JPS6113669A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6113669A
JPS6113669A JP59133783A JP13378384A JPS6113669A JP S6113669 A JPS6113669 A JP S6113669A JP 59133783 A JP59133783 A JP 59133783A JP 13378384 A JP13378384 A JP 13378384A JP S6113669 A JPS6113669 A JP S6113669A
Authority
JP
Japan
Prior art keywords
layer
film
hole
insulating film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59133783A
Other languages
Japanese (ja)
Inventor
Kazuo Tsuru
津留 一夫
Yutaka Etsuno
越野 裕
Yoshiro Baba
馬場 嘉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59133783A priority Critical patent/JPS6113669A/en
Publication of JPS6113669A publication Critical patent/JPS6113669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Abstract

PURPOSE:To form the relative positional relationship of each layer precisely by oxidizing a polycrystalline layer used for shaping a P<+> layer in a substrate as it is and etching the oxidizing section to form a hole for shaping a P layer and an N layer. CONSTITUTION:Three layer films of an insulating film 32, a semiconductor polycrystalline layer 33 and an insulating film 34 difficult to be oxidized are formed onto a semiconductor substrate 31, and a hole 35 is shaped at a predetermined position. A P<+> layer 36 is formed from the hole 35. The layer 33 is oxidized while using the film 34 as a mask to shape an oxide film 37. The film 34 is removed, a resist film 38 is formed selectively onto the film 37, and a hole 39 is shaped while employing the film 38 and the layer 33 as masks. A P type base body layer 40 and an N type source layer 41 are formed while using the layer 33 as a mask. According to said manufacture, the accuracy of spaces among the end of the layer 36 and the ends of the layer 40 and the layer 41 is determined by the accuracy of oxidation having excellent controllability, and relative positional relationship among the layer 36 and both the layer 40 and the N layer 41 can be formed precisely.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は縦型MO8FETを構成する半導体装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device constituting a vertical MO8FET.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第2図に従来の縦型MO8構造のパワーMO8FETの
断面図と等価回路図を示す。図中1はドレインとなるN
型半導体基板、2はP型ベースボディ領域、3はN型ソ
ース領域、4は絶縁膜、5は半導体多結晶層、6は眉間
絶縁膜、Gはダート電極、Sはソース電極、Dはドレイ
ン電極、7は縦型MO8)ランジスタ、8は寄生トラン
ジスタ、9は寄生抵抗である。第2図<)のようにソー
ス電極Sによυペースがディ層2とソース層3は短絡さ
れているが、回路的に見れば寄生トランジスタ8のペー
ス、コレクタ間は抵抗9によ多接続されている。寄生ト
ランジスタ8の動作防止のためには抵抗9を小さくする
ことが必要である。
FIG. 2 shows a cross-sectional view and an equivalent circuit diagram of a conventional power MO8FET having a vertical MO8 structure. In the figure, 1 is the drain N
type semiconductor substrate, 2 is a P-type base body region, 3 is an N-type source region, 4 is an insulating film, 5 is a semiconductor polycrystalline layer, 6 is an insulating film between the eyebrows, G is a dirt electrode, S is a source electrode, and D is a drain. 7 is a vertical MO8) transistor, 8 is a parasitic transistor, and 9 is a parasitic resistor. As shown in Fig. 2<), the di layer 2 and the source layer 3 are short-circuited by the source electrode S, but from a circuit perspective, the resistor 9 is connected between the paste and collector of the parasitic transistor 8. has been done. In order to prevent the operation of the parasitic transistor 8, it is necessary to reduce the resistance 9.

第3図に従来の抵抗9の値を小さくするトランジスタ製
造方法を示す。第3図(a)に示される如く半導体基板
11上に酸化812を形成後、その所定位置に穴13を
設ける。次にその穴13よシ基板11と反対導電型の不
純物を拡散し、第2図(b)に示す如くP+層14を設
ける。
FIG. 3 shows a conventional method of manufacturing a transistor in which the value of the resistor 9 is reduced. After forming oxide 812 on semiconductor substrate 11 as shown in FIG. 3(a), holes 13 are formed at predetermined positions. Next, an impurity having a conductivity type opposite to that of the substrate 11 is diffused through the hole 13 to form a P+ layer 14 as shown in FIG. 2(b).

その後酸化を行なってP 層14を被うように酸化膜1
5を形成し、第3図(c)に示す如くペースがディ領域
16、ソース領域17の形成を行なう。図中18.19
はこの領域16.17を形成する際に用いた絶縁膜、半
導体多結晶層である。最後に第3図(d)に示す如く層
間絶縁膜20、電極2ノを設けるものである。
After that, oxidation is performed to form an oxide film 1 covering the P layer 14.
Then, as shown in FIG. 3(c), a di region 16 and a source region 17 are formed. 18.19 in the figure
is an insulating film and a semiconductor polycrystalline layer used when forming the regions 16 and 17. Finally, as shown in FIG. 3(d), an interlayer insulating film 20 and an electrode 2 are provided.

前述した如く寄生トランジスタ8の動作防止のためには
、そのペース、コレクタ間の抵抗9の値はできるだけ小
さい方が望ましい。即ちP+層14はできるだけ広くし
たい。しかし従来の製造方法によれば、P 層14形成
用の穴13の大きさは、写真蝕刻工程時のマスク合わせ
精度つまυP+P+層相4用穴時の合わせ精度と2層1
6、N層14形成用の拡散用穴あけの合わせ精度を見込
んで決めなければなら々い。
As mentioned above, in order to prevent the operation of the parasitic transistor 8, it is desirable that its pace and the value of the resistor 9 between its collectors be as small as possible. That is, it is desirable to make the P+ layer 14 as wide as possible. However, according to the conventional manufacturing method, the size of the hole 13 for forming the P layer 14 is determined by the mask alignment accuracy during the photolithography process, υP+P+alignment accuracy for the hole for layer 4, and the size of the hole 13 for forming the P layer 14.
6. The alignment accuracy of the diffusion holes for forming the N layer 14 must be taken into account when deciding.

つまりP+層14形成時の端は、その後形成される2層
16、N層17に対してセルファラインになっていない
わけで、P 層14と2層16、N層17との相対的位
置関係を精度よく形成することが難し込ものである。
In other words, the edge of the P+ layer 14 when it is formed does not form a self-line with respect to the second layer 16 and N layer 17 that will be formed later, and the relative positional relationship between the P layer 14, the second layer 16, and the N layer 17 is It is difficult to form it with high precision.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に鑑みてなされたもので、縦型MO8
構造の寄生トランジスタ動作防止用の高濃度層(前記P
+層14に相当)とペースがディ層、ソース層との相対
的位置関係を精度よく形成することができる半導体装置
の製造方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and is a vertical MO8
Highly doped layer for preventing parasitic transistor operation in the structure (the P
It is an object of the present invention to provide a method for manufacturing a semiconductor device in which the relative positional relationship between a layer (corresponding to the + layer 14), a di layer, and a source layer can be formed with high accuracy.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、半導体基板上に第
1の絶縁膜、半導体多結晶層及び酸化されにくい第2の
絶縁膜よりなる三層膜を形成する第1の工程と、前記三
層膜に不純物層形成用の穴をあける第2の工程と、前記
穴から前記半導体基板とは反対導電型の高濃度不純物層
を形成する第3の工程と、前記第2の絶縁膜をマスクと
して少くとも前記半導体多結晶層を酸化する第4の工程
と、前記第2の絶縁Mを除去し前記第4の工程で形成さ
れた酸化膜を少くとも前記半導体多結晶をマスクとして
除去する第5の工程と、少くとも前記半導体多結晶層を
マスクとしてP、N型不純物層を形成する第6の工程と
を具備したものである。
In order to achieve the above object, the present invention includes a first step of forming a three-layer film consisting of a first insulating film, a semiconductor polycrystalline layer, and a second insulating film that is difficult to oxidize on a semiconductor substrate; a second step of making a hole for forming an impurity layer in the layer film; a third step of forming a highly concentrated impurity layer of a conductivity type opposite to that of the semiconductor substrate from the hole; and a masking of the second insulating film. a fourth step of oxidizing at least the semiconductor polycrystalline layer; and a fourth step of removing the second insulation M and removing the oxide film formed in the fourth step using at least the semiconductor polycrystalline layer as a mask. 5 and a sixth step of forming P and N type impurity layers using at least the semiconductor polycrystalline layer as a mask.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の一実施例を説明する。まず
第1図(、)に示す如く半導体基板31上に第1の絶縁
膜(例えば5tO2膜〕32、半導体多結晶層33、第
2の絶縁膜(酸化されにくい例えばslNg ) s 
4の三層膜を形成し、その所定位置に穴35を形成する
。次に第1図(b)に示す如く穴35から、イオン注入
やCVD膜によりP 層36を形成する。次に第2絶縁
膜34をマスクとして半導体多結晶層33の酸化を行な
うことにより、第1図(C)の如く酸化膜37を形成す
る。次に第1図(d)の如く第2絶縁膜34を除去し、
酸化膜37上に選択的にレジスト膜38を形成してから
、館1図(e)に示す如くレジスト膜38及び多結晶層
33をマスクとしてエツチングを行なうことによシ穴3
9を形成する。次に多結晶層33をマスクとして穴39
から、ゼロンのイオン注入、拡散及び燐のイオン注入、
拡散を行なうことによシP型ペース?ディ層40及びN
型ンース層41を形成する。その後従来の方法によシ層
間絶縁膜42とと電極43の形成を行なうものである。
An embodiment of the present invention will be described below with reference to the drawings. First, as shown in FIG. 1(, ), a first insulating film (for example, 5tO2 film) 32, a semiconductor polycrystalline layer 33, and a second insulating film (for example, SLNg, which is difficult to oxidize) are formed on a semiconductor substrate 31.
A three-layer film of No. 4 is formed, and a hole 35 is formed at a predetermined position. Next, as shown in FIG. 1(b), a P layer 36 is formed through the hole 35 by ion implantation or CVD film. Next, the semiconductor polycrystalline layer 33 is oxidized using the second insulating film 34 as a mask, thereby forming an oxide film 37 as shown in FIG. 1(C). Next, as shown in FIG. 1(d), the second insulating film 34 is removed,
After selectively forming a resist film 38 on the oxide film 37, the holes 3 are etched using the resist film 38 and the polycrystalline layer 33 as a mask, as shown in FIG. 1(e).
form 9. Next, using the polycrystalline layer 33 as a mask, the hole 39 is
From, xelon ion implantation, diffusion and phosphorus ion implantation,
P-type pace by doing diffusion? D layer 40 and N
A mold base layer 41 is formed. Thereafter, an interlayer insulating film 42 and an electrode 43 are formed using a conventional method.

上記製造方法によれば、P 層36の形成に用いた多結
晶層33をそのま\酸化して、その酸化した部分をエツ
チングし、2層40及びN層41形成の穴とするから、
P+層36の端と2層40及び8層41の端との間の間
隔精度は、制御性のよい酸化精度できまり、P+層36
と2層40及び8層41との相対的位置関係を精度よく
形成でき、しかもP+層36を広く形成できるものであ
る。
According to the above manufacturing method, the polycrystalline layer 33 used for forming the P layer 36 is oxidized as it is, and the oxidized portion is etched to form holes for forming the second layer 40 and the N layer 41.
The spacing accuracy between the edge of the P+ layer 36 and the edges of the second layer 40 and the eighth layer 41 is determined by the oxidation accuracy with good controllability.
The relative positional relationship between the second layer 40 and the eighth layer 41 can be formed with high accuracy, and the P+ layer 36 can be formed widely.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、縦型MO8の寄生ト
ランジスタ動作防止用の高濃度層とべ、−6一 −スだディ層、ソース層との相対的位置関係を精度よく
形成できるなどの利点を有した半導体装置の製造方法が
提供できるものである。
As explained above, according to the present invention, there are advantages such as the ability to accurately form the relative positional relationship with the high-concentration layer top layer for preventing the parasitic transistor operation of the vertical MO8, the -61-stride layer, and the source layer. A method for manufacturing a semiconductor device having the following can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(=)ないし優)は本発明の一実施例の工程説明
図、第2図(&)は従来の縦型MO8FETの断面図、
同図(b)は同等価回路図、第3図(、)ないしくd)
は従来の縦型MO8FETの製造工程説明図である。 31・・・半導体基板、32・・・第1の絶縁膜、33
・・・半導体多結晶層、34・・・第2の絶縁膜、35
.39・・・穴、36・・・P+層、37・・・酸化膜
、38・・・レジスト膜、40・・・ベースがティ層、
41・・・ソース層。
FIG. 1 (=) to excellent) is a process explanatory diagram of an embodiment of the present invention, FIG. 2 (&) is a sectional view of a conventional vertical MO8FET,
The same figure (b) is an equivalent circuit diagram, Figure 3 (,) or d)
1 is an explanatory diagram of the manufacturing process of a conventional vertical MO8FET. 31... Semiconductor substrate, 32... First insulating film, 33
... Semiconductor polycrystalline layer, 34 ... Second insulating film, 35
.. 39... Hole, 36... P+ layer, 37... Oxide film, 38... Resist film, 40... Base is T layer,
41... Source layer.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に第1の絶縁膜、半導体多結晶層及び酸
化されにくい第2の絶縁膜よりなる三層膜を形成する第
1の工程と、前記三層膜に不純物層形成用の穴をあける
第2の工程と、前記穴から前記半導体基板とは反対導電
型の高濃度不純物層を形成する第3の工程と、前記第2
の絶縁膜をマスクとして少くとも前記半導体多結晶層を
酸化する第4の工程と、前記第2の絶縁膜を除去し前記
第4の工程で形成された酸化膜を少くとも前記半導体多
結晶をマスクとして除去する第5の工程と、少くとも前
記半導体多結晶層をマスクとしてP、N型不純物層を形
成する第6の工程とを具備したことを特徴とする半導体
装置の製造方法。
A first step of forming a three-layer film consisting of a first insulating film, a semiconductor polycrystalline layer, and a second insulating film that is difficult to oxidize on a semiconductor substrate, and forming a hole for forming an impurity layer in the three-layer film. a second step, a third step of forming a highly concentrated impurity layer of a conductivity type opposite to that of the semiconductor substrate from the hole;
a fourth step of oxidizing at least the semiconductor polycrystalline layer using the insulating film as a mask; and a fourth step of oxidizing at least the semiconductor polycrystalline layer by removing the second insulating film and oxidizing the oxide film formed in the fourth step. A method for manufacturing a semiconductor device, comprising a fifth step of removing the polycrystalline semiconductor layer as a mask, and a sixth step of forming a P-type and N-type impurity layer using at least the semiconductor polycrystalline layer as a mask.
JP59133783A 1984-06-28 1984-06-28 Manufacture of semiconductor device Pending JPS6113669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59133783A JPS6113669A (en) 1984-06-28 1984-06-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59133783A JPS6113669A (en) 1984-06-28 1984-06-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6113669A true JPS6113669A (en) 1986-01-21

Family

ID=15112889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59133783A Pending JPS6113669A (en) 1984-06-28 1984-06-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6113669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700064A1 (en) * 1992-12-24 1994-07-01 Mitsubishi Electric Corp Semiconductor device with insulated gate and manufacturing method.
EP0631689A1 (en) * 1992-03-20 1995-01-04 SILICONIX Incorporated Threshold adjustment in vertical dmos devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631689A1 (en) * 1992-03-20 1995-01-04 SILICONIX Incorporated Threshold adjustment in vertical dmos devices
EP0631689A4 (en) * 1992-03-20 1996-07-31 Siliconix Inc Threshold adjustment in vertical dmos devices.
FR2700064A1 (en) * 1992-12-24 1994-07-01 Mitsubishi Electric Corp Semiconductor device with insulated gate and manufacturing method.

Similar Documents

Publication Publication Date Title
KR970004458B1 (en) Single tub transistor and method for its fabrication
JPS6113669A (en) Manufacture of semiconductor device
JPS6298663A (en) Semiconductor integrated circuit device
JPH0116018B2 (en)
JPS6315744B2 (en)
JPS6228587B2 (en)
JPH0366815B2 (en)
JPS5866358A (en) Semiconductor device and manufacture thereof
JP3184389B2 (en) Method of forming buried layer of bipolar element
JPS63221668A (en) Schottky barrier diode and manufacture thereof
JPS6223169A (en) Manufacture of semiconductor device
JPS6252966A (en) Manufacture of semiconductor device
JPS6214466A (en) Manufacture of semiconductor device
JPS6399563A (en) Manufacture of semiconductor device
JPS61201465A (en) Manufacture of transistor
JPH0475346A (en) Manufacture of semiconductor device
JPS62140462A (en) Manufacture of semiconductor device
JPS63211748A (en) Manufacture of semiconductor device
JPH01202855A (en) Manufacture of semiconductor integrated circuit
JPH01181465A (en) Manufacture of ultra-high speed semiconductor device
JPH0456457B2 (en)
JPH03149870A (en) Manufacture of semiconductor device
JPS5918674A (en) Manufacture of semiconductor device
JPH0218940A (en) Manufacture of semiconductor device
JPS60167470A (en) Manufacture of semiconductor device