JPS60167470A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS60167470A JPS60167470A JP2337284A JP2337284A JPS60167470A JP S60167470 A JPS60167470 A JP S60167470A JP 2337284 A JP2337284 A JP 2337284A JP 2337284 A JP2337284 A JP 2337284A JP S60167470 A JPS60167470 A JP S60167470A
- Authority
- JP
- Japan
- Prior art keywords
- film
- region
- drain
- forming
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 238000005530 etching Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 9
- 230000001133 acceleration Effects 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229920005591 polysilicon Polymers 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- -1 boron ions Chemical class 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 241001669573 Galeorhinus galeus Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、半導体装置の製造方法、詳しくは、ドレイン
制圧に秀れたMISFETの製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a MISFET with excellent drain suppression.
従来例の構成とその問題点
従来のNチャンネル型M I S F E T l、−
j5、第1図にその断面形状を示すように、低濃度p型
シリコン基板(p−一81)1−Lに形成さ、fll、
ソース(n+層)2、ドレイン(n 層)3、チャンネ
ルドープ領域(p型拡散層)4、ゲート絶縁膜6、で構
造されている。Configuration of conventional example and its problems Conventional N-channel type M I S F E T l, -
j5, as shown in the cross-sectional shape in FIG.
The structure includes a source (n+ layer) 2, a drain (n layer) 3, a channel doped region (p type diffusion layer) 4, and a gate insulating film 6.
この従来のMISFKTの製造方法をのべると、まずシ
リコン基板1を熱酸化してゲート絶縁膜5を形成し、ボ
ロンをシリコン基板1にイオン注入してチャンネルドー
プ領域4を形成する。次にリンをドープしたポリシリコ
ンでゲート電極6を形成した後、ゲート電極をマスクに
1.て砒素イオンをシリコン基板1に注入してソース2
およびドレイン3を形成してMISFETか完成する。The conventional method for manufacturing the MISFKT is as follows: First, a silicon substrate 1 is thermally oxidized to form a gate insulating film 5, and boron ions are implanted into the silicon substrate 1 to form a channel doped region 4. Next, after forming a gate electrode 6 using polysilicon doped with phosphorus, 1. Arsenic ions are implanted into the silicon substrate 1 to form the source 2.
Then, a drain 3 is formed to complete the MISFET.
L記のチャンネルドープ領域4の不純物濃度に1、シリ
コン基板中の不純物濃度、ゲート絶縁膜5の膜厚、ゲー
ト雷、極6の長さLによって異なるが、MISFKTの
しきい値電圧を回路設計に必要な値(たとえば○、sV
程度)に制御するには、不純物濃度が約10〜10cm
程度のチャンネルドープ領域4を形成する必要かある
。このチャンネルドープ領域4は、第1図に示すように
、n 型のドレイン3と接触してpn接合を形成してい
る十
だめ、MISFETのドレイン耐圧はこのpn 接合を
形成するチャンネルドープ領域4の不純物濃度に依存し
ている。つまり、チャンネルドープ領域の不純物濃度が
高い程ドレイン耐圧は低下する。The impurity concentration of the channel doped region 4 is set to 1, the impurity concentration in the silicon substrate, the thickness of the gate insulating film 5, the gate voltage, and the threshold voltage of the MISFKT, which varies depending on the length L of the pole 6, is set in the circuit design. (e.g. ○, sV
In order to control the impurity concentration to approximately 10 to 10 cm
It is necessary to form a channel doped region 4 of approximately 100 mL. As shown in FIG. 1, this channel doped region 4 is in contact with the n-type drain 3 to form a pn junction, and the drain breakdown voltage of the MISFET is Depends on impurity concentration. In other words, the higher the impurity concentration in the channel doped region, the lower the drain breakdown voltage.
MISFETの微細化にとも々っで、チャンネルドープ
領域の不純物濃度は高くなる傾向にあるため、従来のM
ISFETではドレイン耐圧の低下をまぬがれることは
不可能であった。With the miniaturization of MISFETs, the impurity concentration in the channel doped region tends to increase.
In ISFETs, it has been impossible to avoid a decrease in drain breakdown voltage.
発明の目的
本発明は上記した従来のMISFETの欠点を除去する
ためになされたもので、ドレイン耐圧が大きなMISF
ETの製造方法を提供することにある。Purpose of the Invention The present invention was made in order to eliminate the drawbacks of the conventional MISFET described above.
An object of the present invention is to provide a method for manufacturing ET.
発明の構成
本発明にかかる半導体装置の製造方法は、−導電形の半
導体基板上に第1の絶縁膜を形成する工程、同第1の絶
縁膜上に導電膜と第2の絶縁膜とを積層に形成する工程
、同一のホトマスクを用いて前記第2の絶縁膜と、導電
膜とを、そハ5ぞれ、等方的、異方的にエツチングして
パターン形成する工程、全面に高粘性膜を形成する工程
、同高粘性膜を前記第2の絶縁膜が露出するまでエツチ
ングする工程、同高粘性膜をマスクとして、前記第2の
絶縁膜を除去し、その下の前記導電膜を露出する工程、
同露出した導電膜部分を通して半導体基板中に選択的に
不純物をイオン注入する工程とを有するもので、この方
法によれば、チャンネルドープ領域とドレイン拡散層が
離間して形成されるのでMISFETのドレイン耐圧を
大幅に向上させることが可能と々る。Structure of the Invention A method for manufacturing a semiconductor device according to the present invention includes: - forming a first insulating film on a conductive type semiconductor substrate; forming a conductive film and a second insulating film on the first insulating film; A step of forming a layered film, a step of isotropically and anisotropically etching the second insulating film and the conductive film using the same photomask to form a pattern, and a step of forming a pattern on the entire surface. forming a viscous film; etching the high viscosity film until the second insulating film is exposed; using the high viscosity film as a mask, removing the second insulating film and etching the conductive film underneath. The process of exposing
This method includes a step of selectively implanting impurity ions into the semiconductor substrate through the exposed conductive film portion. According to this method, the channel doped region and the drain diffusion layer are formed apart from each other, so the MISFET drain It is possible to significantly improve the withstand voltage.
実施例の説明
以下に、NチャンネルMO3FETの製作に本発明を適
用した場合を例示して、第2図a〜eの工程順断面図に
より、詳しく説明する。DESCRIPTION OF EMBODIMENTS Below, a case in which the present invention is applied to the manufacture of an N-channel MO3FET will be explained in detail with reference to step-by-step sectional views of FIGS. 2a to 2e.
まず、第2図aで示すようにp−型シリコン基板11を
熱酸化して膜厚約300Aのゲート酸化膜12を形成し
、その上に通常のCVD法で膜厚約200OAのポリシ
リコン13を形成しく熱拡散で)リンをドープした後、
同様のCVD法で膜厚約600OAの酸化シリコン膜1
4を形成する。First, as shown in FIG. 2a, a p-type silicon substrate 11 is thermally oxidized to form a gate oxide film 12 with a thickness of about 300 Å, and then a polysilicon film 13 with a thickness of about 200 Å is formed thereon by a normal CVD method. After doping with phosphorus (by thermal diffusion) to form
A silicon oxide film 1 with a thickness of about 600 OA was made using the same CVD method.
form 4.
次にフォトレジスト15を第2図6で示すようにバター
ニングした後、バッフアート弗酸で酸化シリコン膜14
を等方的にエツチングする。そしてフォトレジスト16
をマスクにして、反応性イオンエツチングにてポリシリ
コン13を異方性エツチングする。これにより、酸化シ
リコン膜14は寸法Lsio2までオーバエッチされる
。第2図6で示した酸化シリコン膜14のエツチング後
寸法(Lsio2)は上記バッフアート弗酸によるエツ
チング時間によって制御する。Next, the photoresist 15 is buttered as shown in FIG. 2, and then the silicon oxide film 14 is coated with buffered hydrofluoric acid.
isotropically etched. and photoresist 16
Using as a mask, polysilicon 13 is anisotropically etched by reactive ion etching. As a result, the silicon oxide film 14 is overetched to a dimension Lsio2. The dimension after etching (Lsio2) of the silicon oxide film 14 shown in FIG. 2 is controlled by the etching time using the buffered hydrofluoric acid.
次にマスクに用いたフォトレジスト15を除去した後比
較的高粘度の7オトレジスト16を全面に塗布し、約2
00’Cのベーキング処理によってフォトレジスト表面
を平担化する。そして、フォトレジスト16を酸素プラ
ズマで、第2図Cで示すように人からBまでエッチバッ
クし、酸化シリコン膜14の表面を露出させる。Next, after removing the photoresist 15 used as a mask, a relatively high viscosity 7 photoresist 16 is applied to the entire surface, and approximately 2
The photoresist surface is planarized by baking at 00'C. Then, the photoresist 16 is etched back from layer to line B using oxygen plasma to expose the surface of the silicon oxide film 14, as shown in FIG. 2C.
露出しだ酸化シリコン膜14をノくソファード弗酸で除
去した後、第2図dで示すように残存するフォトレジス
ト16をマスクにして、ボロンイオンを、加速エネルギ
150kevの条件でイオン注入して、p型不純物層1
7を形成する。この時、矢印で示しだ領域には不純物が
注入され力いように、イオンの加速エネルギ、ポリシリ
コン13の膜厚、フォトレジスト16の膜厚(この場合
、酸化シリコン膜14の膜厚にも関係する)を最適値に
設定することが重要である。After removing the exposed silicon oxide film 14 with oxidized hydrofluoric acid, using the remaining photoresist 16 as a mask, boron ions are implanted at an acceleration energy of 150 keV, as shown in FIG. 2d. , p-type impurity layer 1
form 7. At this time, the impurity is implanted into the region indicated by the arrow, and the ion acceleration energy, the film thickness of the polysilicon 13, the film thickness of the photoresist 16 (in this case, the film thickness of the silicon oxide film 14) are It is important to set the relevant parameters to optimal values.
次に、フォトレジスト16を除去し、熱処理を加工てチ
ャンネルドープ領域(p型拡散層)17′を形成する。Next, the photoresist 16 is removed and heat treated to form a channel doped region (p-type diffusion layer) 17'.
最後に、シリコン基板面に、ポリシリコン膜13をマス
クにして砒素イオンを加速エネルギ40 keyでイオ
ン注入し、熱処理を加えて1 n+型のソース18及び
ドレイン19を形成して、第2図eで示すような、チャ
ンネルドープ領域17とソース領域18.ドレイン領域
19とが離間した構造のNチャンネルMO3FETを完
成させる。Finally, using the polysilicon film 13 as a mask, arsenic ions are implanted into the silicon substrate surface at an acceleration energy of 40 keys, followed by heat treatment to form a 1n+ type source 18 and drain 19. A channel doped region 17 and a source region 18 . An N-channel MO3FET having a structure in which the drain region 19 is separated is completed.
また、ト記離間距離に1酸化シリコン膜14のエツチン
グ後寸法(Ls102)によって決定さね、るので、酸
化シリコン膜の膜厚、エツチング速度、およびエツチン
グ時間を精度よく制御する必要がある。Further, since the above-mentioned separation distance is determined by the dimension (Ls102) of the silicon monoxide film 14 after etching, it is necessary to accurately control the thickness of the silicon oxide film, the etching rate, and the etching time.
なお本実施例では高粘性膜と1−でフォトレジストを用
いたか、他のイA旧例えはポリイミド系の樹脂でも可能
である。In this embodiment, photoresist was used for the high viscosity film and 1-, but in other examples, polyimide resin may also be used.
発明の効果
本発明の半導体装置の製造方法によれば、チャンネルト
ープ領域とドレイン領域が離間した構造+7)MISF
ETをセルファラインで形成可能であり、かつ上記離間
距離か、ポリシリコン膜−トの酸化シリコン膜のザイド
エノチ量によって制御できるので、トレイン耐圧の高い
MISFETを再現性よく、高歩留で製作できる。Effects of the Invention According to the method of manufacturing a semiconductor device of the present invention, a structure in which a channel tope region and a drain region are separated +7) MISF
Since the ET can be formed on a self-aligned line and can be controlled by the above-mentioned separation distance or the amount of oxide of the silicon oxide film of the polysilicon film, a MISFET with high train breakdown voltage can be manufactured with good reproducibility and high yield.
第1図−:、従来のMISFETの構造を示す要部の断
面図、第2図a −eは本発明の製造方法によりMIS
FKTを形成する状態を説明するための工程断面図であ
る。
11・・・・・・シリコン基板(p−)、12・・・・
・ゲート酸化膜、13・・・・・・ポリシリコン膜(ゲ
ートN& )14・・・・・・酸化シリコン1L15・
・・・・・フォトし/スト、16・・・・・・フォトレ
ジスト
物層(イオン注入層)、17′・・・・・・チャンネル
ドープ領域(1))、18・・・・・・ソース(n″−
)、19・・・・・・ドし・イン(n+)。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図Figure 1-: A sectional view of the main parts showing the structure of a conventional MISFET, Figures 2 a-e are MISFETs manufactured by the manufacturing method of the present invention.
FIG. 3 is a process cross-sectional view for explaining the state of forming an FKT. 11...Silicon substrate (p-), 12...
・Gate oxide film, 13...Polysilicon film (gate N&) 14...Silicon oxide 1L15.
... photo resist, 16... photoresist layer (ion implantation layer), 17'... channel doped region (1)), 18... Source (n″-
), 19... Doshi-in (n+). Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2
Claims (1)
、同第1の絶縁膜」二に導電膜と第2の絶縁膜とを積層
に形成する工程、同一のホトマスクを用いて前記第2の
絶縁膜と前記導電膜とを、それぞれ、等方的、異方的に
エツチングF−てパターン形成する工程全面に高粘性膜
を形成する工程、同高粘性膜を前記第2の絶縁膜が露出
するまでエツチングする工程、同高粘性膜をマスクとし
て、前記第2の絶縁膜を除去し、その下の前記導電膜を
露出する工程、同露出した導電膜部分を通して、半導体
基板中に選択的に不純物をイオン注入する工程をそなえ
た半導体装置の製造方法。A step of forming a first insulating film on a semiconductor substrate of one conductivity type, a step of forming a conductive film and a second insulating film in a stacked manner, and a step of forming a conductive film and a second insulating film in a layered manner using the same photomask. A step of forming a pattern by isotropically and anisotropically etching the second insulating film and the conductive film, respectively A step of forming a high viscosity film on the entire surface, a step of forming the high viscosity film on the second insulating film a step of etching until the film is exposed; a step of removing the second insulating film using the high viscosity film as a mask and exposing the conductive film thereunder; A method for manufacturing semiconductor devices that includes a process of selectively ion-implanting impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2337284A JPS60167470A (en) | 1984-02-10 | 1984-02-10 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2337284A JPS60167470A (en) | 1984-02-10 | 1984-02-10 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60167470A true JPS60167470A (en) | 1985-08-30 |
Family
ID=12108714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2337284A Pending JPS60167470A (en) | 1984-02-10 | 1984-02-10 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60167470A (en) |
-
1984
- 1984-02-10 JP JP2337284A patent/JPS60167470A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2707977B2 (en) | MOS type semiconductor device and method of manufacturing the same | |
US4914047A (en) | Method of producing insulated gate MOSFET employing polysilicon mask | |
KR950011020B1 (en) | Semiconductor device and its making method | |
JPH0555593A (en) | Manufacture of insulated-gate field-effect transistor | |
JP2633104B2 (en) | Method for manufacturing semiconductor device | |
JPH06177376A (en) | Manufacture of mos field-effect semiconductor device | |
JPS60167470A (en) | Manufacture of semiconductor device | |
JPS6225457A (en) | Manufacture of vertical semiconductor device | |
JP2890509B2 (en) | Method for manufacturing semiconductor device | |
JPS6384161A (en) | Manufacture of semiconductor device | |
JP2828264B2 (en) | Method for manufacturing semiconductor device | |
JP3297102B2 (en) | Method of manufacturing MOSFET | |
JPS61166154A (en) | Manufacture of mis type semiconductor device | |
JPS6395664A (en) | Semiconductor device and manufacture thereof | |
JPS6367778A (en) | Manufacture of semiconductor device | |
JPH0888233A (en) | Manufacture of vertical mos semiconductor device | |
JPS6376376A (en) | Manufacture of metal-oxide semiconductor (mos) device | |
JPH03227526A (en) | Manufacture of semiconductor element | |
JPH04360539A (en) | Manufacture of semiconductor device | |
JPH03153081A (en) | Field effect transistor and its manufacture | |
JPS60167469A (en) | Manufacture of semiconductor device | |
JPH053210A (en) | Manufacture of semiconductor device | |
JPS60170262A (en) | Manufacture of insulated gate field-effect semiconductor device | |
JPH05121745A (en) | Method of manufacturing insulated-gate type field-effect transistor | |
JPS63122273A (en) | Manufacture of semiconductor device |