-10-06 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH07106323A true JPH07106323A (en) 1995-04-21

Family

ID=17196063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24964293A Pending JPH07106323A (en) 1993-10-06 1993-10-06 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH07106323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154184B2 (en) 2003-06-10 2006-12-26 Renesas Technology Corp. Interconnection structure of semiconductor device
KR100631458B1 (en) * 1997-02-17 2007-03-02 산요덴키가부시키가이샤 Thin film transistor and method for manufacturing the same
JP2014102310A (en) * 2012-11-19 2014-06-05 Seiko Epson Corp Electro-optic device, method for manufacturing electro-optic device, and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194932A (en) * 1989-12-22 1991-08-26 Sony Corp Manufacture of semiconductor device
JPH04188831A (en) * 1990-11-22 1992-07-07 Nippon Steel Corp Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194932A (en) * 1989-12-22 1991-08-26 Sony Corp Manufacture of semiconductor device
JPH04188831A (en) * 1990-11-22 1992-07-07 Nippon Steel Corp Semiconductor device and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631458B1 (en) * 1997-02-17 2007-03-02 산요덴키가부시키가이샤 Thin film transistor and method for manufacturing the same
US7154184B2 (en) 2003-06-10 2006-12-26 Renesas Technology Corp. Interconnection structure of semiconductor device
US7489040B2 (en) 2003-06-10 2009-02-10 Renesas Technology Corp. Interconnection structure of semiconductor device
JP2014102310A (en) * 2012-11-19 2014-06-05 Seiko Epson Corp Electro-optic device, method for manufacturing electro-optic device, and electronic equipment

Similar Documents

Publication Publication Date Title
JP3248492B2 (en) Semiconductor device and manufacturing method thereof
JP3128811B2 (en) Method for manufacturing semiconductor device
US5607880A (en) Method of fabricating multilevel interconnections in a semiconductor integrated circuit
JPH07273063A (en) Semiconductor device and its manufacture
US6372672B1 (en) Method of forming a silicon nitride layer in a semiconductor device
JPH08330305A (en) Insulation film formation of semiconductor device
US20030013311A1 (en) Method of avoiding dielectric layer deterioation with a low dielectric constant during a stripping process
JPH10223760A (en) Method for formation of air gap by plasma treatment of aluminum interconnection
KR100389034B1 (en) Method of forming interlayer connection and semiconductor devices formed by using the same
US6455891B2 (en) Semiconductor device and method for manufacturing the same
JPH0653337A (en) Manufacture of semiconductor device
US5792702A (en) Method for forming a film over a spin-on-glass layer by means of plasma-enhanced chemical-vapor deposition
JP2001284451A (en) Method for manufacturing two-dimensional waveform structure
JPH10209278A (en) Semiconductor device and its manufacture
JP4623949B2 (en) Manufacturing method of semiconductor integrated circuit device
JPH07106323A (en) Semiconductor device and its manufacture
JP2000150517A (en) Semiconductor integrated circuit device and fabrication thereof
JPH0831932A (en) Manufacture of semiconductor integrated circuit device
JP2001284450A (en) Manufacturing method for semiconductor device and semiconductor device
JP2004207604A (en) Semiconductor device and its manufacturing method
JPH09172017A (en) Semiconductor device manufacturing method
JPH1116914A (en) Mutual connection method for semiconductor device and constitution body
US8076235B2 (en) Semiconductor device and fabrication method thereof
US6197630B1 (en) Method of fabricating a narrow bit line structure
US6559047B1 (en) Method of forming a metal interconnect that substantially reduces the formation of intermetallic residue regions

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970304