JPH01202855A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH01202855A
JPH01202855A JP2659588A JP2659588A JPH01202855A JP H01202855 A JPH01202855 A JP H01202855A JP 2659588 A JP2659588 A JP 2659588A JP 2659588 A JP2659588 A JP 2659588A JP H01202855 A JPH01202855 A JP H01202855A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon film
insulating film
type
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2659588A
Other languages
Japanese (ja)
Inventor
Ichiro Matsuo
一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2659588A priority Critical patent/JPH01202855A/en
Publication of JPH01202855A publication Critical patent/JPH01202855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form emitter width in a bipolar type transistor finely, and to improve high speed properties by determining emitter width through one-time photoetching process. CONSTITUTION:A first conductivity type base region 6 is shaped along the surface of a semiconductor substrate 1, and a thin insulating film 5 and a first polycrystalline silicon film 8 are laminated and formed successively onto the surface of the semiconductor substrate 1. One part of the first polycrystalline silicon film 8 and the insulating film 5 are removed selectively and an emitter window 9 reaching the base region is bored, a second polycrystalline silicon film 11 is applied onto the whole surface, and an impurity is introduced into the base region 6 through the second polycrystalline silicon film 11 to form a reverse conductivity type emitter region 14. The insulating film 5 and the polycrystalline silicon film 8 respectively function as a gate insulating film and a gate electrode in a MIS type transistor in combination. Accordingly, a bipolar MIS type semiconductor integrated circuit having a bipolar type transistor having excellent high speed properties can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高速動作に適したバイポーラ型トランジスタ
を有する半導体集積回路の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor integrated circuit having bipolar transistors suitable for high-speed operation.

(従来の技術) 半導体集積回路はバイポーラ型集積回路とMIS型集積
回路とに大別され、それぞれ高速性および高集積性とい
う特徴を有しているが、近年これらの両者の特徴を両立
させたバイポーラMIS型半導体集積回路の開発がさか
んに行われている。
(Prior art) Semiconductor integrated circuits are broadly divided into bipolar integrated circuits and MIS integrated circuits, each of which has the characteristics of high speed and high integration. Bipolar MIS type semiconductor integrated circuits are being actively developed.

このようなバイポーラMIS型半導体集積回路の製造方
法は第2図に示すようなものであった。
A method of manufacturing such a bipolar MIS type semiconductor integrated circuit was as shown in FIG.

第2図(a)ないしくe)は従来のバイポーラMIS型
集積回路の製造方法の工程順断面図である。
FIGS. 2(a) to 2(e) are cross-sectional views in the order of steps of a conventional method for manufacturing a bipolar MIS type integrated circuit.

第2図(a)に示すように、P型半導体基板21上にN
0型サブコレクタ領域22、N型エピタキシャル層23
.P型ウェル領域24、フィールド絶縁膜25、P型ベ
ース領域26、ゲート絶縁膜27、およびゲート電極2
8を順次形成する。
As shown in FIG. 2(a), N
0 type subcollector region 22, N type epitaxial layer 23
.. P-type well region 24, field insulating film 25, P-type base region 26, gate insulating film 27, and gate electrode 2
8 in sequence.

第2図(b)に示すように、フォトレジスト膜29およ
びゲート電極28をマスクとして高濃度の砒素をイオン
注入して、N1型ドレイン領域30およびN4型エミッ
タ領域31を形成する。
As shown in FIG. 2(b), highly concentrated arsenic is ion-implanted using the photoresist film 29 and the gate electrode 28 as masks to form an N1 type drain region 30 and an N4 type emitter region 31.

第2図(C)に示すように、全面に層間絶縁膜32を形
成したのち、各領域への電気的接触をとるためのコンタ
クト窓33を形成する。
As shown in FIG. 2(C), after forming an interlayer insulating film 32 on the entire surface, contact windows 33 for making electrical contact with each region are formed.

こののち、通常の配線工程を経てバイポーラMIS型半
導体集積回路が完成する。
Thereafter, the bipolar MIS type semiconductor integrated circuit is completed through a normal wiring process.

(発明が解決しようとする課題) 上記、従来のバイポーラMIS型半導体集積回路の製造
方法においては、コンタクト窓33がN0型エミッタ領
域31を形成したのち開孔されるため。
(Problems to be Solved by the Invention) In the above-described conventional method for manufacturing a bipolar MIS type semiconductor integrated circuit, the contact window 33 is opened after the N0 type emitter region 31 is formed.

製造工程でのマスク合わせずれを考慮するN+型エミッ
タ領域31はコンタクト窓33より充分大きくなければ
ならない、−例としてコンタクト窓33の最小加工寸法
が1戸、マスク合わせずれが最大1戸とすると、最小の
エミッタ幅は3−となる。すなわち、非常に微細な最小
加工寸法を達成してもバイポーラ型トランジスタのエミ
ッタ幅はあまり微細化できず、結果として高速性がそれ
ほど高くならない欠点があった。
Considering mask misalignment in the manufacturing process, the N+ type emitter region 31 must be sufficiently larger than the contact window 33. For example, if the minimum processing size of the contact window 33 is 1 unit and the maximum mask misalignment is 1 unit, The minimum emitter width will be 3-. That is, even if extremely fine minimum processing dimensions were achieved, the emitter width of the bipolar transistor could not be made much smaller, and as a result, there was a drawback that the high speed performance could not be improved very much.

本発明の目的は、従来の欠点を解消し、エミッタ幅を微
細にすることができ、浅いエミッタが形成でき、高速性
に優れた半導体集積回路の製造方法を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit which eliminates the conventional drawbacks, allows the emitter width to be made fine, allows shallow emitters to be formed, and is excellent in high speed.

(8題を解決するための手段) 本発明の半導体集積回路の製造方法は、半導体基板の表
面に沿って第1導電型のベース領域を形成する工程と、
半導体基板の表面上に薄い絶縁膜と第1の多結晶シリコ
ン膜とを順次積層して形成する工程と、第1の多結晶シ
リコン膜および絶縁膜の一部を選択的に除去してベース
領域に達するエミッタ窓を開孔したのち、全面に第2の
多結晶シリコン膜を被着する工程と、第2の多結晶シリ
コン膜を通して、ベース領域内に不純物を導入して反対
導電型のエミッタ領域を形成する工程とを含むものであ
り、絶縁膜および多結晶シリコン膜がそれぞれMIS型
トランジスタのゲート絶縁膜およびゲート電極を兼ねる
ものである。
(Means for Solving Problem 8) A method for manufacturing a semiconductor integrated circuit according to the present invention includes a step of forming a base region of a first conductivity type along the surface of a semiconductor substrate;
A process of sequentially stacking a thin insulating film and a first polycrystalline silicon film on the surface of a semiconductor substrate, and selectively removing a portion of the first polycrystalline silicon film and the insulating film to form a base region. After opening an emitter window that reaches 100 cm, a second polycrystalline silicon film is deposited on the entire surface, and an impurity is introduced into the base region through the second polycrystalline silicon film to form an emitter region of the opposite conductivity type. The insulating film and the polycrystalline silicon film also serve as the gate insulating film and gate electrode of the MIS type transistor, respectively.

(作 用) 本発明の半導体集積回路の製造方法によれば。(for production) According to the method for manufacturing a semiconductor integrated circuit of the present invention.

高速性に優れたバイポーラ型トランジスタを有するバイ
ポーラMIS型半導体集積回路を製造することができる
A bipolar MIS type semiconductor integrated circuit having bipolar type transistors with excellent high speed performance can be manufactured.

(実施例) 本発明の一実施例を第1図に基づいて説明する。(Example) An embodiment of the present invention will be described based on FIG.

第1図Ca’)ないしくf)は本発明の半導体集積回路
の製造方法の工程を示す断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views showing the steps of the method for manufacturing a semiconductor integrated circuit according to the present invention.

第1図(a)において、P型半導体基板1上にN0型サ
ブコレクタ領域2、N型エピタキシャル層3、P型ウェ
ル領域4、フィールド絶縁膜5、P型ベース領域6およ
び、ゲート絶縁膜7を順次形成し、全面に第1の多結晶
シリコン膜8を被着する。
In FIG. 1(a), a P-type semiconductor substrate 1 is provided with an N0-type subcollector region 2, an N-type epitaxial layer 3, a P-type well region 4, a field insulating film 5, a P-type base region 6, and a gate insulating film 7. are sequentially formed, and a first polycrystalline silicon film 8 is deposited on the entire surface.

次に、第1図(b)に示すように、第1の多結晶シリコ
ン膜8およびゲート絶縁膜7の一部を選択的にエツチン
グ除去し、エミッタ窓9およびコレクタ・コンタクト窓
10を開孔する。
Next, as shown in FIG. 1(b), a portion of the first polycrystalline silicon film 8 and gate insulating film 7 are selectively etched away, and an emitter window 9 and a collector contact window 10 are opened. do.

次に、第1図(e)に示すように、全体に第2の多結晶
シリコン膜11を被着する。このとき、第2の多結晶シ
リコン膜11と第1の多結晶シリコン膜8あるいはP型
ベース領域6との電気的コンタクトが充分とれるように
表面を弗酸等でエツチングしても、ゲート絶縁膜7は第
1の多結晶シリコン膜8で覆われているため影響を受け
ない。
Next, as shown in FIG. 1(e), a second polycrystalline silicon film 11 is deposited on the entire surface. At this time, even if the surface is etched with hydrofluoric acid or the like so that sufficient electrical contact can be made between the second polycrystalline silicon film 11 and the first polycrystalline silicon film 8 or the P-type base region 6, the gate insulating film 7 is not affected because it is covered with the first polycrystalline silicon film 8.

次に、第1図(d)に示すように、第2の多結晶シリコ
ン膜11、第1の多結晶シリコン膜8およびゲート絶縁
膜7の一部を選択的にエツチング除去し、エミッタ窓9
およびコレクタ・コンタクト窓10の周辺部とゲート電
極12だけを残留させる。
Next, as shown in FIG. 1(d), parts of the second polycrystalline silicon film 11, first polycrystalline silicon film 8, and gate insulating film 7 are selectively removed, and the emitter window 9 is etched away.
Only the peripheral portion of the collector contact window 10 and the gate electrode 12 are left.

次に、第1図(e)に示すように、フォトレジスト膜1
3をマスクとして高濃度の砒素をイオン注入し、N9型
エミッタ領域14、N3型コレクタ・コンタクト領域1
5およびN4型ドレイン領域16を形成する。このとき
、N0型エミッタ領域14およびN+型コレクタ・コン
タクト領域15は多結晶シリコンからの拡散により形成
されるためN0型ドレイン領域16より拡散の深さが浅
くなる。
Next, as shown in FIG. 1(e), the photoresist film 1
3 as a mask, high-concentration arsenic is ion-implanted to form an N9 type emitter region 14 and an N3 type collector contact region 1.
5 and N4 type drain regions 16 are formed. At this time, since the N0 type emitter region 14 and the N+ type collector contact region 15 are formed by diffusion from polycrystalline silicon, the depth of diffusion is shallower than that of the N0 type drain region 16.

次に、第1図(f)に示すように、全面に層間絶。Next, as shown in FIG. 1(f), the entire surface is interlayered.

縁膜17を形成したのち、各領域へのコンタクト窓18
を開孔する。
After forming the edge film 17, a contact window 18 to each region is formed.
Drill a hole.

こののち、通常の配線工程を経てバイポーラMIS型半
導体集積回路が完成する。
Thereafter, the bipolar MIS type semiconductor integrated circuit is completed through a normal wiring process.

この半導体集積回路の製造方法では、エミッタ窓9の幅
は第1の多結晶シリコン膜8の加工精度により決定され
、コンタクト窓との合わせずれを考慮する必要がないた
め、エミッタ幅をフォトエツチングの最小加工寸法程度
に小さくできる。さらにエミッタ領域への不純物の拡散
を多結晶シリコンを通して行うため、拡散深さを浅くす
ることができ、結果として高速性に優れたバイポーラ型
トランジスタを得ることができる。
In this semiconductor integrated circuit manufacturing method, the width of the emitter window 9 is determined by the processing accuracy of the first polycrystalline silicon film 8, and there is no need to take into account misalignment with the contact window. Can be made as small as the minimum processing size. Furthermore, since the impurity is diffused into the emitter region through polycrystalline silicon, the diffusion depth can be made shallow, and as a result, a bipolar transistor with excellent high speed performance can be obtained.

なお、第1図の実施例では、説明の都合上、バイポーラ
型トランジスタとしてNPN型を、またMIS型トラン
ジスタとしてNチャネル型を用いたが、これはそれぞれ
PNP型およびPチャネル型としても同様の効果が得ら
れるし、またいわゆる相補型MIS集積回路に適用する
こともできる。
In the embodiment shown in FIG. 1, for convenience of explanation, an NPN type is used as the bipolar transistor and an N-channel type is used as the MIS transistor, but the same effect can be obtained by using the PNP type and P-channel type, respectively. can be obtained, and can also be applied to so-called complementary MIS integrated circuits.

(発明の効果) 本発明によれば、バイポーラ型トランジスタのエミッタ
幅が1回のフォトエツチング工程により決定されるため
、エミッタ幅を微細にすることができ、また浅いエミッ
タが形成できるため高速性に優れた半導体集積回路を製
造することができ。
(Effects of the Invention) According to the present invention, since the emitter width of a bipolar transistor is determined by a single photoetching process, the emitter width can be made finer, and a shallow emitter can be formed, resulting in faster processing speed. Able to manufacture excellent semiconductor integrated circuits.

その実用上の効果は極めて大である。Its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における半導体集積回路の製
造方法の工程断面図、第2図は従来の半導体集積回路の
製造方法の工程断面図である。 1 ・・・P型半導体基板、2・・・N0型サブコレク
タ領域、3 ・・・N型エピタキシャル層、4・・・P
型ウェル領域、5・・・フィールド絶縁膜、6 ・・・
P型ベース領域、7・・・ゲート絶縁膜、8 ・・・第
1の多結晶シリコン膜、9 ・・・エミッタ窓、10・
・・コレクタ・コンタクト窓、11・・・第2の多結晶
シリコン膜、12・・・ゲート電極、13・・・フォト
レジスト膜、14・・・ N0型エミッタ領域、15・
・・N+型コレクタ・コンタクト領域、16・・・N4
型ドレイン領域、17・・・層間絶縁膜、18・・・コ
ンタクト窓。 第1図 第1図
FIG. 1 is a process sectional view of a method for manufacturing a semiconductor integrated circuit according to an embodiment of the present invention, and FIG. 2 is a process sectional view of a conventional method for manufacturing a semiconductor integrated circuit. 1...P type semiconductor substrate, 2...N0 type subcollector region, 3...N type epitaxial layer, 4...P
type well region, 5... field insulating film, 6...
P-type base region, 7... Gate insulating film, 8... First polycrystalline silicon film, 9... Emitter window, 10...
...Collector contact window, 11... Second polycrystalline silicon film, 12... Gate electrode, 13... Photoresist film, 14... N0 type emitter region, 15.
...N+ type collector contact region, 16...N4
Type drain region, 17... Interlayer insulating film, 18... Contact window. Figure 1Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の表面に沿って第1導電型のベース領
域を形成する工程と、前記半導体基板の表面上に薄い絶
縁膜と第1の多結晶シリコン膜とを順次積層して形成す
る工程と、前記第1の多結晶シリコン膜および、前記絶
縁膜の一部を選択的に除去して、前記ベース領域に達す
るエミッタ窓を開孔したのち全面に第2の多結晶シリコ
ン膜を被着する工程と、前記第2の多結晶シリコン膜を
通して、前記ベース領域内に不純物を導入して反対導電
型のエミッタ領域を形成する工程とを含むことを特徴と
する半導体集積回路の製造方法。
(1) A step of forming a base region of the first conductivity type along the surface of the semiconductor substrate, and a step of sequentially laminating and forming a thin insulating film and a first polycrystalline silicon film on the surface of the semiconductor substrate. and selectively removing a portion of the first polycrystalline silicon film and the insulating film to open an emitter window that reaches the base region, and then depositing a second polycrystalline silicon film over the entire surface. and introducing an impurity into the base region through the second polycrystalline silicon film to form an emitter region of an opposite conductivity type.
(2)絶縁膜および多結晶シリコン膜がそれぞれMIS
型トランジスタのゲート絶縁膜およびゲート電極を兼ね
ることを特徴とする請求項(1)記載の半導体集積回路
の製造方法。
(2) The insulating film and polycrystalline silicon film are each MIS
2. The method of manufacturing a semiconductor integrated circuit according to claim 1, further comprising serving as a gate insulating film and a gate electrode of a type transistor.
JP2659588A 1988-02-09 1988-02-09 Manufacture of semiconductor integrated circuit Pending JPH01202855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2659588A JPH01202855A (en) 1988-02-09 1988-02-09 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2659588A JPH01202855A (en) 1988-02-09 1988-02-09 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH01202855A true JPH01202855A (en) 1989-08-15

Family

ID=12197884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2659588A Pending JPH01202855A (en) 1988-02-09 1988-02-09 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH01202855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518611A2 (en) * 1991-06-10 1992-12-16 Motorola, Inc. Method of fabricating a semiconductor structure having MOS and bipolar devices
EP0897194A1 (en) * 1997-08-12 1999-02-17 Nec Corporation Method for manufacturing a BiCMOS semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197967A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6298663A (en) * 1985-10-24 1987-05-08 Nec Corp Semiconductor integrated circuit device
JPS6373552A (en) * 1986-09-16 1988-04-04 Nec Corp Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197967A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6298663A (en) * 1985-10-24 1987-05-08 Nec Corp Semiconductor integrated circuit device
JPS6373552A (en) * 1986-09-16 1988-04-04 Nec Corp Semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518611A2 (en) * 1991-06-10 1992-12-16 Motorola, Inc. Method of fabricating a semiconductor structure having MOS and bipolar devices
EP0897194A1 (en) * 1997-08-12 1999-02-17 Nec Corporation Method for manufacturing a BiCMOS semiconductor device
US6100124A (en) * 1997-08-12 2000-08-08 Nec Corporation Method for manufacturing a BiCMOS semiconductor device

Similar Documents

Publication Publication Date Title
US4637125A (en) Method for making a semiconductor integrated device including bipolar transistor and CMOS transistor
US4914048A (en) Method of making Bicmos devices
JPH0555484A (en) Manufacture of semiconductor device
JPH01123458A (en) Means of coupling complementary bipolar and complementary mos and its manufacture
JPH05326854A (en) Manufacture of bicmos semiconductor element
JPH01202855A (en) Manufacture of semiconductor integrated circuit
JPS6380560A (en) Method of manufacturing bipolar transistor and complementary field effect transistor simultaneously with the minimum number of masks
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JP3104294B2 (en) Method for manufacturing Bi-CMOS integrated circuit
JP2575876B2 (en) Semiconductor device
GB2154061A (en) Methods of manufacturing semiconductor circuit devices
JPS643065B2 (en)
JPH0481336B2 (en)
JP2610906B2 (en) Method for manufacturing BiMOS semiconductor circuit device
JPS63164458A (en) Manufacture of bi-cmos element
JPH01202856A (en) Manufacture of semiconductor integrated circuit
JP2982393B2 (en) Method for manufacturing semiconductor device
JPH0638472B2 (en) Method for manufacturing semiconductor device
JP2508857B2 (en) Method for manufacturing semiconductor device
JP2830076B2 (en) Method for manufacturing semiconductor device
KR0161846B1 (en) Fabricating method of bi-cmos sram
JPH04267554A (en) Bi-mos semiconductor device and manufacture thereof
JP3241363B2 (en) Method for manufacturing BiCMOS integrated circuit device
JPH04346263A (en) Manufacture of bi-cmos semiconductor device
JPS6292359A (en) Manufacture of semiconductor device