JPH0888233A - Manufacture of vertical mos semiconductor device - Google Patents

Manufacture of vertical mos semiconductor device

Info

Publication number
JPH0888233A
JPH0888233A JP6222342A JP22234294A JPH0888233A JP H0888233 A JPH0888233 A JP H0888233A JP 6222342 A JP6222342 A JP 6222342A JP 22234294 A JP22234294 A JP 22234294A JP H0888233 A JPH0888233 A JP H0888233A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
region
mask
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6222342A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimabukuro
浩 島袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6222342A priority Critical patent/JPH0888233A/en
Publication of JPH0888233A publication Critical patent/JPH0888233A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To form a second conductivity area through a self-aligning process by filling up removed parts with a masking material layer and removing a conductive material layer in the area between paired gate electrodes after leaving the conductive material layer in the area between the gate electrodes at the time of patterning the gate electrodes. CONSTITUTION: At the time of forming a gate oxide film 2 and gate electrodes 3 on the surface of a silicon substrate 1, etching is performed so as to leave a polycrystalline Si layer 30 at the part against which second boron ion implantation is performed. When first boron ion implantation and high-temperature heat treatment are performed after ashing a resist 4, a p-n junction is formed between a p-well 5 and the n-type substrate 1. After forming the p-n junction, the widow part used as a window for ion implantation is filled up with an appropriate material. Then, a window is opened through the gate oxide film 2 by patterning and dry-etching the resist 4 after applying the resist 4 again. After ashing the resist 4, a p<+> -area 51 is formed by removing the thermal oxide film 81 and by using the boron 61 implanted at the second time as a diffusing source. The following processes are the same as those of the conventional method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主電流が主として半導
体基体主面に対して垂直方向に流れる縦型MOS半導体
素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a vertical MOS semiconductor device in which a main current mainly flows in a direction perpendicular to a main surface of a semiconductor substrate.

【0002】[0002]

【従来の技術】現在、スイッチング電源や大電流駆動回
路等の主たる半導体素子として縦型MOS−FETが活
用されている。これは、電圧駆動型の素子であるのでコ
ンピュータ制御に適していることや、主電流の高速スイ
ッチングが可能なので様々な波形を形成ができることか
ら、その利用範囲が拡大してきたことによる。また、こ
のような特徴を活かしてIGBTやMOS−サイリスタ
などの複合素子も開発・製品化されているが、これらの
半導体素子の基本的な製造方法は、縦型MOS−FET
と同様である。
2. Description of the Related Art At present, a vertical MOS-FET is used as a main semiconductor element such as a switching power supply and a large current drive circuit. This is because the voltage-driven element is suitable for computer control, and because the main current can be switched at high speed, various waveforms can be formed, so that its range of use has expanded. Further, composite elements such as IGBT and MOS-thyristor have been developed and commercialized by taking advantage of such characteristics. The basic manufacturing method of these semiconductor elements is a vertical MOS-FET.
Is the same as.

【0003】図2 (a) 〜 (e) は、従来の縦型MOS
−FETの製造工程の一部を示す。n形シリコン基板1
にゲート酸化膜2を熱酸化により形成し、続いて減圧C
VD装置等を用いてゲート電極となる多結晶Si層30
を積層する。次に、多結晶Si層30をゲート電極3に
加工するため、レジスト4の塗布、パターニングを行う
〔図2 (a) 〕。ここで露出した多結晶Si層30をド
ライエッチング法等により取り除く。残ったレジスト4
は、灰化し除去する。この状態でイオン注入装置を用い
て硼素を打ち込む。この時、硼素は多結晶Si層30を
除去した部分のシリコン基板1の表面にはゲート酸化膜
2を通して打ち込まれるが、他の部分ではゲート電極3
によって阻止される。このあと、1150℃程度の高温
熱処理を行うことで、打ち込まれた硼素がシリコン基板
1内部に拡散してp型の領域pウエル5が図2 (b) に
示すように形成される。次に再度レジスト4を塗布し、
下層の多結晶Si層3の配置にフォトマスクを合わせて
レジスト4のパターニングを行い、イオン注入のための
窓を開ける。設計上、ゲート電極3の縁部と開けた窓ま
でとの間のレジスト4の残し部分は左右対称でなければ
ならないが、フォトマスク製作上の誤差やゲート電極3
とフォトマスクの合わせ精度上の問題などから、必ずし
も左右対称とはならず、図2 (c) に示すように若干ず
れている。この状態でイオン注入装置を用い、2回目の
硼素61の注入を行う。レジスト4の灰化後再び高温熱
処理を行うと、2回目に注入された硼素61を拡散源と
しての拡散により、pウエル5の内部に硼素濃度がより
高いp+ 領域51が形成される〔図2 (d) 〕。2回目
の硼素注入のドーズ量は、1回目より2桁程度多く、ま
た高温熱処理は、1150℃以下で行うのが通例であ
る。始めの高温熱処理を省き、この時同時に拡散を行う
ことも可能である。重要な点は、シリコン基板1の最表
面における硼素濃度が、最初の硼素注入によって決定さ
れる領域5と最初と2回目の足し合わせで決定される領
域51とに分けられることである。次いで再び、レジス
ト塗布、パターニングを行い2回目の硼素注入の窓が在
った部分の一部をレジスト4で覆う。〔図2 (e) 〕。
そして、ソース領域となるn+ 領域7を形成するため
に、イオン注入装置を用い砒素62を注入する。ドーズ
量は1×1015〜1×1016/cm2 で、ゲート電極3
およびゲート電極とレジストの間のシリコン基板1の表
面に注入される。pウエル5形成時の最初の硼素注入と
この砒素注入は、いずれもゲート電極3の縁部を境界と
してシリコン基板1にイオン注入されるため、製造上の
ゆらぎの少ない所謂セルフアライン・プロセスとなる。
図2 (e) の状態のあと、レジスト4を除去し砒素を活
性化するための熱処理を行い、次いで層間絶縁膜の積
層、コンタクトホールの形成、電極金属の蒸着、パター
ニングなど一連の工程があるが、ここでは省略した。図
2に示した断面構造は、二次元平面的にはストライプ状
もしくは円形あるいは方形セル状の単体として存在して
おり、この単体がシリコン基板1の平面上に複数配置さ
れ、ゲート電極3はゲート端子に、n+ 領域7はソース
電極にそれぞれ1箇所ないし複数箇所で電気的に接続さ
れている。これらすべてを取り囲むような耐圧構造部、
シリコン基板1の裏面のドレイン電極が形成され、1個
の縦型MOS−FETとなる。
2A to 2E show a conventional vertical MOS.
-A part of the manufacturing process of the FET is shown. n-type silicon substrate 1
Then, a gate oxide film 2 is formed by thermal oxidation, and then a reduced pressure C
Polycrystalline Si layer 30 serving as a gate electrode using a VD device or the like
Are laminated. Next, in order to process the polycrystalline Si layer 30 into the gate electrode 3, the resist 4 is applied and patterned [FIG. 2 (a)]. The exposed polycrystalline Si layer 30 is removed by a dry etching method or the like. Remaining resist 4
Is ashed and removed. In this state, boron is implanted using an ion implanter. At this time, boron is implanted through the gate oxide film 2 on the surface of the silicon substrate 1 where the polycrystalline Si layer 30 is removed, but at the other portions, the gate electrode 3 is formed.
Blocked by. After that, by performing a high temperature heat treatment at about 1150 ° C., the implanted boron is diffused inside the silicon substrate 1 to form a p-type region p well 5 as shown in FIG. 2 (b). Next, apply the resist 4 again,
A photomask is aligned with the arrangement of the lower polycrystalline Si layer 3, and the resist 4 is patterned to open a window for ion implantation. By design, the remaining portion of the resist 4 between the edge of the gate electrode 3 and the opened window must be bilaterally symmetrical.
Due to the problem of alignment accuracy of the photomask and the like, they are not always symmetrical, and are slightly deviated as shown in FIG. 2 (c). In this state, the ion implantation device is used to perform the second implantation of boron 61. When the high temperature heat treatment is performed again after the resist 4 is ashed, the p + region 51 having a higher boron concentration is formed inside the p well 5 due to the diffusion using the boron 61 implanted the second time as a diffusion source [FIG. 2 (d)]. The dose of the second boron implantation is about two orders of magnitude higher than that of the first time, and the high temperature heat treatment is usually performed at 1150 ° C. or lower. It is also possible to omit the initial high temperature heat treatment and simultaneously perform diffusion at this time. The important point is that the boron concentration on the outermost surface of the silicon substrate 1 is divided into a region 5 determined by the first boron implantation and a region 51 determined by the first and second additions. Then, resist coating and patterning are performed again, and a part of the portion having the window for the second boron implantation is covered with the resist 4. [Fig. 2 (e)].
Then, arsenic 62 is implanted using an ion implanter in order to form the n + region 7 serving as the source region. The dose amount is 1 × 10 15 to 1 × 10 16 / cm 2 , and the gate electrode 3
And on the surface of the silicon substrate 1 between the gate electrode and the resist. The first boron implantation and the arsenic implantation at the time of forming the p-well 5 are both ion-implanted into the silicon substrate 1 with the edge portion of the gate electrode 3 as a boundary, and therefore are so-called self-alignment processes with less fluctuation in manufacturing. .
After the state shown in FIG. 2E, there is a series of steps such as removing the resist 4 and performing a heat treatment for activating arsenic, and then laminating an interlayer insulating film, forming a contact hole, vapor deposition of an electrode metal, and patterning. However, it is omitted here. The cross-sectional structure shown in FIG. 2 exists as a stripe-shaped, circular, or rectangular cell-shaped simple substance in a two-dimensional plane. A plurality of simple substances are arranged on the plane of the silicon substrate 1, and the gate electrode 3 is a gate electrode. The n + region 7 is electrically connected to the terminal at one location or a plurality of locations respectively at the source electrode. A pressure resistant structure that surrounds all of these,
A drain electrode on the back surface of the silicon substrate 1 is formed to form one vertical MOS-FET.

【0004】[0004]

【発明が解決しようとする課題】従来技術による縦型M
OS−FETの製造方法では、図2 (c) に示す2回目
の硼素注入がセルフアライン工程とならないため、どう
してもpウエル5とp+領域51がずれてしまい、非対
称になることを防げない。これまでは、ユニポーラ素子
であるMOS−FETの電気特性を大きく決定する要因
では無いとして、設計上のマージンとしてこの非対称は
容認されてきた。しかしながら近年、ストライプ状ある
いはセル状の単体の微細化、n基板1とp領域5の間に
内在するpnダイオードのフリーホイリングダイオード
としての電気回路上での積極的な活用、さらには前述し
たIGBTやMOS−サイリスタ等のバイポーラ動作を
含むMOSデバイスの出現により、前記の非対称を無視
できなくなってきた。
A vertical M according to the prior art.
In the method of manufacturing the OS-FET, the second boron implantation shown in FIG. 2C does not become a self-alignment step, so that the p well 5 and the p + region 51 are inevitably deviated from each other and asymmetrical cannot be prevented. Until now, this asymmetry has been accepted as a design margin because it is not a factor that largely determines the electrical characteristics of a MOS-FET that is a unipolar element. However, in recent years, miniaturization of a stripe-shaped or cell-shaped single body, active utilization of a pn diode existing between the n-substrate 1 and the p-region 5 on an electric circuit as a freewheeling diode, and further, the IGBT described above. With the advent of MOS devices including bipolar operations such as MOS and thyristors, the above asymmetry cannot be ignored.

【0005】この理由を、図3を用いて簡単に説明す
る。nチャネルMOS−FETをフリーホイリングダイ
オードとして使用する場合は、ソース電極8に接続され
たソース端子Sを電源の+極、ドレイン電極9に接続さ
れたドレイン端子Dを−極に接続する。また、ゲート電
極3に接続されたゲート端子Gにチャネルが開かないよ
うにバイアス電位を与えるとよい。pウエル5とシリコ
ン基板1からなるpn接合は順バイアス状態なので、p
ウエル5からシリコン基板1方向に電流が流れる。電流
は、電気抵抗の低い又は電界強度の高い経路を通って流
れるので、優れたダイオード特性を得るためには、p+
領域51を深く拡散し抵抗を出来るだけ低くしたい。し
かしながら、非対称性のため電気抵抗にも非対称が生
じ、図3に示すように電界強度の強いpウエル5とn基
板1の間のpn接合の曲率が大きい部分にp+ 領域51
の近接した側で電流10が集中し易くなり、かえってダ
イオード特性を低下させてしまう。また深い拡散の影響
は、表面の左右のMOSチャネルの硼素濃度にも現れ、
閾値のバランスが崩れてしまう。例えば図2 (c) にお
いて、ゲート電極3の縁部とレジスト4の窓の間の残し
幅を1μmと設計しても、実際は±0.2μmの誤差が生
じてしまう。最大の場合を想定した場合、レジスト残し
幅は、片側が0.8μmでもう一方は1.2μmとなる。深
さ方向と横方向の拡散距離の比を1:0.5と仮定する
と、この場合MOS特性に影響を与えないp + 領域51
の拡散深さは、1.6μmとなる。設計通りであれば2.0
μmまで許され、この差はダイオードの順方向特性に十
分影響を与え、また微細化によりpウエル5の深さが浅
くなるほど顕著になる。このように、ユニポーラ特性と
バイポーラ動作を最大限に発揮するためにはばらつきを
できるだけ抑える必要があるので、フォトマスクのあわ
せ精度の高い装置を導入しなければならない。しかし、
製造上の安定性は増すが、コストアップの問題やより一
層の微細化を求められると同様の問題が再び出てくるた
め、問題の解決にはならない。
The reason for this will be briefly described with reference to FIG.
It Free-wheeling die for n-channel MOS-FET
When used as an ode, it is connected to the source electrode 8.
Connect the source terminal S to the positive electrode of the power supply and the drain electrode 9.
Connected drain terminal D to the negative pole. Also, the gate power
The channel will not open to the gate terminal G connected to pole 3.
A bias potential should be applied as described above. p-well 5 and silicon
Since the pn junction composed of the substrate 1 is in the forward bias state, p
A current flows from the well 5 toward the silicon substrate 1. Electric current
Flow through a path with low electrical resistance or high electric field strength.
Therefore, in order to obtain excellent diode characteristics, p+
It is desired to diffuse the region 51 deeply to make the resistance as low as possible. Shi
However, due to the asymmetry, the electrical resistance also has asymmetry.
As shown in FIG. 3, the p-well 5 and the n-type
In the part where the curvature of the pn junction between the plates 1 is large, p+Area 51
It becomes easier for the current 10 to concentrate on the side closer to the
It deteriorates the ion characteristics. Also the effect of deep diffusion
Also appears in the boron concentration of the MOS channel on the left and right of the surface,
The threshold balance is lost. For example, in Figure 2 (c)
Between the edge of the gate electrode 3 and the window of the resist 4
Even if the width is designed to be 1 μm, an error of ± 0.2 μm actually occurs.
I will mess up. If the maximum case is assumed, leave the resist
The width is 0.8 μm on one side and 1.2 μm on the other side. Deep
Assume that the ratio of the diffusion distance in the horizontal direction to the horizontal direction is 1: 0.5
And in this case p which does not affect the MOS characteristics +Area 51
The diffusion depth is 1.6 μm. 2.0 as designed
μm is allowed, and this difference is enough for the forward characteristic of the diode.
Influence, and the depth of the p-well 5 is shallow due to miniaturization.
The more it becomes, the more remarkable it becomes. In this way, with unipolar characteristics
To maximize the bipolar operation, the variation
Since it is necessary to suppress it as much as possible, the bubble of the photomask
A highly accurate device must be installed. But,
Manufacturing stability is increased, but the problem of higher costs and more
The same problem came up again when we needed to make the layers finer.
Therefore, it does not solve the problem.

【0006】本発明の目的は、上述の問題を解決し、バ
イポーラ動作のためのpn接合を形成する領域と、その
領域の表面層に形成される高不純物濃度領域とをセルフ
アライン工程で形成し、かつユニポーラ動作のためのチ
ャネル領域をセルフアライン工程で形成する縦型MOS
半導体素子の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and form a region for forming a pn junction for bipolar operation and a high impurity concentration region formed in the surface layer of the region by a self-aligning process. And a vertical MOS for forming a channel region for unipolar operation in a self-aligning process
It is to provide a method for manufacturing a semiconductor device.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、半導体基体の第一導電形層に選択的に
形成された第一の第二導電形領域とその第一の第二導電
形領域の表面層の中央部に選択的に形成された第一の領
域より不純物濃度の高い第二の第二導電形領域を有し、
その第一および第二の第二導電形領域の表面層に選択的
に形成した第一導電形のソース領域と第一導電形層の露
出部とにはさまれた第二導電形の領域をチャネル領域と
してその上にゲート絶縁膜を介してゲート電極が設けら
れる縦型MOS半導体素子の製造方法において、半導体
基体の第一導電形層の表面上に絶縁膜を介して導電材料
層を形成する工程と、その導電材料層をパターニングし
て一対のゲート電極を形成すると共に、ゲート電極には
さまれた部分の中央に導電材料層を残留させる工程と、
ゲート電極と残留導電材料層にはさまれた部分をマスク
材料で埋める工程と、残留導電材料層を選択的にエッチ
ングして除去してマスク材料からなるマスクを残す工程
と、ゲート電極をマスクとして第一の第二導電形領域形
成のための不純物を導入する工程と、マスク材料からな
るマスクを用いて第二の第二導電形領域形成のための不
純物を導入する工程と、ゲート電極をチャネル領域を覆
うマスクとしてソース領域形成のための不純物を導入す
る工程とを含むものとする。半導体基体としてシリコン
素体を用い、導電材料として多結晶シリコンを用い、マ
スク材料としてシリコン素体の表面を酸化して形成した
酸化シリコン層を用い、エッチング速度の差を利用して
多結晶シリコン層を選択的に除去し、酸化シリコン層を
残すことが有効である。その場合、シリコン素体の表面
を酸化してマスク材料としての酸化シリコン層を形成す
る際に多結晶シリコン層上に形成される酸化シリコン層
を、シリコン素体の酸化によって形成された酸化シリコ
ン層とのエッチング速度の差を利用して選択的に除去す
るとよい。そして、多結晶シリコン層をパターニングし
てゲート電極を形成する際に反応性イオンエッチングを
用い、ゲート電極より厚さの薄い多結晶シリコン層をゲ
ート電極にはさまれた部分の中央に残すとよい。
In order to achieve the above object, the present invention provides a first second conductivity type region selectively formed in a first conductivity type layer of a semiconductor substrate and a first second conductivity type region thereof. A second second conductivity type region having a higher impurity concentration than the first region selectively formed in the central portion of the surface layer of the second conductivity type region,
A region of the second conductivity type sandwiched between the source region of the first conductivity type selectively formed on the surface layer of the first and second second conductivity type regions and the exposed portion of the first conductivity type layer. In a method of manufacturing a vertical MOS semiconductor device in which a gate electrode is provided as a channel region via a gate insulating film, a conductive material layer is formed on the surface of a first conductivity type layer of a semiconductor substrate via the insulating film. A step of patterning the conductive material layer to form a pair of gate electrodes, and leaving the conductive material layer in the center of the portion sandwiched between the gate electrodes;
A step of filling a portion sandwiched between the gate electrode and the residual conductive material layer with a mask material, a step of selectively etching and removing the residual conductive material layer to leave a mask made of the mask material, and using the gate electrode as a mask. A step of introducing impurities for forming the first second conductivity type region, a step of introducing impurities for forming the second second conductivity type region using a mask made of a mask material, and a channel for the gate electrode And a step of introducing an impurity for forming a source region as a mask covering the region. A silicon element body is used as a semiconductor substrate, polycrystalline silicon is used as a conductive material, a silicon oxide layer formed by oxidizing the surface of the silicon element body is used as a mask material, and a polycrystalline silicon layer is used by utilizing a difference in etching rate. Is selectively removed to leave the silicon oxide layer. In that case, when the surface of the silicon element body is oxidized to form a silicon oxide layer as a mask material, the silicon oxide layer formed on the polycrystalline silicon layer is replaced by the silicon oxide layer formed by the oxidation of the silicon element body. It may be removed selectively by utilizing the difference in etching rate between the two. Then, it is preferable to use reactive ion etching when patterning the polycrystalline silicon layer to form the gate electrode, and leaving the polycrystalline silicon layer having a smaller thickness than the gate electrode in the center of the portion sandwiched between the gate electrodes. .

【0008】[0008]

【作用】導電材料層からゲート電極をパターニングする
とき、一対のゲート電極の中央に導電材料層を残してお
き、導電材料層を除去した部分をマスク材料層で埋め、
エッチング速度の差を利用するなどの方法で中央の導電
材料層を除去することにより、その除去部分が第二の第
二導電形領域形成のための不純物導入の窓となる。これ
により、第二の第二導電形領域をゲート電極をマスクと
して形成する第一の第二導電形領域と実質的なセルフア
ラインプロセスで形成できる。また、ソース領域を形成
するときにそのチャネル領域側を規制するマスクとして
ゲート電極を用いることにより、ソース領域も第二導電
形領域とセルフアラインプロセスで形成できる。このよ
うなプロセスを行う上で、ゲート電極の導電材料として
多結晶シリコンを用いれば、多結晶シリコンをマスク材
料として用いるシリコン素体表面の酸化膜との間にエッ
チング速度の差が生ずるため、多結晶シリコンを除去
し、シリコン酸化膜をマスクとして残すことが容易にで
きる。また、シリコン素体表面を酸化する際に多結晶シ
リコン層の表面に生ずる酸化膜は、シリコン素体の表面
に生ずる酸化膜との間にエッチング速度差が生ずるた
め、マスク材料の酸化膜を残して多結晶シリコン層表面
の酸化膜を除去し、ゲート電極の多結晶シリコン層を露
出させることができる。
When the gate electrode is patterned from the conductive material layer, the conductive material layer is left in the center of the pair of gate electrodes, and the portion where the conductive material layer is removed is filled with the mask material layer.
By removing the central conductive material layer by a method such as utilizing the difference in etching rate, the removed portion becomes a window for impurity introduction for forming the second second conductivity type region. Thereby, the second second conductivity type region can be formed by a substantially self-aligning process with the first second conductivity type region formed by using the gate electrode as a mask. Further, by using the gate electrode as a mask for controlling the channel region side when forming the source region, the source region can also be formed with the second conductivity type region by a self-alignment process. When polycrystalline silicon is used as the conductive material of the gate electrode in performing such a process, a difference in etching rate occurs between the polycrystalline silicon and the oxide film on the surface of the silicon element body using polycrystalline silicon as a mask material. It is possible to easily remove the crystalline silicon and leave the silicon oxide film as a mask. Further, the oxide film formed on the surface of the polycrystalline silicon layer when the surface of the silicon body is oxidized has a difference in etching rate from the oxide film formed on the surface of the silicon body, so that the oxide film of the mask material remains. By removing the oxide film on the surface of the polycrystalline silicon layer, the polycrystalline silicon layer of the gate electrode can be exposed.

【0009】[0009]

【実施例】以下、図2を含めて共通の部分に同一の符号
を付した図を引用して本発明の実施例について述べる。 実施例1:図1 (a) 〜 (e) に示す実施例では、n形
シリコン基板1の表面にゲート酸化膜2を形成し、多結
晶シリコン層を積層するまでは従来と同様である。その
多結晶シリコン層をパターニングしてゲート電極3を形
成するとき、2回目の硼素イオンの注入を行うシリコン
基板1の部分の表面上も多結晶Si層30を残すように
ドライエッチングでエッチングすると、図1 (a) に示
すような断面構造となる。レジスト4の灰化後、1回目
の硼素イオン注入を行い、引き続き高温熱処理を行う。
1150℃で3時間程度の熱処理で、基板の不純物濃度
にもよるが、表面から深さ方向に3μm、ゲート電極3
の縁部下から横方向に2μmの位置にpウエル5とn基
板1の間のpn接合が形成される。残された多結晶Si
層30の幅が1μm程度であれば、その下でpn接合は
連続して形成される。次に、イオン注入の窓となった部
分を適当な材料で埋める。この材料には、多結晶Siと
のエッチング選択比が高い物を選ぶ必要がある。本実施
例では単結晶Siおよび多結晶Siの熱酸化膜を用い
た。酸化の熱処理条件は、750〜850℃の比較的低
温での水素ガスH2 と酸素ガスO2 の燃焼方式を用いる
とよい。酸化膜の厚さは少なくとも3000Å必要で、
この厚さ制御は熱処理時間でできる。この酸化工程は、
先行する高温熱処理と同じ電気炉を用いて連続処理が可
能である。この段階で、図1 (b) に示すような断面構
造となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the drawings including the same parts in FIG. Embodiment 1 In the embodiment shown in FIGS. 1 (a) to 1 (e), it is the same as the conventional method until the gate oxide film 2 is formed on the surface of the n-type silicon substrate 1 and a polycrystalline silicon layer is laminated. When the polycrystalline silicon layer is patterned to form the gate electrode 3, dry etching is performed so that the polycrystalline Si layer 30 is left on the surface of the portion of the silicon substrate 1 where the second boron ion implantation is performed. The sectional structure is as shown in FIG. After the resist 4 is ashed, the first boron ion implantation is performed, and then the high temperature heat treatment is performed.
The heat treatment was performed at 1150 ° C. for about 3 hours, depending on the impurity concentration of the substrate, depending on the impurity concentration of the substrate, 3 μm in the depth direction from the surface of the gate electrode 3.
A pn junction between the p-well 5 and the n-substrate 1 is formed at a position 2 μm laterally from below the edge of the substrate. Polycrystalline Si left
If the width of the layer 30 is about 1 μm, the pn junction is continuously formed thereunder. Next, the portion used as the ion implantation window is filled with an appropriate material. As this material, it is necessary to select a material having a high etching selection ratio with respect to polycrystalline Si. In this embodiment, thermal oxide films of single crystal Si and polycrystalline Si are used. As a heat treatment condition for oxidation, it is preferable to use a combustion method of hydrogen gas H 2 and oxygen gas O 2 at a relatively low temperature of 750 to 850 ° C. The thickness of the oxide film needs to be at least 3000Å,
This thickness control can be performed by heat treatment time. This oxidation process
Continuous processing is possible using the same electric furnace as the preceding high temperature heat treatment. At this stage, the cross-sectional structure shown in FIG. 1 (b) is obtained.

【0010】多結晶Siから形成した酸化膜82と多結
晶Siから形成した酸化膜81とは、膜厚はほぼ同じ3
000Åであるが、屈折率が前者の場合1.44〜1.45
で後者の場合1.46である。この差は、ウェットエッチ
ングに対する性質の差として利用する事が可能である。
例えば、体積比で硝酸 (70%) :ふっ酸 (49%):
2 O=2:3:60のエッチング液を用いた場合、多
結晶Siを材料にした酸化膜82は3〜10倍エッチン
グ速度が速いので、選択的にエッチングできる。エッチ
ング速度の差は、多結晶Siの結晶性、酸化条件、エッ
チング液の組成比や温度によって異なるが、これらを管
理する事で選択性の高いウェットエッチングが可能であ
る。これによって、多結晶Si層3および30を露出さ
せ、その間にシリコン基板1上の熱酸化膜81を残すこ
とができる。次に、再度レジスト4の塗布、パターニン
グを行う。このレジスト4は、次の工程で多結晶Si層
30を除去するためのエッチングをする際、多結晶Si
ゲート電極3がエッチングされないように被覆するもの
であるが、ゲート電極3との位置合わせ精度は重要でな
い。しかし、レジスト4の縁部は、熱酸化膜81の上に
位置しなければならず、レジスト4の縁部と熱酸化膜8
1の縁部との間の幅は、少なくとも2μmあることが望
ましい。レジスト4のパターニング後、露出した多結晶
Si層30のみをドライエッチングする。例えばエッチ
ングガスにSF6 を用いたときには、酸化膜81に対す
る多結晶Si層30のエッチング速度は10倍程度ある
ので、容易に選択エッチングでき、図1 (c) に示すよ
うに厚い熱酸化膜81に囲まれた薄いゲート酸化膜2の
窓ができる。この窓の周縁の位置は、図1 (a) に示す
最初の多結晶Si層30エッチング時のフォトマスクで
ほぼ決定され、以後のマスクあわせ精度に寄らないの
で、1回目と2回目のイオン注入は、擬似的なセルフア
ラインプロセスとなる。2回目の硼素61のイオン注入
時の加速電圧は、熱酸化膜81の厚さを考慮して決定さ
れる。3000Åと若干の目減り分を考慮し、ここでは
40KeVとした。従来は、150KeV程度と比較的
高い値であったが、後の工程で深い熱拡散を行うので影
響はない。
The oxide film 82 formed of polycrystalline Si and the oxide film 81 formed of polycrystalline Si have almost the same film thickness.
000Å, but in the former case where the refractive index is 1.44 to 1.45
In the latter case, it is 1.46. This difference can be used as a difference in properties for wet etching.
For example, by volume ratio nitric acid (70%): hydrofluoric acid (49%):
When an etching solution of H 2 O = 2: 3: 60 is used, the etching rate of the oxide film 82 made of polycrystalline Si is 3 to 10 times faster, so that it can be selectively etched. Although the difference in etching rate differs depending on the crystallinity of polycrystalline Si, the oxidizing conditions, the composition ratio of the etching solution, and the temperature, wet etching with high selectivity is possible by controlling these. As a result, the polycrystalline Si layers 3 and 30 can be exposed, and the thermal oxide film 81 on the silicon substrate 1 can be left therebetween. Next, the resist 4 is applied and patterned again. This resist 4 is made of polycrystalline Si when the etching for removing the polycrystalline Si layer 30 is performed in the next step.
Although the gate electrode 3 is covered so as not to be etched, the alignment accuracy with the gate electrode 3 is not important. However, the edge of the resist 4 must be located on the thermal oxide film 81, and the edge of the resist 4 and the thermal oxide film 8 must be located.
The width between the edge and the edge of 1 is preferably at least 2 μm. After patterning the resist 4, only the exposed polycrystalline Si layer 30 is dry-etched. For example, when SF 6 is used as the etching gas, the etching rate of the polycrystalline Si layer 30 with respect to the oxide film 81 is about 10 times, so that the selective etching can be easily performed, and the thick thermal oxide film 81 as shown in FIG. A thin gate oxide film 2 window surrounded by is formed. The position of the peripheral edge of this window is almost determined by the photomask at the time of etching the first polycrystalline Si layer 30 shown in FIG. 1A and does not depend on the subsequent mask alignment accuracy. Therefore, the first and second ion implantations are performed. Is a pseudo self-alignment process. The acceleration voltage during the second boron 61 ion implantation is determined in consideration of the thickness of the thermal oxide film 81. Considering a slight decrease of 3000 Å, it was set to 40 KeV here. Conventionally, it was a relatively high value of about 150 KeV, but there is no effect because deep thermal diffusion is performed in the subsequent process.

【0011】レジスト灰化後、熱酸化膜81をふっ酸水
溶液で取り除く、再度高温熱処理を行い2回目に注入し
た硼素61を拡散源として図1 (d) のようにp+ 領域
51が形成される。前述したように、最表面における硼
素濃度が、最初の硼素注入によって決定される領域と最
初と2回目の足し合わせで決定される領域とに分けられ
る事が求められるので、すでにマスク上で2μm以上の
差がある本実施例の場合は、この工程で同時に拡散を行
っても十分に図1 (d) に示すような断面形状になる。
工数削減およびp+ 領域51をできるだけ広くするとい
う意味からも、同時に熱処理を行う方が有利である。図
1 (e) 以降の工程は、従来方法と全く同様である。な
お、ソース領域7の内縁を規制するレジスト4のマスク
は、その合わせ精度が多少ずれてもチャネル領域の幅お
よび不純物濃度には影響しない。
After the resist ashing, the thermal oxide film 81 is removed with an aqueous solution of hydrofluoric acid, and the high temperature heat treatment is performed again to use the boron 61 injected the second time as a diffusion source to form the p + region 51 as shown in FIG. 1 (d). It As described above, since the boron concentration on the outermost surface is required to be divided into a region determined by the first boron implantation and a region determined by the first and second additions, it is already 2 μm or more on the mask. In the case of this embodiment having a difference of 1), the cross-sectional shape as shown in FIG.
It is advantageous to perform the heat treatments at the same time from the viewpoint of reducing the number of steps and making the p + region 51 as wide as possible. The steps after FIG. 1E are exactly the same as the conventional method. Note that the mask of the resist 4 that regulates the inner edge of the source region 7 does not affect the width of the channel region and the impurity concentration even if the alignment accuracy thereof is slightly different.

【0012】本発明の効果をデバイス特性上で確認する
ため、MOS−FETに内蔵されたフリーホイリングダ
イオードの順方向の電圧降下とp+ 領域51形成のため
の2回目の硼素注入後の熱処理時間の関係を調べた。図
4のグラフの○印および×印は、それぞれ本発明による
ものと従来方法によるもの測定値で、素子の活性領域の
面積は同じであり、電流は熱処理の効果が顕著に現れ、
十分に電導度変調が起こっている大きさを選んで一定と
した。両素子とは、pウエル5の形成は先に済ませてい
るので、pn接合の形は殆ど変化はないと考えられる。
熱処理工程は、700℃で炉入れし一定の温度上昇スピ
ードで1100℃まで昇温し、定時間保持する。その後
一定の温度降下スピードで700℃まで冷却し、炉から
取り出す。グラフに示した熱処理時間とは、1100℃
に保持した時間であり、0分でも不純物の活性化のため
のアニール処理は十分に受けている。
In order to confirm the effect of the present invention on the device characteristics, the forward voltage drop of the freewheeling diode incorporated in the MOS-FET and the heat treatment after the second boron implantation for forming the p + region 51 are performed. I investigated the relationship of time. The circles and the crosses in the graph of FIG. 4 are measured values according to the present invention and those according to the conventional method, respectively, and the area of the active region of the element is the same, and the effect of the heat treatment is remarkable for the current.
The magnitude of sufficient conductivity modulation was selected and made constant. Since the p-well 5 has already been formed in both devices, it is considered that the shape of the pn junction hardly changes.
In the heat treatment step, the furnace is placed at 700 ° C., the temperature is raised to 1100 ° C. at a constant temperature rising speed, and the temperature is maintained for a fixed time. After that, it is cooled to 700 ° C. at a constant temperature decrease speed and taken out of the furnace. The heat treatment time shown in the graph is 1100 ° C.
It is a time kept for a long time, and even if it is 0 minute, the annealing treatment for activating the impurities is sufficiently received.

【0013】0分から20分までは、本発明の従来法で
は顕著な差が認められない。30分から90分の間で電
圧降下の低下に差がみられ、その後は両素子とも電圧降
下が一定の値となっている。熱処理時間の短い領域で
は、ダイオード特性はpウエル5とn形シリコン基板1
からなるpn接合で決定されているので、違いは見られ
ない。従来方法による素子の方が先に電圧降下の低下が
観測される。電流・電圧特性波形から詳しく観ると、電
流立ち上がりの部分は殆ど変わらないが、観測電流値に
おける電流・電圧特性の傾きが、従来方法による素子の
ほうが急峻であることがわかった。このことは、電流集
中が起こりやすい構造を持つ従来方法による素子では、
早めに十分な電導度変調が起こらなければならないから
であり、一端電導度変調が起こればデバイス構造の依存
性は受けにくくなるので、電圧降下が一定の値に落ち着
くのも早い。一方これに対し、本発明による素子では素
子内部を均一に電流が流れることが可能で、同じ電流を
ながすために電導度変調の度合いは小さくてよいので、
図4に示す結果になったと推測できる。上記結果を裏付
けるために、大きなパルス電流を繰り返し印加し素子の
発熱の様子を赤外線カメラで観察した。この結果からも
従来方法による素子では、温度分布にばらつきがある
が、本発明による素子では改善されており、バイポーラ
素子の電流集中による熱破壊が起こり難くなったことが
判かった。
From 0 to 20 minutes, no significant difference is observed in the conventional method of the present invention. There is a difference in the voltage drop between 30 minutes and 90 minutes, and after that, both elements have a constant voltage drop. In the region where the heat treatment time is short, the diode characteristics are p-well 5 and n-type silicon substrate 1.
No difference is seen because it is determined by the pn junction consisting of. The decrease in the voltage drop is observed earlier in the device manufactured by the conventional method. A closer look at the current / voltage characteristic waveform shows that the current rising portion is almost unchanged, but the slope of the current / voltage characteristic at the observed current value is steeper in the element by the conventional method. This means that in the device by the conventional method having a structure in which current concentration easily occurs,
This is because sufficient conductivity modulation must occur early, and once conductivity modulation occurs, the dependence on the device structure becomes less susceptible, and the voltage drop quickly settles to a fixed value. On the other hand, in the device according to the present invention, a current can flow uniformly inside the device, and since the same current is passed, the degree of conductivity modulation may be small,
It can be inferred that the result shown in FIG. 4 was obtained. In order to support the above result, a large pulse current was repeatedly applied and the state of heat generation of the element was observed with an infrared camera. From these results, it was found that the element according to the conventional method has a variation in the temperature distribution, but the element according to the present invention has improved the temperature distribution, and the thermal breakdown due to the current concentration of the bipolar element is less likely to occur.

【0014】実施例2:実施例1では、2回目の硼素イ
オン注入の窓部を露出させるために、図1 (c) に示す
ように一回目のイオン注入の窓を開ける際に、レジスト
4のマスクを用いたので、その制約から微細なセルには
応用できない。そこで、この点を改善した別の実施例の
方法を図5 (a) 〜 (f) に示す。
Example 2 In Example 1, in order to expose the window portion for the second boron ion implantation, when the window for the first ion implantation is opened as shown in FIG. 1C, the resist 4 is used. Since this mask was used, it cannot be applied to fine cells due to its restrictions. Therefore, a method of another embodiment improving this point is shown in FIGS. 5 (a) to 5 (f).

【0015】従来方法と同様に、poly−Siエッチ
ングのためにレジスト塗布、パターニングを行う。つい
で、エッチングを行うが、一般的に異方性の反応性イオ
ンエッチング (RIE) が用いられる。発明者らは、様
々なRIE条件とエッチング進行のようすを調査する過
程で、多結晶Siエッチングの途中では、図5 (a)に
示すようにレジストマスク近傍の多結晶Si層3が先行
してエッチングされる条件があることを見出した。この
ような過程が顕著にあらわれるエッチング条件で、下地
のゲート酸化膜2が露出した段階で一端エッチングを停
止する。反応ガスを十分排気したのち、今度は等方性の
RIE条件でエッチングを行い、ゲート酸化膜2の露出
面積を広げ、かつ残りの多結晶Si層30の厚さが、1
000〜1500Åになるようにする。このように二種
類のエッチングを組み合わせることにより、図5 (b)
のようにテーパの付いた多結晶Si層30ができる。ゲ
ート酸化膜2の露出面積と多結晶Si層30の厚さの再
現性をよくするには、できるだけエッチング速度の遅い
等方性のRIE条件を選ばなければならない。異方性お
よび等方性のRIE条件は、極めて装置依存性が強いの
で一概には言えないが、一例を表1に示す。
Similar to the conventional method, resist coating and patterning are performed for poly-Si etching. Then, etching is performed, and anisotropic reactive ion etching (RIE) is generally used. In the process of investigating various RIE conditions and the progress of etching, the inventors of the present invention conducted the polycrystalline Si layer 3 in the vicinity of the resist mask before the polycrystalline Si etching as shown in FIG. It has been found that there are conditions for etching. Under the etching conditions in which such a process appears remarkably, the etching is once stopped when the underlying gate oxide film 2 is exposed. After exhausting the reaction gas sufficiently, etching is performed under isotropic RIE conditions to expand the exposed area of the gate oxide film 2 and the thickness of the remaining polycrystalline Si layer 30 to 1
000 to 1500Å. By combining the two types of etching in this way, Fig. 5 (b)
As described above, a polycrystalline Si layer 30 having a taper is formed. In order to improve the reproducibility of the exposed area of the gate oxide film 2 and the thickness of the polycrystalline Si layer 30, it is necessary to select isotropic RIE conditions in which the etching rate is as slow as possible. The anisotropic and isotropic RIE conditions are extremely device-dependent and cannot be generally stated, but Table 1 shows an example.

【0016】[0016]

【表1】 レジスト灰化後、1回目の硼素イオン注入を行う。硼素
61は、ゲート酸化膜2を突き抜けて、シリコン基板1
の表面に打ち込まれる〔図5 (c) 〕。厚い多結晶Si
ゲート電極3が残っている部分は、硼素61の注入は阻
止されるが、薄い多結晶Si層30およびゲート酸化膜
2を突き抜けて下地のシリコン基板1の表面に硼素が打
ち込まれても何ら構わない。何故なら、その後の工程で
同部分に1回目の硼素イオン注入より2ケタ程度多い注
入を行うので無視できるからである。硼素61のイオン
注入後、露出したゲート酸化膜2を酸の希釈水溶液で除
去したのち、実施例1と同様に1150℃で3時間程度
の高温熱処理および水素ガスH2 と酸素ガスO2 の燃焼
方式による低温酸化を行う。この酸化により薄い多結晶
Si層30は全て酸化膜82の材料として消費され無く
なってしまうので、図5 (d) に示すような断面構造と
なる。
[Table 1] After ashing the resist, the first boron ion implantation is performed. The boron 61 penetrates through the gate oxide film 2 to form the silicon substrate 1
It is driven into the surface [Fig. 5 (c)]. Thick polycrystalline Si
Although the implantation of boron 61 is blocked in the portion where the gate electrode 3 remains, it does not matter if boron is implanted into the surface of the underlying silicon substrate 1 through the thin polycrystalline Si layer 30 and the gate oxide film 2. Absent. This is because, in the subsequent process, it is possible to ignore it because the same portion is implanted by about double digits as compared with the first boron ion implantation. After the ion implantation of boron 61, the exposed gate oxide film 2 is removed with a dilute aqueous solution of acid, and then high temperature heat treatment is performed at 1150 ° C. for about 3 hours and combustion of hydrogen gas H 2 and oxygen gas O 2 is performed as in Example 1. Low temperature oxidation is performed by the method. By this oxidation, all of the thin polycrystalline Si layer 30 is no longer consumed as the material of the oxide film 82, so that the sectional structure shown in FIG. 5D is obtained.

【0017】実施例1と同様、多結晶Siを材料にした
酸化膜82を選択的にウェットエッチングすると、シリ
コン基板1を材料にした緻密な熱酸化膜81とゲート酸
化膜2が残り、図5 (e) のようになるので、熱酸化膜
81をマスクとして直接2回目の硼素61のイオン注入
を行う。ここでも実施例1と同じ加速電圧に注意して条
件を決めれば、シリコン基板1の目的の表面に硼素イオ
ン注入ができる。後の工程は、実施例1と同様である。
Similar to the first embodiment, when the oxide film 82 made of polycrystalline Si is selectively wet-etched, the dense thermal oxide film 81 made of the silicon substrate 1 and the gate oxide film 2 are left, and FIG. As shown in (e), the second ion implantation of boron 61 is directly performed using the thermal oxide film 81 as a mask. Also here, if the conditions are determined while paying attention to the same acceleration voltage as in Example 1, boron ion implantation can be performed on the target surface of the silicon substrate 1. The subsequent steps are the same as in Example 1.

【0018】本実施例は、微細な構造でも本発明を応用
することが可能である事を示し、また実施例1よりフォ
トマスクを1枚減らすことができる。微細な構造の単体
を多数配置することで、単体セルの担うべき電流が少な
くて済むので、実施例1におけると同様MOS−FET
に内蔵されたフリーホイールダイオードの順方向の電圧
降下と微細化の効果を調べた。結果は、従来方法による
素子では、微細化による順方向の電圧降下の減少は殆ど
観測できなかったが、実施例2による素子では微細化に
よって電圧降下の減少傾向が認められた。本実施例によ
る素子では電流が均一に流れるので、特にスイッチング
動作時の破壊耐量の効果が期待でき、IGBTやMOS
−サイリスタなどの特性向上に適している。
The present embodiment shows that the present invention can be applied to a fine structure, and the number of photomasks can be reduced by one from the first embodiment. By arranging a large number of fine-structured single bodies, the current to be carried by the single cells can be small. Therefore, as in the first embodiment, the MOS-FET is the same.
We investigated the forward voltage drop and the effect of miniaturization of the free-wheel diode built in the. As a result, in the device according to the conventional method, a decrease in the forward voltage drop due to the miniaturization was hardly observed, but in the device according to Example 2, the decrease tendency in the voltage drop due to the miniaturization was observed. In the element according to the present embodiment, the current flows uniformly, so that the effect of the breakdown withstanding capability during the switching operation can be expected, and the IGBT and the MOS can be expected.
-Suitable for improving the characteristics of thyristors.

【0019】[0019]

【発明の効果】本発明によれば、導電材料層からゲート
電極をパターニングする際に、一対のゲート電極の中央
に導電材料層を残し、その両側をマスク材料で埋めるこ
とにより、ゲート電極の中央に第二の第二導電形領域形
成のための不純物導入用のマスクができる。これにより
MOS動作を行う領域とバイポーラ動作を行う領域とが
擬似的なセルフアラインプロセスで形成して縦型MOS
半導体素子を製造することが可能になった。
According to the present invention, when the gate electrode is patterned from the conductive material layer, the conductive material layer is left in the center of the pair of gate electrodes, and both sides thereof are filled with the mask material, whereby the center of the gate electrode is filled. Moreover, a mask for introducing impurities for forming the second second conductivity type region can be formed. As a result, a region for performing a MOS operation and a region for performing a bipolar operation are formed by a pseudo self-alignment process to form a vertical MOS.
It has become possible to manufacture semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の縦型MOS−FETの製造
工程の要部を (a) ないし (e) の順に示す断面図
FIG. 1 is a sectional view showing a main part of a manufacturing process of a vertical MOS-FET according to an embodiment of the present invention in the order of (a) to (e).

【図2】従来の縦型MOS−FETの製造工程の要部を
(a) ないし (e) の順に示す断面図
FIG. 2 shows an essential part of a conventional vertical MOS-FET manufacturing process.
Sectional views shown in the order of (a) to (e)

【図3】従来の製造方法による縦型MOS−FETの欠
点を示す断面図
FIG. 3 is a sectional view showing a defect of a vertical MOS-FET manufactured by a conventional manufacturing method.

【図4】本発明の実施例の製造方法および従来の製造方
法による縦型MOSFETの順方向電圧降下とp+ 領域
形成のための熱処理時間との関係線図
FIG. 4 is a diagram showing the relationship between the forward voltage drop and the heat treatment time for forming the p + region of the vertical MOSFET according to the manufacturing method of the embodiment of the present invention and the conventional manufacturing method.

【図5】本発明の別の実施例の縦型MOS−FETの製
造工程の要部を (a) ないし (f) の順に示す断面図
FIG. 5 is a cross-sectional view showing the main parts of a manufacturing process of a vertical MOS-FET of another embodiment of the present invention in the order of (a) to (f).

【符号の説明】[Explanation of symbols]

1 n形シリコン基板 2 ゲート酸化膜 3 ゲート電極 30 多結晶Si層 4 レジスト 5 pウエル 51 p+ 領域 61 硼素 62 砒素 7 ソース領域 81、82 熱酸化膜1 n-type silicon substrate 2 gate oxide film 3 gate electrode 30 polycrystalline Si layer 4 resist 5 p well 51 p + region 61 boron 62 arsenic 7 source region 81, 82 thermal oxide film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体基体の第一導電形層に選択的に形成
された第一の第二導電形領域とその第一の第二導電形領
域の表面層の中央部に選択的に形成された第一の領域よ
り不純物濃度の高い第二の第二導電形領域を有し、その
第一および第二の第二導電形領域の表面層に選択的に形
成した第一導電形のソース領域と第一導電形層の露出部
とにはさまれた第二導電形の領域をチャネル領域として
その上にゲート絶縁膜を介してゲート電極が設けられる
縦型MOS半導体素子の製造方法において、半導体基体
の第一導電形層の表面上に絶縁膜を介して導電材料層を
形成する工程と、その導電材料層をパターニングして一
対のゲート電極を形成すると共に、ゲート電極にはさま
れた部分の中央に導電材料層を残留させる工程と、ゲー
ト電極と残留導電材料層にはさまれた部分をマスク材料
で埋める工程と、残留導電材料層を選択的にエッチング
して除去してマスク材料からなるマスクを残す工程と、
ゲート電極をマスクとして第一の第二導電形領域形成の
ための不純物を導入する工程と、マスク材料からなるマ
スクを用いて第二の第二導電形領域形成のための不純物
を導入する工程と、ゲート電極をチャネル領域を覆うマ
スクとしてソース領域形成のための不純物を導入する工
程とを含むことを特徴とする縦型MOS半導体素子の製
造方法。
1. A first second conductivity type region selectively formed in a first conductivity type layer of a semiconductor substrate and a central portion of a surface layer of the first second conductivity type region. A source region of the first conductivity type having a second second conductivity type region having an impurity concentration higher than that of the first region and selectively formed on a surface layer of the first and second second conductivity type regions. In the method of manufacturing a vertical MOS semiconductor device, the second conductivity type region sandwiched between the first conductivity type layer and the exposed portion of the first conductivity type layer is used as a channel region, and a gate electrode is provided thereon via a gate insulating film. A step of forming a conductive material layer on the surface of the first conductivity type layer of the substrate through an insulating film, and patterning the conductive material layer to form a pair of gate electrodes, and a portion sandwiched between the gate electrodes. To leave the conductive material layer in the center of the A step of filling the portion held postal layer with a mask material, a step of leaving a mask made of a mask material is removed by selectively etching the remaining conductive material layer,
A step of introducing impurities for forming the first second conductivity type region using the gate electrode as a mask, and a step of introducing impurities for forming the second second conductivity type region using a mask made of a mask material, And a step of introducing an impurity for forming a source region by using the gate electrode as a mask for covering the channel region, the method for manufacturing a vertical MOS semiconductor device.
【請求項2】半導体基体としてシリコン素体を用い導電
材料として多結晶シリコンを用い、マスク材料としてシ
リコン素体の表面を酸化して形成した酸化シリコン層を
用い、エッチング速度の差を利用して多結晶シリコン層
を選択的に除去し、酸化シリコン層を残す請求項1記載
の縦型MOS半導体素子の製造方法。
2. A silicon base body is used as a semiconductor substrate, polycrystalline silicon is used as a conductive material, and a silicon oxide layer formed by oxidizing the surface of the silicon base body is used as a mask material. 2. The method for manufacturing a vertical MOS semiconductor device according to claim 1, wherein the polycrystalline silicon layer is selectively removed and the silicon oxide layer is left.
【請求項3】シリコン素体の表面を酸化してマスク材料
としての酸化シリコン層を形成する際に多結晶シリコン
層上に形成される酸化シリコン層を、シリコン素体の酸
化によって形成された酸化シリコン層とのエッチング速
度の差を利用して選択的に除去する請求項2記載の縦型
MOS半導体素子の製造方法。
3. A silicon oxide layer formed on a polycrystalline silicon layer when a surface of a silicon element body is oxidized to form a silicon oxide layer as a mask material. 3. The method for manufacturing a vertical MOS semiconductor device according to claim 2, wherein the vertical MOS semiconductor device is selectively removed by utilizing the difference in etching rate from the silicon layer.
【請求項4】多結晶シリコン層をパターニングしてゲー
ト電極を形成する際に反応性イオンエッチングを用い、
ゲート電極より厚さの薄い多結晶シリコン層をゲート電
極にはさまれた部分の中央に残す請求項2あるいは3記
載の縦型MOS半導体素子の製造方法。
4. Reactive ion etching is used in forming a gate electrode by patterning a polycrystalline silicon layer,
4. The method for manufacturing a vertical MOS semiconductor device according to claim 2, wherein a polycrystalline silicon layer having a thickness smaller than that of the gate electrode is left in the center of the portion sandwiched by the gate electrodes.
JP6222342A 1994-09-19 1994-09-19 Manufacture of vertical mos semiconductor device Pending JPH0888233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6222342A JPH0888233A (en) 1994-09-19 1994-09-19 Manufacture of vertical mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6222342A JPH0888233A (en) 1994-09-19 1994-09-19 Manufacture of vertical mos semiconductor device

Publications (1)

Publication Number Publication Date
JPH0888233A true JPH0888233A (en) 1996-04-02

Family

ID=16780847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6222342A Pending JPH0888233A (en) 1994-09-19 1994-09-19 Manufacture of vertical mos semiconductor device

Country Status (1)

Country Link
JP (1) JPH0888233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347366A (en) * 2010-08-02 2012-02-08 富士电机株式会社 Mos type semiconductor device and method of manufacturing same
JP2015179869A (en) * 2015-06-02 2015-10-08 富士電機株式会社 Mos semiconductor device and mos semiconductor device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347366A (en) * 2010-08-02 2012-02-08 富士电机株式会社 Mos type semiconductor device and method of manufacturing same
JP2012033809A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Mos type semiconductor device
JP2015179869A (en) * 2015-06-02 2015-10-08 富士電機株式会社 Mos semiconductor device and mos semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US5182234A (en) Profile tailored trench etch using a SF6 -O2 etching composition wherein both isotropic and anisotropic etching is achieved by varying the amount of oxygen
US4598461A (en) Methods of making self-aligned power MOSFET with integral source-base short
JPS6223171A (en) Electric contact, manufacture thereof and transistor using electric contact
JPS63147368A (en) Double side gate electrostatic induction thyristor and manufacture thereof
JPH01225166A (en) Manufacture of conductivity modulation type mosfet
US4914047A (en) Method of producing insulated gate MOSFET employing polysilicon mask
JPS6140146B2 (en)
JPS60210861A (en) Semiconductor device
CA1179786A (en) Lateral transistor structure having self-aligned base and base contact and method of fabrication
EP0451286A1 (en) Integrated circuit device
JPH0888233A (en) Manufacture of vertical mos semiconductor device
JPH0888232A (en) Manufacture of vertical mos semiconductor element
JPH06163905A (en) Fabrication of insulated gate semiconductor
JP3105237B2 (en) Method for manufacturing DMOS type semiconductor device
JP3663657B2 (en) Manufacturing method of semiconductor device
JP3641929B2 (en) Manufacturing method of semiconductor device
JP2765132B2 (en) Manufacturing method of vertical field effect transistor
US5264381A (en) Method of manufacturing a static induction type switching device
JPH0282534A (en) Vertical mos-fet and manufacture thereof
KR100357299B1 (en) Method for manufacturing thin film transistor
KR100320677B1 (en) method for manufacturing thyristor devices
JP2919659B2 (en) Method for manufacturing insulated gate field effect transistor
JPH07273323A (en) Manufacture of semiconductor device
JPH0793430B2 (en) Method for manufacturing MOS semiconductor device
JP3297102B2 (en) Method of manufacturing MOSFET