JP2015179869A - Mos semiconductor device and mos semiconductor device manufacturing method - Google Patents

Mos semiconductor device and mos semiconductor device manufacturing method Download PDF

Info

Publication number
JP2015179869A
JP2015179869A JP2015111998A JP2015111998A JP2015179869A JP 2015179869 A JP2015179869 A JP 2015179869A JP 2015111998 A JP2015111998 A JP 2015111998A JP 2015111998 A JP2015111998 A JP 2015111998A JP 2015179869 A JP2015179869 A JP 2015179869A
Authority
JP
Japan
Prior art keywords
layer
contact
source
region
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015111998A
Other languages
Japanese (ja)
Other versions
JP6112141B2 (en
Inventor
康 新村
Yasushi Niimura
康 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015111998A priority Critical patent/JP6112141B2/en
Publication of JP2015179869A publication Critical patent/JP2015179869A/en
Application granted granted Critical
Publication of JP6112141B2 publication Critical patent/JP6112141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a MOS semiconductor device which does not cause a decrease in breakdown voltage and an increase in on-resistance, and which achieves low manufacturing cost.SOLUTION: A MOS semiconductor device comprises: p base regions 17 which are selectively arranged in a surface layer of an ndrift layer 1 and each of which has a net doping concentration with a shape having a double well region; n first regions 6 which are selectively arranged in a surface layer of each p base region 17; gate electrodes 8 each coated via a gate insulation film 9, on a surface of the p base region 17, which is sandwiched by a surface of the n first region 6 and a surface of the ndrift layer 1; pcontact regions 22 each having a bottom face which is included in the p base region 17 and parallel with a surface of the pcontact regions 22; and a metal electrode 13 conductively contacting the surfaces of the n first regions 6 and the surfaces of the p base regions 17.

Description

本発明は、MOSFET、IGBT(絶縁ゲート型バイポーラトランジスタ)などのMOS型半導体装置およびMOS型半導体装置の製造方法に関する。 The present invention relates to a MOS type semiconductor device such as a MOSFET and an IGBT (Insulated Gate Bipolar Transistor) and a method for manufacturing the MOS type semiconductor device .

MOS型半導体素子である電力用MOSFETやIGBTは電圧制御できる素子として知られている。図9は、従来のMOSFETの要部断面図である。基板となるn+ドレイン層2に隣接するn-ドリフト層1の表面層にpベース領域17を形成し、pベース領域17の表面層には、n+ソース領域6とp+コンタクト領域22とが選択的に形成される。n-ドリフト層1の表面とn+ソース領域6の表面とに挟まれるpベース領域17の表面層はチャネル形成領域7となる。このチャネル形成領域7の表面上にゲート電極8がゲート絶縁膜9を介して設けられている。ゲート電極8上には層間絶縁膜10が形成され、その上を覆うソース電極13との絶縁を保っている。またソース電極13はp+コンタクト領域22の表面とn+ソース領域6の表面とに共通に接触するように形成される。反対側のn+ドレイン層2の表面にはドレイン電極12が形成される。 Power MOSFETs and IGBTs, which are MOS type semiconductor elements, are known as elements capable of voltage control. FIG. 9 is a cross-sectional view of a main part of a conventional MOSFET. A p base region 17 is formed in the surface layer of the n drift layer 1 adjacent to the n + drain layer 2 serving as the substrate, and the n + source region 6 and the p + contact region 22 are formed in the surface layer of the p base region 17. Are selectively formed. The surface layer of the p base region 17 sandwiched between the surface of the n drift layer 1 and the surface of the n + source region 6 becomes the channel forming region 7. A gate electrode 8 is provided on the surface of the channel formation region 7 via a gate insulating film 9. An interlayer insulating film 10 is formed on the gate electrode 8 to maintain insulation from the source electrode 13 covering the interlayer insulating film 10. The source electrode 13 is formed so as to be in common contact with the surface of the p + contact region 22 and the surface of the n + source region 6. A drain electrode 12 is formed on the surface of the n + drain layer 2 on the opposite side.

pベース領域17とn-ドリフト層1とが接する接合面20は、その周辺にあって有限の曲率半径部分と、通常は平坦な基底部分とからなる。しかし、図13に示すように、接合面20の基底部分が平坦でなく、pベース領域17の中央部分で表面から接合面20までの深さが最も深くなる曲率形状とすることもできる(特許文献1)。pベース領域17形成の際のイオン注入領域幅が不純物イオンの飛程距離より大きいと基底は平坦になり、飛程距離より幅が小さいと基底が平坦では無くなる。さらに図9、図13のように、ソース電極13とのコンタクト性を良好にすることと、後述の寄生バイポーラトランジスタの影響を小さくするために、pベース領域17の表面にはn+ソース領域6の直下にまで達するp+コンタクト領域22が設けられることが多い。 The joint surface 20 where the p base region 17 and the n drift layer 1 are in contact with each other includes a finite radius portion of curvature and a flat base portion. However, as shown in FIG. 13, the base portion of the joint surface 20 is not flat, and a curvature shape in which the depth from the surface to the joint surface 20 is the deepest in the central portion of the p base region 17 can also be formed (patent) Reference 1). If the ion implantation region width when forming the p base region 17 is larger than the range distance of impurity ions, the base becomes flat, and if the width is smaller than the range distance, the base is not flat. Further, as shown in FIGS. 9 and 13, in order to improve the contact property with the source electrode 13 and to reduce the influence of a parasitic bipolar transistor described later, the n + source region 6 is formed on the surface of the p base region 17. In many cases, a p + contact region 22 reaching just below is provided.

前記図9に示す従来のMOSFETのウエハプロセスを以下に説明する。n+ドレイン層2となる高濃度n型シリコン基板上にエピタキシャル成長で高抵抗層であるn-ドリフト層1を形成した半導体基板を用いて、n-ドリフト層1上にゲート絶縁膜9を形成した後、ゲート電極8を形成するための多結晶シリコン層を堆積する。この多結晶シリコン層に、フォトリソグラフィにより多結晶シリコンからなるゲート電極8用パターンを形成し、その際に形成された開口部を通してゲート電極8をマスクにpベース領域17用のボロンイオン注入および熱拡散を行う。この開口部の中央に選択的に残した酸化膜あるいはフォトレジスト(図示せず)と前記ゲート電極8のパターンをマスクとして、ヒ素(As)等のドナーをイオン注入してn+ソース領域6を形成する。前記開口部の中央の酸化膜マスクを除去した後、p+コンタクト領域22を形成する。n+ソース領域6の表面とp+コンタクト領域22の表面を除く、ゲート電極8を含む全面を層間絶縁膜10で覆った後、フォトリソグラフィにて、後にソース電極13とn+ソース領域6及びp+コンタクト領域22を接続する部分を開口する。そしてn+ソース領域6の表面とp+コンタクト領域22の表面に共通に接触し、ゲート電極8とは層間絶縁膜10により絶縁されるソース電極13を被着させる。反対側のn+ドレイン層2の表面にドレイン電極12をよく知られた複数の金属膜で積層することにより、MOSFETの主要なウエハプロセスが完了する。なお、前記n+ソース領域6及びp+コンタクト領域22は、それぞれの形成の順番を逆にする場合もある。 The conventional MOSFET wafer process shown in FIG. 9 will be described below. n + drain layer 2 to become the high concentration n-type silicon substrate by epitaxial growth is a high-resistance layer the n - using the semiconductor substrate formed with the drift layer 1, n - to form the gate insulating film 9 on the drift layer 1 Thereafter, a polycrystalline silicon layer for forming the gate electrode 8 is deposited. A pattern for the gate electrode 8 made of polycrystalline silicon is formed on the polycrystalline silicon layer by photolithography, and boron ions are implanted and heat-treated for the p base region 17 using the gate electrode 8 as a mask through the opening formed at that time. Perform diffusion. Using the oxide film or photoresist (not shown) selectively left in the center of the opening and the pattern of the gate electrode 8 as a mask, a donor such as arsenic (As) is ion-implanted to form the n + source region 6. Form. After removing the oxide film mask at the center of the opening, a p + contact region 22 is formed. The entire surface including the gate electrode 8 except for the surface of the n + source region 6 and the surface of the p + contact region 22 is covered with an interlayer insulating film 10, and then the source electrode 13 and the n + source region 6 and A portion connecting p + contact region 22 is opened. Then, a source electrode 13 that is in common contact with the surface of the n + source region 6 and the surface of the p + contact region 22 and is insulated from the gate electrode 8 by the interlayer insulating film 10 is deposited. The main wafer process of the MOSFET is completed by laminating the drain electrode 12 with a plurality of well-known metal films on the surface of the n + drain layer 2 on the opposite side. The n + source region 6 and the p + contact region 22 may be formed in the reverse order.

このMOSFETは、ソース電極13に対して、ゲート電極8に正の電圧を印加すると、ゲート絶縁膜9の直下のチャネル形成領域7にチャネルが形成され、n+ソース領域6から電子がチャネル形成領域7を通してn-ドリフト層1に注入され、導通状態となる。またゲート電極8をソース電極13と同電位またはソース電極13に対して負電位にバイアスすることで阻止状態となる、所謂、スイッチング素子としての働きをする。 In this MOSFET, when a positive voltage is applied to the gate electrode 8 with respect to the source electrode 13, a channel is formed in the channel formation region 7 immediately below the gate insulating film 9, and electrons are transferred from the n + source region 6 to the channel formation region. 7 is injected into n drift layer 1 and becomes conductive. Further, the gate electrode 8 functions as a so-called switching element that is in a blocking state by being biased to the same potential as the source electrode 13 or a negative potential with respect to the source electrode 13.

図10は従来のIGBTの要部断面図を示す。前述の図9のMOSFETとの違いは、n+ドレイン層2がp+コレクタ層14となり、p+コレクタ層14とn-ドリフト層1との間にn+バッファ層15が形成されている点である。このn-ドリフト層1とn+バッファ層15はp+コレクタ層14上にエピタキシャル成長で形成されると、その表面にMOS構造を形成するための半導体基板となる。この半導体基板上のn-ドリフト層1の表面層に前述のMOSFETと同様の工程で各領域を形成する。MOSFETとの動作上の違いはp+コレクタ層14から正孔の注入があり、n-ドリフト層1が伝導度変調を起こし、低抵抗となる点である。 FIG. 10 is a cross-sectional view of a main part of a conventional IGBT. The difference between MOSFET of the above-mentioned FIG. 9, n + drain layer 2 is p + collector layer 14 becomes, the p + collector layer 14 and n - that n + buffer layer 15 is formed between the drift layer 1 It is. When the n drift layer 1 and the n + buffer layer 15 are formed on the p + collector layer 14 by epitaxial growth, they become semiconductor substrates for forming a MOS structure on the surface thereof. Each region is formed in the surface layer of the n drift layer 1 on the semiconductor substrate by the same process as the above-described MOSFET. The operational difference from the MOSFET is that holes are injected from the p + collector layer 14 and the n drift layer 1 undergoes conductivity modulation, resulting in a low resistance.

前記MOSFETやIGBTの製造工程で、n+ソース領域6とpベース領域17はゲート電極8をマスクとして用いる、所謂、セルフアライン法で一般的に形成されるが、pベース領域17をレジストマスクで形成し、n+ソース領域6を多結晶シリコンをマスクとして使用する方法や、pベース領域17、n+ソース領域6をそれぞれフォトレジストマスクで形成する方法とすることもできる(特許文献1、3)。 In the manufacturing process of the MOSFET or IGBT, the n + source region 6 and the p base region 17 are generally formed by a so-called self-alignment method using the gate electrode 8 as a mask. The p base region 17 is formed by a resist mask. The n + source region 6 may be formed using polycrystalline silicon as a mask, or the p base region 17 and the n + source region 6 may be formed using a photoresist mask, respectively (Patent Documents 1 and 3). ).

類似のMOSFETとして、誘導負荷回路でターンオフ時に寄生バイポーラトランジスタがオンすることによる素子破壊を防止するために、p形チャネル拡散層(前述のpベース領域17)の中央部にnウェルを形成する構造が記載されている(特許文献2)。この構造とすることにより、寄生バイポーラトランジスタのオンを防止することができることの記載がある。同様に、nウェルを形成せずに、p型領域(前述のpベース領域17)が2つの凹状の基底部をもつ構造が記載されている(特許文献4、5)。   As a similar MOSFET, a structure in which an n-well is formed at the center of a p-type channel diffusion layer (the aforementioned p base region 17) in order to prevent element breakdown due to turning on a parasitic bipolar transistor at the time of turn-off in an inductive load circuit Is described (Patent Document 2). There is a description that this structure can prevent the parasitic bipolar transistor from being turned on. Similarly, a structure in which a p-type region (the aforementioned p base region 17) has two concave base portions without forming an n-well is described (Patent Documents 4 and 5).

特開平9−148566号公報Japanese Patent Laid-Open No. 9-148666 特開平7−235668号公報JP-A-7-235668 特開2009−277839号公報JP 2009-277839 A 特開平6−163909号公報JP-A-6-163909 特開平8−204175号公報JP-A-8-204175

しかしながら、前記MOSFETやIGBTを、誘導性負荷に接続されたインバータ装置で使用した場合に、素子がターンオフする時点でしばしば破壊することがある。この破壊はつぎのようなメカニズムで起こる。図11はMOSFETの要部断面図と等価回路とを重ね合わせて示した図である。MOSFETはn+ソース領域6、pベース領域17およびn-ドリフト層1からなる寄生バイポーラトランジスタ30を内蔵している。誘導性負荷の下でMOSFETをターンオフさせるとチャネル形成領域7は阻止状態となり、n+ソース領域6からn-ドリフト層1への電子の注入がなくなり、n-ドリフト層1に空乏層が拡がる。この際、MOSFETのドレイン・ソース間に印加される電圧はMOSFETのブレークダウン電圧以上に上昇することがあり、誘導性負荷に蓄積されたエネルギーをMOSFET内で消費するためにアバランシェ電流が流れる。つまり、図12に示すように、pベース領域17の湾曲部がアバランシェ発生部分16となり、ホール・電子対が生成される。そして前記の部分で発生したホールは、図12の矢印にて示すようにアバランシェ電流34となり、n+ソース領域直下のpベース領域17を横方向に流れる。その際に、アバランシェ電流が増加すると、pベース領域17内の横方向抵抗Rで生ずる電圧降下がpベース領域17とn+ソース領域6間のpn接合の堰層電圧(0.7〜0.8V)より大きくなることがある。するとn+ソース領域6から電子の注入が生じて前記寄生バイポーラトランジスタ30がターンオンし、局部的な電流集中が生じるので、素子が破壊する。この対策として、前述のn+ソース領域6直下の横方向の電流経路にp+コンタクト領域22を配置することにより横方向抵抗Rを低減させて電圧降下を前記堰層電圧以下に減らす工夫をしている。しかし、前述のチャネル形成領域7の直下まで前記p+コンタクト領域22が達すると前記ゲート電極8に正の電圧を印加してもチャネルが形成されずスイッチング機能がなくなるため、許容誤差があることを前提に設計するとp+コンタクト領域22はチャネル形成領域7からある程度離間させる必要がある。この結果、横方向抵抗Rを充分に低減できず、やはり前記寄生バイポーラトランジスタ30がターンオンすることを充分には回避できず、素子が破壊する場合があったのである。 However, when the MOSFET or IGBT is used in an inverter device connected to an inductive load, the MOSFET or IGBT is often destroyed when the element is turned off. This destruction occurs by the following mechanism. FIG. 11 is a diagram in which a cross-sectional view of a main part of a MOSFET and an equivalent circuit are overlapped. The MOSFET incorporates a parasitic bipolar transistor 30 including an n + source region 6, a p base region 17 and an n drift layer 1. When the MOSFET is turned off under an inductive load, the channel forming region 7 is in a blocking state, electron injection from the n + source region 6 into the n drift layer 1 is eliminated, and a depletion layer spreads in the n drift layer 1. At this time, the voltage applied between the drain and source of the MOSFET may rise above the breakdown voltage of the MOSFET, and an avalanche current flows to consume the energy stored in the inductive load in the MOSFET. That is, as shown in FIG. 12, the curved portion of the p base region 17 becomes an avalanche generating portion 16, and a hole / electron pair is generated. The holes generated in the above portion become an avalanche current 34 as indicated by an arrow in FIG. 12, and flow in the lateral direction in the p base region 17 immediately below the n + source region. At this time, when the avalanche current increases, a voltage drop caused by the lateral resistance R in the p base region 17 causes a pn junction weir layer voltage (0.7 to 0... 0) between the p base region 17 and the n + source region 6. 8V). Then, electrons are injected from the n + source region 6 and the parasitic bipolar transistor 30 is turned on to cause local current concentration, so that the element is destroyed. As a countermeasure, the p + contact region 22 is arranged in the lateral current path immediately below the n + source region 6 to reduce the lateral resistance R and reduce the voltage drop below the weir layer voltage. ing. However, when the p + contact region 22 reaches just below the channel formation region 7, the channel is not formed even if a positive voltage is applied to the gate electrode 8, and the switching function is lost. When designed on the premise, the p + contact region 22 needs to be separated from the channel forming region 7 to some extent. As a result, the lateral resistance R cannot be sufficiently reduced, and the parasitic bipolar transistor 30 cannot be sufficiently turned on, and the device may be destroyed.

これに対し、図14のMOSFET、図15のIGBTの各要部断面図に示すように、pベース領域17より深い第2のp+領域21を形成して、第2のp+領域21の基底部にアバランシェ電流を集中させることにより、寄生バイポーラトランジスタのターンオンを防ぐ方法もある。しかし、この構造では、pベース領域17と第2のp+領域21のpn接合面が凸凹になることでブレークダウン電圧が下がるという別の問題が発生する。さらに第2のp+領域21を深く拡散すると第2のp+領域21の基底部とn+ドレイン層2間のn-ドリフト層1の厚さが薄くなることでも、ブレークダウン電圧が低下する問題も生じる。その一方、n+ソース領域6からチャネル形成領域7を経て、n-ドリフト層1に注入された電子がドレイン電極12まで到達する経路は変わらない。しかし、定格電圧を維持させるためには、第2のp+領域21をpベース領域17より深くした分、n-ドリフト層1を厚くせねばならないで、オン抵抗が増加する。増加させる前のオン抵抗値を維持するためには、チップサイズを大きくせねばならず、チップ単価が増加するという経済上の問題もある。 In contrast, MOSFET of FIG. 14, as shown in the cross sectional view of the IGBT of FIG. 15, to form a deeper than p base region 17 second p + region 21, the second p + region 21 There is also a method for preventing the turn-on of the parasitic bipolar transistor by concentrating the avalanche current on the base. However, in this structure, another problem arises in that the breakdown voltage decreases because the pn junction surfaces of the p base region 17 and the second p + region 21 become uneven. Further, when the second p + region 21 is deeply diffused, the breakdown voltage is lowered even if the thickness of the n drift layer 1 between the base portion of the second p + region 21 and the n + drain layer 2 is reduced. Problems also arise. On the other hand, the path through which electrons injected into the n drift layer 1 from the n + source region 6 through the channel formation region 7 reach the drain electrode 12 does not change. However, in order to maintain the rated voltage, the on-resistance is increased without increasing the thickness of the n drift layer 1 by the amount that the second p + region 21 is deeper than the p base region 17. In order to maintain the on-resistance value before the increase, the chip size must be increased, and there is an economic problem that the unit price of the chip increases.

また、図13に示すように、pベース領域17の基底部から平坦を無くして有限の曲率半径をもった基底形状にし、基底部の中心部で電界を集中させ、アバランシェ電流を中心部に集中させることにより寄生バイポーラトランジスタのオンを避ける方法もある。この場合、基底部を曲率形状にするためには、イオン注入する開口部の幅をpベース領域17の深さより狭くする必要がある。しかし、前記開口部の幅を狭くすると、開口部で接触するソース電極13とのコンタクト面積の確保が困難となるので、現実には必要十分に開口部を狭くすることが難しく、基底部にアバランシェ電流を集中させることは難しい。   Further, as shown in FIG. 13, the base portion of the p base region 17 is flattened to have a base shape with a finite radius of curvature, the electric field is concentrated at the center portion of the base portion, and the avalanche current is concentrated at the center portion. There is also a method for avoiding the parasitic bipolar transistor from being turned on. In this case, in order to make the base portion have a curvature shape, the width of the opening for ion implantation needs to be narrower than the depth of the p base region 17. However, if the width of the opening is reduced, it is difficult to secure a contact area with the source electrode 13 that is in contact with the opening. In practice, it is difficult to narrow the opening sufficiently and sufficiently, and an avalanche is formed on the base. It is difficult to concentrate the current.

本発明は、以上説明した点に鑑みてなされたものであり、本発明の目的は、ブレークダウン電圧の低下や、オン抵抗の増大を招かず、しかも製造コストが低いMOS型半導体装置を提供することにある。   The present invention has been made in view of the above-described points, and an object of the present invention is to provide a MOS semiconductor device that does not cause a decrease in breakdown voltage and an increase in on-resistance, and is low in manufacturing cost. There is.

本発明は前記発明の目的を達成するために、
第1導電型ドリフト層と、
該ドリフト層の表面に選択的に配置され、前記ドリフト層とのpn接合面が、前記ドリフト層の表面層から深さ方向に向かって深さが等しく且つ最も深い2つの凹状部と、該2つの凹状部に挟まれ且つ深さが該凹状部よりも浅い凸状部とを有するダブルウェル領域を少なくとも1つ備える第2導電型ベース層と、
該ベース領域の表面層に選択的に配置される第1導電型ソース層と、
前記ベース層に内包されるとともに該ベース層の表面層に選択的に配置され、前記ベース層より高不純物濃度で、前記ソース層より深く、前記ダブルウェル領域の凸状部の深さよりも浅く、さらに前記ソース層の直下に終端が位置する第2導電型コンタクト層と、
前記ソース層と前記ドリフト層に挟まれた前記ベース層の表面に、ゲート絶縁膜を介して設置されるゲート電極と、
前記ゲート電極を覆い、前記ソース層の表面上に側端が位置する層間絶縁膜と、
前記ソース層の表面と前記ベース層の中央部表面とに導電接触し、前記層間絶縁膜により前記ゲート電極と絶縁されているソース電極と、を備え、
前記ベース層のうち前記コンタクト層より深い所定深さにおいて、前記凸状部の前記表面層側上部のネットドーピング濃度が、前記2つの凹状部の前記表面層側上部のネットドーピング濃度よりも低いとともに、前記ゲート電極下部のネットドーピング濃度よりも高く、
前記ダブルウェル領域の最も深い凹状部の前記表面層側には、前記ソース電極と、該ソース電極と前記ソース層とが接する接触面と、前記ソース層の底面に接する前記コンタクト層と、が形成されており、
前記凹状部の上部であって、接触面下部の前記ソース層に接する前記コンタクト層の底面は、前記接触面と平行であるMOS型半導体装置とする。
In order to achieve the object of the present invention, the present invention provides:
A first conductivity type drift layer;
Two concave portions which are selectively disposed on the surface of the drift layer, and have a pn junction surface with the drift layer, the depths of which are equal and deepest from the surface layer of the drift layer in the depth direction; A second conductivity type base layer comprising at least one double well region sandwiched between two concave portions and having a convex portion whose depth is shallower than the concave portion;
A first conductivity type source layer selectively disposed on a surface layer of the base region;
Embedded in the base layer and selectively disposed on the surface layer of the base layer, having a higher impurity concentration than the base layer, deeper than the source layer, and shallower than the depth of the convex portion of the double well region, A second conductivity type contact layer having a termination located directly under the source layer;
A gate electrode disposed on the surface of the base layer sandwiched between the source layer and the drift layer via a gate insulating film;
An interlayer insulating film covering the gate electrode and having a side edge located on the surface of the source layer;
A source electrode that is in conductive contact with the surface of the source layer and the central surface of the base layer and is insulated from the gate electrode by the interlayer insulating film;
At a predetermined depth deeper than the contact layer in the base layer, the net doping concentration in the upper portion on the surface layer side of the convex portion is lower than the net doping concentration in the upper portion on the surface layer side of the two concave portions. Higher than the net doping concentration under the gate electrode,
On the surface layer side of the deepest concave portion of the double well region, the source electrode, a contact surface in contact with the source electrode and the source layer, and the contact layer in contact with the bottom surface of the source layer are formed. Has been
The bottom surface of the contact layer that is in the upper part of the concave part and is in contact with the source layer at the lower part of the contact surface is a MOS semiconductor device that is parallel to the contact surface.

また、本発明は、前記MOS型半導体装置を製造する製造方法であって、
前記ドリフト層表面に選択的に酸化膜を形成する工程と、
該酸化膜から離間するように前記ドリフト層表面に選択的に前記ゲート電極を形成し、該ゲート電極と前記酸化膜との間に前記ドリフト層の表面を露出させた開口部を形成する工程と、
前記開口部から第2導電型不純物をイオン注入し、該注入させたボロンを熱拡散させることにより、前記酸化膜を挟んで隣り合う2つの前記開口部それぞれに対応して第2導電型のウェルが形成されるとともに、該ウェルが互いに重なって前記ダブルウェル領域を構成する前記ベース層を形成する工程と、
該ベース層が形成された後の前記開口部から第1導電型不純物をイオン注入して、前記ベース層の表面に前記ソース層を形成する工程と、
層間絶縁膜を堆積し、前記酸化膜とともに選択的にエッチングして前記ソース電極のコンタクト部を形成する工程と、
前記コンタクト部から第2導電型不純物をイオン注入し、前記コンタクト層を形成する工程と、を有し、
前記ゲート電極から前記酸化膜に向かう方向に沿った前記開口部の幅は、前記ダブルウェル領域の最も深い凹状部の深さよりも短いMOS半導体装置の製造方法とする。
The present invention also provides a manufacturing method for manufacturing the MOS type semiconductor device,
Selectively forming an oxide film on the surface of the drift layer;
Forming the gate electrode selectively on the surface of the drift layer so as to be separated from the oxide film, and forming an opening exposing the surface of the drift layer between the gate electrode and the oxide film; ,
Second conductivity type impurities are ion-implanted from the opening, and the implanted boron is thermally diffused, so that a second conductivity type well is provided corresponding to each of the two adjacent openings across the oxide film. And forming the base layer constituting the double well region by overlapping the wells;
Forming a source layer on the surface of the base layer by ion-implanting a first conductivity type impurity from the opening after the base layer is formed;
Depositing an interlayer insulating film and selectively etching together with the oxide film to form a contact portion of the source electrode;
A step of ion-implanting a second conductivity type impurity from the contact portion to form the contact layer,
The width of the opening along the direction from the gate electrode toward the oxide film is a MOS semiconductor device manufacturing method that is shorter than the depth of the deepest concave portion of the double well region.

本発明によれば、ブレークダウン電圧の低下や、オン抵抗の増大を招かず、しかも製造コストが低いMOS型半導体装置を提供することができる。   According to the present invention, it is possible to provide a MOS semiconductor device that does not cause a decrease in breakdown voltage and an increase in on-resistance and that is low in manufacturing cost.

本発明の実施例1にかかるMOSFETのウエハプロセスを示す要部断面図である。It is principal part sectional drawing which shows the wafer process of MOSFET concerning Example 1 of this invention. 本発明の実施例1にかかるMOSFETの要部断面図である。It is principal part sectional drawing of MOSFET concerning Example 1 of this invention. 本発明の実施例2にかかるウエハプロセスを示すMOSFETの要部断面図である。It is principal part sectional drawing of MOSFET which shows the wafer process concerning Example 2 of this invention. 本発明の実施例2にかかるMOSFETの要部断面図である。It is principal part sectional drawing of MOSFET concerning Example 2 of this invention. 本発明の実施例2にかかるMOSFETの要部断面図である。It is principal part sectional drawing of MOSFET concerning Example 2 of this invention. 本発明の実施例3にかかるIGBTの要部断面図である。It is principal part sectional drawing of IGBT concerning Example 3 of this invention. 図1、2または図3のMOSFETにかかる正方形のセルパターンを有する半導体基板の要部平面図である。It is a principal part top view of the semiconductor substrate which has a square cell pattern concerning MOSFET of FIG. 1, 2 or FIG. 図1、2または図3のMOSFETにかかるストライプ状のセルパターンを有する半導体基板の要部平面図である。FIG. 4 is a plan view of a principal part of a semiconductor substrate having a striped cell pattern according to the MOSFET of FIG. 従来のMOSFETの要部断面図である。It is principal part sectional drawing of the conventional MOSFET. 従来のIGBTの要部断面図である。It is principal part sectional drawing of the conventional IGBT. 従来のMOSFETの等価回路と要部断面図との重ね合わせ図である。It is a superposition figure of the equivalent circuit of the conventional MOSFET, and principal part sectional drawing. 従来のMOSFETのアバランシェ電流が流れる経路を示す要部断面図である。It is principal part sectional drawing which shows the path | route through which the avalanche current of the conventional MOSFET flows. 従来のMOSFETの要部断面図である。It is principal part sectional drawing of the conventional MOSFET. 従来のMOSFETの要部断面図である。It is principal part sectional drawing of the conventional MOSFET. 従来のIGBTの要部断面図である。It is principal part sectional drawing of the conventional IGBT. 本発明の実施例1にかかるMOSFETの要部断面図である。It is principal part sectional drawing of MOSFET concerning Example 1 of this invention. 本発明の実施例4にかかるMOSFETの要部断面図である。It is principal part sectional drawing of MOSFET concerning Example 4 of this invention.

以下、本発明のMOS型半導体装置にかかる実施例について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。   Embodiments of a MOS semiconductor device according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

図1、図2は本発明の実施例1にかかるMOSFETのウエハプロセスを示す要部断面図である。前述の従来のMOSFETの説明の際に参照した図9と共通部分には同一の符号が付されている。図1は、MOSFETのウエハプロセスの、ゲート電極8上を含む全面を層間絶縁膜10で覆うプロセスステップにおける要部断面図である。   FIG. 1 and FIG. 2 are cross-sectional views showing the principal parts of a MOSFET wafer process according to Embodiment 1 of the present invention. The same reference numerals are given to the common parts to FIG. 9 referred to in the description of the conventional MOSFET. FIG. 1 is a cross-sectional view of an essential part in a process step of covering the entire surface including the gate electrode 8 with an interlayer insulating film 10 in a MOSFET wafer process.

MOSFETの場合で以下説明する。n+ドレイン層2となる高濃度n+シリコン基板上にエピタキシャル成長で高抵抗層であるn-ドリフト層1を堆積した半導体基板を用いて、後工程のpベース領域17の表面層に形成されるn+ソース領域の離間距離を幅とする酸化膜31aを形成する。酸化膜31aをマスクにしてリンなどのドナードーパントをpベース領域17の深さより浅く、pベース領域より1桁程度の低不純物濃度であってn-ドリフト層1よりは2桁程度高不純物濃度のn領域32を形成する(図1(a))。なお、n領域32の横方向拡散部分は、図1(a)のように酸化膜31aの直下にてつながっていてもよいし、離れていてもよい。シリコン基板の表面にゲート絶縁膜9と、ゲート電極8となる多結晶シリコン層を積層する。多結晶シリコン層をパターニングしてゲート電極8を形成するとともに、ゲート電極8と前記酸化膜31aとの間に間隔を設け、pベース領域17形成用の開口部とする。この開口部の幅は、基底部が平坦でないpベース領域17を形成するために、pベース領域17の深さより開口部幅を狭くする。 The case of MOSFET will be described below. Using a semiconductor substrate in which an n drift layer 1 which is a high resistance layer is deposited by epitaxial growth on a high concentration n + silicon substrate to be the n + drain layer 2, it is formed on the surface layer of the p base region 17 in a later step. An oxide film 31a having a width of the separation distance of the n + source region is formed. Using the oxide film 31a as a mask, a donor dopant such as phosphorus is shallower than the depth of the p base region 17 and has an impurity concentration that is about one digit lower than the p base region and about two digits higher than the n drift layer 1. An n region 32 is formed (FIG. 1A). Note that the lateral diffusion portion of the n region 32 may be connected directly below the oxide film 31a as shown in FIG. A gate insulating film 9 and a polycrystalline silicon layer to be the gate electrode 8 are stacked on the surface of the silicon substrate. The polycrystalline silicon layer is patterned to form the gate electrode 8, and an interval is provided between the gate electrode 8 and the oxide film 31a to form an opening for forming the p base region 17. The width of the opening is narrower than the depth of the p base region 17 in order to form the p base region 17 whose base is not flat.

前記開口部の間隔はpベース領域17の深さより狭いので、pベース領域17は前記開口部の下方に曲率ピーク部を有する基底部を持つpn接合面を得る。また、前記開口部はpベース領域17内で酸化膜31aの両側に形成されるので、図1に示す断面図ではpベース領域17内で2つの曲率ピーク部を備える(図1(b))。この曲率ピーク部をウェル領域とし、2つのウェル領域を持つpベース領域17が形成されることとなる。さらに、図16に示すように、pベース領域17はn領域32と重なる部分、特にn-ドリフト層1の表面に水平な方向においてゲート電極8の下部にあたるpベース領域17の端部では、アクセプタとドナーの濃度の補償が生じる。従って、ドナーが拡散されていない酸化膜31a直下、すなわちpベース領域17の2つのウェル領域の間の部分におけるネットドーピング濃度線35は、pベース領域17とn領域32が重なって濃度補償が生じている領域よりも、ネットドーピング濃度線35の曲率が小さい分布となる。ここでネットドーピング濃度線とは、ドナー濃度からアクセプタ濃度を差し引いた正味の濃度が、ある一定の値を示す線のことである。つまり、pベース領域17における2つのウェル領域の間の部分のネットドーピング濃度は、n-ドリフト層1の表面に水平な方向において、ゲート電極8の下部にあたるpベース領域17の端部のネットドーピング濃度よりも、高くなる。 Since the distance between the openings is narrower than the depth of the p base region 17, the p base region 17 obtains a pn junction surface having a base portion having a curvature peak portion below the opening. Further, since the opening is formed on both sides of the oxide film 31a in the p base region 17, the sectional view shown in FIG. 1 has two curvature peak portions in the p base region 17 (FIG. 1B). . Using this curvature peak as a well region, a p base region 17 having two well regions is formed. Further, as shown in FIG. 16, the p base region 17 is overlapped with the n region 32, particularly at the end of the p base region 17 which is the lower part of the gate electrode 8 in the direction horizontal to the surface of the n drift layer 1. And compensation of the donor concentration occurs. Accordingly, in the net doping concentration line 35 immediately below the oxide film 31a where the donor is not diffused, that is, between the two well regions of the p base region 17, the p base region 17 and the n region 32 overlap to cause concentration compensation. The distribution of the curvature of the net doping concentration line 35 is smaller than that of the region in which it is present. Here, the net doping concentration line is a line in which the net concentration obtained by subtracting the acceptor concentration from the donor concentration shows a certain value. In other words, the net doping concentration of the portion between the two well regions in the p base region 17 is the net doping concentration at the end of the p base region 17 which is the lower part of the gate electrode 8 in the direction horizontal to the surface of the n drift layer 1. It becomes higher than the concentration.

なお、n領域32が一様に形成されているか、あるいはn領域32が形成されていない場合のいずれにおいても、2つのウェル領域に挟まれたpベース領域17のネットドーピング濃度は、2つのウェル領域が重なってさえいれば、ゲート電極8の下部にあたるpベース領域17の端部のネットドーピング濃度よりも高くなる。要は、前記のように酸化膜31aをマスクとしてn領域32が拡散されない領域を形成すると、2つのウェル領域に挟まれたpベース領域17のネットドーピング濃度は、ゲート電極8の下部にあたるpベース領域17の端部のネットドーピング濃度よりも一層高くなる、ということである。   It should be noted that the net doping concentration of the p base region 17 sandwiched between the two well regions is equal to that of the two wells regardless of whether the n region 32 is uniformly formed or the n region 32 is not formed. As long as the regions overlap, the net doping concentration at the end of the p base region 17 under the gate electrode 8 becomes higher. In short, when the region where the n region 32 is not diffused is formed using the oxide film 31 a as a mask as described above, the net doping concentration of the p base region 17 sandwiched between the two well regions is p base corresponding to the lower portion of the gate electrode 8. That is, it becomes higher than the net doping concentration at the end of the region 17.

次に、ゲート電極8と酸化膜31aをマスクとして再度利用し、ヒ素(As)等のドナーをイオン注入してn+ソース領域6を形成する。続いて、層間絶縁膜10で全面を覆う。この層間絶縁膜10を図2の断面図に示すように、フォトリソグラフィでゲート電極8上を除いてエッチングで除去し、同時に酸化膜31aも除去することにより、ソース電極13と接触させるためのコンタクト窓41を形成する。 Next, using the gate electrode 8 and the oxide film 31a as a mask again, a donor such as arsenic (As) is ion-implanted to form the n + source region 6. Subsequently, the entire surface is covered with an interlayer insulating film 10. As shown in the cross-sectional view of FIG. 2, the interlayer insulating film 10 is removed by etching except for the top of the gate electrode 8 by photolithography, and at the same time, the oxide film 31a is also removed to make contact for contact with the source electrode 13. A window 41 is formed.

このコンタクト窓41から、ボロンをイオン注入してp+コンタクト領域22を形成する。このとき、前記図1で示した酸化膜31aがエッチングされ除去された跡の表面はp+コンタクト領域22となるが、さらに、n+ソース領域6はp+コンタクト領域22より不純物濃度が高いので、n+ソース領域6のまま残る。しかし、p+コンタクト領域22の深さはn+ソース領域6より深いので、n+ソース領域6の直下にはp+コンタクト領域22が形成される。n+ソース領域6の表面とp+コンタクト領域22の表面に共通に接触し、ゲート電極8上では層間絶縁膜10を介して覆うソース電極13を被着させる。なお、ゲート電極8はチップ表面の図示しない別の場所に設けられているアルミニウムゲートパッド電極にコンタクト配線されている。前記ソース電極側の面とは反対側の面であるn+ドレイン層2の表面にドレイン電極12を形成すると実施例1にかかる本発明のMOSFETのウエハプロセスが完了する。 Boron ions are implanted from the contact window 41 to form the p + contact region 22. At this time, the surface of the trace where the oxide film 31a shown in FIG. 1 is etched and removed becomes the p + contact region 22, and the n + source region 6 has a higher impurity concentration than the p + contact region 22. N + source region 6 remains. However, the depth of the p + contact region 22 is so deep than the n + source region 6, immediately below the n + source region 6 p + contact region 22 is formed. A source electrode 13 that covers the surface of the n + source region 6 and the surface of the p + contact region 22 in common and covers the gate electrode 8 via the interlayer insulating film 10 is deposited. Note that the gate electrode 8 is contact-wired to an aluminum gate pad electrode provided at another location (not shown) on the chip surface. When the drain electrode 12 is formed on the surface of the n + drain layer 2 which is the surface opposite to the surface on the source electrode side, the wafer process for the MOSFET according to the first embodiment of the present invention is completed.

図7は図1、2のMOSFETの表面MOS構造のセルパターンが正方形の場合の平面図である。ウエハプロセスでは、pベース領域17を形成するマスクとして、ゲート電極形成用の多結晶シリコン層に開けるコンタクト窓41の形状を正方形のセル状にすることにより、図7のような表面MOS構造のセルパターンが正方形のMOSFETとなる。この正方形のセルパターンは、他のセル形状として長方形、六角形、三角形や円形などの形状とすることもできる。また図7に示すように、長方形、六角形、三角形などの角部は、丸く面取りされた曲率状であると、電圧印加時に電界強度がこの角部に集中することが、緩和されるので好ましい。   FIG. 7 is a plan view when the cell pattern of the surface MOS structure of the MOSFET of FIGS. In the wafer process, as a mask for forming the p base region 17, the contact window 41 opened in the polycrystalline silicon layer for forming the gate electrode is formed into a square cell shape so that a cell having a surface MOS structure as shown in FIG. The pattern is a square MOSFET. This square cell pattern can also have other cell shapes such as rectangle, hexagon, triangle and circle. In addition, as shown in FIG. 7, it is preferable that corners of rectangles, hexagons, triangles, and the like have a rounded chamfered curvature, because the electric field intensity is concentrated on the corners when a voltage is applied. .

図8は図1、2のMOSFETの表面MOS構造のセルパターンがストライプ状のセルパターンの場合の平面図である。ウエハプロセスでは、図2におけるpベース領域17を形成するマスクとして、ゲート電極形成用の多結晶シリコン層に開けるコンタクト窓41の形状をストライプ状にすることにより、図8に示すような、p+コンタクト領域22、n+ソース領域6、チャネル形成領域7、n-ドリフト層1などがストライプ状に平行に並ぶMOS構造のセルパターンとなる。なお、前述のように、pベース領域17は2つの凹部状の基底部を得るが、ストライプ状の長手方向の端部については、図示しないが、ドーナツ状のように終端でつながっていているか、あるいはつながらずに帯状に終端してあってもよい。つまりpベース領域17は、その端部にて相互につながることで単一層を形成していてもよいし、個々のストライプ状もしくはセル形状のpベース領域17がそれぞれ分散配置されていても構わない。なお、単一層か、あるいは分散配置されたpベース領域17は、オフ状態において、いずれの場合も基本的にソース電極と同電位となる。 FIG. 8 is a plan view when the cell pattern of the surface MOS structure of the MOSFET of FIGS. 1 and 2 is a striped cell pattern. In the wafer process, as a mask for forming the p base region 17 in FIG. 2, the shape of the contact window 41 opened in the polycrystalline silicon layer for forming the gate electrode is formed into a stripe shape, whereby p + as shown in FIG. The contact region 22, the n + source region 6, the channel formation region 7, the n drift layer 1, etc. form a MOS structure cell pattern arranged in parallel in a stripe shape. As described above, the p base region 17 has two concave base portions, but the end portions in the longitudinal direction of the stripe shape are not shown, but are connected at the end like a donut shape, Or you may terminate in a strip shape without connecting. That is, the p base regions 17 may be connected to each other at their end portions to form a single layer, or the individual stripe-shaped or cell-shaped p base regions 17 may be dispersedly arranged. . Note that the p base regions 17 that are a single layer or distributed are basically at the same potential as the source electrode in any case in the off state.

本発明にかかるMOSFETでは、前述した構成にしたので、図2に示すように、ブレークダウン時のアバランシェ電流34をpベース領域17の最も深いアバランシェ発生部分16(破線の丸印)に集中させることができる。このアバランシェ発生部分16の上方にはp+コンタクト領域22があることと、2つのウェル領域が重なる部分のpベース領域17のネットドーピング濃度が、ゲート電極8の下部にあたるpベース領域17の端部のネットドーピング濃度よりも高くなることにより、アクセプタの濃度の減少が抑えられて低抵抗となるため、アバランシェ電流34がよりいっそう中央部に流れ易くなっている。この結果、n+ソース領域6直下のpベース領域17部分に流れ込む電流を抑制して、寄生バイポーラトランジスタがオン状態になることを阻止し、誘導性負荷でのターンオフで素子破壊が生じることを防止できる。 Since the MOSFET according to the present invention has the above-described configuration, as shown in FIG. 2, the avalanche current 34 at the time of breakdown is concentrated on the deepest avalanche generating portion 16 (dotted circle) in the p base region 17. Can do. The p + contact region 22 is present above the avalanche generating portion 16 and the net doping concentration of the p base region 17 in the portion where the two well regions overlap is the end of the p base region 17 corresponding to the lower portion of the gate electrode 8. Since the decrease in the acceptor concentration is suppressed and the resistance is lowered by the increase in the net doping concentration, the avalanche current 34 is more likely to flow to the center. As a result, the current flowing into the p base region 17 immediately below the n + source region 6 is suppressed, the parasitic bipolar transistor is prevented from being turned on, and the device is prevented from being destroyed by turn-off with an inductive load. it can.

なお、実施例1では、pベース領域17は2つのウェル領域を有する構成としたが、2つ以上のウェル領域を備えていても勿論構わない。例えば、3つのウェル領域を有するpベース領域17の構成とする。すると、アバランシェ発生領域は、3つのウェルの底部となる。この3つのウェルの底部のうち、真ん中のウェルで発生するアバランシェ電流は、静電ポテンシャルに従って直上のp+コンタクト領域に直接流入することが可能となる。それゆえ、n+ソース領域6の直下を通るアバランシェ電流はほぼ皆無となる。このような2つ以上の複数のウェルを形成するには、図1に示すような酸化膜31aを複数設ければよい。 In the first embodiment, the p base region 17 has two well regions. Of course, the p base region 17 may have two or more well regions. For example, the p base region 17 has three well regions. Then, the avalanche generation region becomes the bottom of the three wells. Of the bottoms of these three wells, the avalanche current generated in the middle well can directly flow into the p + contact region directly above according to the electrostatic potential. Therefore, almost no avalanche current passes directly under the n + source region 6. In order to form such two or more wells, a plurality of oxide films 31a as shown in FIG. 1 may be provided.

図3、図4は本発明の実施例2にかかるMOSFETの要部断面図である。図9と共通部分には同一の符号が付されている。図3は、MOSFETのウエハプロセスの、ゲート電極8上を含む全面を層間絶縁膜10で覆うプロセスステップにおける要部断面図である。   3 and 4 are cross-sectional views of the main part of a MOSFET according to Embodiment 2 of the present invention. Portions common to those in FIG. 9 are denoted by the same reference numerals. FIG. 3 is a fragmentary cross-sectional view in a process step of covering the entire surface including the gate electrode 8 with the interlayer insulating film 10 in the MOSFET wafer process.

最初に、n+ドレイン層2上にエピタキシャル成長で高抵抗層であるn-ドリフト層1を形成した半導体基板を用意する。酸化膜を、実施例1と異なり、LOCOSプロセスを用いてSi表面がくぼむように形成してLOCOS酸化膜31bとした後、このLOCOS酸化膜31bをマスクにしてリンなどのドナードーパントをpベース領域17の深さより浅く、pベース領域より1桁程度の低不純物濃度であってn-ドリフト層1よりは2桁程度高不純物濃度のn領域32を形成する。そしてn-ドリフト層1上にゲート絶縁膜9と、ゲート電極8となる多結晶シリコン層を順次形成する。この多結晶シリコン層を、フォトリソグラフィにより前記LOCOS酸化膜31bを含むコンタクト窓41として開口することによりゲート電極8を形成する。コンタクト窓41の中心に、前記LOCOS酸化膜31bを残す。コンタクト窓41中におけるLOCOS酸化膜31bとゲート電極8との間の間隔は、次に形成しようとするpベース領域17深さの距離より小さい距離とする。 First, a semiconductor substrate in which an n drift layer 1 which is a high resistance layer is formed on an n + drain layer 2 by epitaxial growth is prepared. Unlike the first embodiment, an oxide film is formed using a LOCOS process so that the Si surface is recessed to form a LOCOS oxide film 31b, and then a donor dopant such as phosphorus is added to the p base region 17 using the LOCOS oxide film 31b as a mask. An n region 32 having an impurity concentration lower than that of the p base region and about one digit lower than that of the p base region and about two digits higher than that of the n drift layer 1 is formed. Then, a gate insulating film 9 and a polycrystalline silicon layer to be the gate electrode 8 are sequentially formed on the n drift layer 1. The polycrystalline silicon layer is opened as a contact window 41 including the LOCOS oxide film 31b by photolithography to form the gate electrode 8. The LOCOS oxide film 31b is left in the center of the contact window 41. The distance between the LOCOS oxide film 31b and the gate electrode 8 in the contact window 41 is smaller than the distance of the depth of the p base region 17 to be formed next.

形成された前記ゲート電極8と前記LOCOS酸化膜31bをマスクとして、pベース領域17形成用のボロンのイオン注入と熱拡散を行う。その結果、図3に示すように、pベース領域17は開口部の下方に2つの凹部を有する凹凸状基底部の2つのウェル領域を備えた構造となり、この2つのウェル領域を持つpn接合面20を得る。さらに、ゲート電極8とLOCOS酸化膜31bをマスクとして再度利用し、ヒ素(As)等のドナーをイオン注入してn+ソース領域6を形成し、続いて、層間絶縁膜10で全面を覆う(ここまで、図3)。そして図4の要部断面図に示すように、フォトリソグラフィによりこの層間絶縁膜10をゲート電極8上を除いてエッチングで除去し、同時に酸化膜31aも除去することにより、ソース電極13と接触させるためのコンタクト窓41を形成する。このコンタクト窓41の表面はLOCOS酸化膜31bを除去した後に形成されるくぼみからなる酸化膜跡36を有している。このコンタクト窓41から、ボロンをイオン注入してp+コンタクト領域22を形成する。この結果、p+コンタクト領域22の基底部は前記表面のくぼみの影響で、基底部の中央部33が最も深い凹状の形状となり、その両側に凸状の湾曲部を持つ形状となっている。n+ソース領域6の表面とp+コンタクト領域22の表面に共通に接触し、ゲート電極8上では層間絶縁膜10を介して覆うソース電極13を形成する。なお、ゲート電極8はチップ表面の図示しない別の場所に設けられているアルミニウムゲートパッド電極にコンタクト配線されている。前記ソース電極側の面とは反対側の面であるn+ドレイン層2の表面にドレイン電極12を形成すると実施例2にかかる本発明のMOSFETのウエハプロセスが完了する。 Using the formed gate electrode 8 and the LOCOS oxide film 31b as a mask, boron ion implantation for forming the p base region 17 and thermal diffusion are performed. As a result, as shown in FIG. 3, the p base region 17 has a structure including two well regions of an uneven base portion having two concave portions below the opening, and a pn junction surface having the two well regions. Get 20. Further, using the gate electrode 8 and the LOCOS oxide film 31b as a mask again, a donor such as arsenic (As) is ion-implanted to form the n + source region 6, and then the entire surface is covered with the interlayer insulating film 10 ( So far, FIG. 3). 4, the interlayer insulating film 10 is removed by etching except for the top of the gate electrode 8 by photolithography, and at the same time, the oxide film 31a is also removed to make contact with the source electrode 13. A contact window 41 is formed. The surface of the contact window 41 has an oxide film trace 36 made of a depression formed after the LOCOS oxide film 31b is removed. Boron ions are implanted from the contact window 41 to form the p + contact region 22. As a result, the base portion of the p + contact region 22 has a deep concave shape at the center portion 33 of the base portion due to the effect of the depression on the surface, and has a shape having convex curved portions on both sides thereof. A source electrode 13 that is in common contact with the surface of the n + source region 6 and the surface of the p + contact region 22 and covers the gate electrode 8 via the interlayer insulating film 10 is formed. Note that the gate electrode 8 is contact-wired to an aluminum gate pad electrode provided at another location (not shown) on the chip surface. When the drain electrode 12 is formed on the surface of the n + drain layer 2 which is the surface opposite to the surface on the source electrode side, the wafer process for the MOSFET according to the second embodiment of the present invention is completed.

前記pベース領域17は、n-ドリフト層1との間に、2つのウェル領域を備えた形状の接合面20を有する。特に2つのウェル領域の底部は、LOCOS酸化膜31bを除去した酸化膜跡36とゲート電極8の端部との中点の下部でその深さが最も深くなり、且つウェル領域の底部がアバランシェ発生部分16となる。p+コンタクト領域22は図4に示すように、酸化膜跡36の影響で、Si表面がくぼんでいるため、p+コンタクト領域22の基底部の中央部33付近を周囲より深い凹状部とし、且つその両側に凸状部を組合せた形に形成することができる。この凸状部があることで、凹状となるp+コンタクト領域22の基底部の中央部33を深さ方向に突き出すような形にできるので、図5に示すように、アバランシェ電流34をp+コンタクト領域22に集め易くなる。さらにp+コンタクト領域22をこのような凹状部と凸状部を組合せた形状とすることで、中央部33をn+ソース領域6から深さ方向に離すことができるので、空乏層のn+ソース領域6へのリーチスルーを効果的に抑えることができる。 The p base region 17 has a junction surface 20 having two well regions between the n drift layer 1 and the n drift layer 1. In particular, the bottom of the two well regions has the deepest depth below the midpoint between the oxide film trace 36 from which the LOCOS oxide film 31b has been removed and the end of the gate electrode 8, and the bottom of the well region generates an avalanche. It becomes part 16. As shown in FIG. 4, the p + contact region 22 has a concave Si portion near the central portion 33 of the base portion of the p + contact region 22 because the Si surface is recessed due to the oxide film trace 36, as shown in FIG. And it can form in the form which combined the convex part on the both sides. That there is the convex portion, it is possible to form such as projecting a central portion 33 of the base portion of the p + contact region 22 to be recessed in the depth direction, as shown in FIG. 5, the avalanche current 34 p + It becomes easy to collect in the contact region 22. Furthermore the p + contact region 22 by such a concave portion and the convex portion and the combined shape, it is possible to separate the central portion 33 in the depth direction from the n + source region 6, the depletion layer n + Reach through to the source region 6 can be effectively suppressed.

以上の説明のように、実施例2にかかるMOSFETのpベース領域17は、実施例1と同様に、電界集中が起き易いアバランシェ発生部分16を備えている。さらに、p+コンタクト領域22の基底部分が平坦でなく、中央部33に深い部分を有しているため、アバランシェ発生部分16から流入した電流の多くは、図5の矢印に示すように、p+コンタクト領域22の中央部33に向かい易くなり、バイポーラトランジスタ動作を実施例1よりもさらに抑制することができる。 As described above, the p base region 17 of the MOSFET according to the second embodiment includes the avalanche generation portion 16 in which the electric field concentration is likely to occur as in the first embodiment. Further, since the base portion of the p + contact region 22 is not flat and has a deep portion at the central portion 33, most of the current flowing from the avalanche generating portion 16 is generated as shown by the arrow in FIG. + It becomes easier to go to the central portion 33 of the contact region 22, and the bipolar transistor operation can be further suppressed as compared with the first embodiment.

また、以上説明した表面側とは反対側のn-ドリフト層の表面層にn+バッファ層を介してp+コレクタ層を形成する構造、すなわちIGBTとすることもできる。またIGBTの場合は寄生バイポーラトランジスタの代わりに寄生サイリスタが内蔵されているが、MOSFETの場合の寄生バイポーラトランジスタと同様に、この寄生サイリスタがオン状態になることを阻止し、素子破壊を防止することができる。 Further, a structure in which a p + collector layer is formed on the surface layer of the n drift layer opposite to the surface side described above via an n + buffer layer, that is, an IGBT can be used. In the case of an IGBT, a parasitic thyristor is built in instead of a parasitic bipolar transistor. Like the parasitic bipolar transistor in the case of a MOSFET, this parasitic thyristor is prevented from being turned on to prevent element destruction. Can do.

以下、実施例3にかかるIGBTについて詳細に説明する。図6は本発明の実施例3にかかるIGBTの要部断面図である。前記図9と共通部分には同一の符号が付されている。コレクタ電極12aがn-ドリフト層1の他面に形成されたn+バッファ層15を介してp+コレクタ層14上に形成され点が前記図4のMOSFETと異なっている。また、前記n+ソース領域6はn+エミッタ領域6aにソース電極13はエミッタ電極13aに名称が変わる。図4と同じく、pベース領域17は、n-ドリフト層1との接合面20が有限の曲率半径を有する形状を有するとともに、LOCOS酸化膜を除去した酸化膜跡36とゲート電極8の端部との中点付近で、表面から接合面20までの深さが最も深く、p+コンタクト領域22の表面の中央部33で表面から接合面20までの深さが最も浅くなる凹凸形状が形成される。 Hereinafter, the IGBT according to Example 3 will be described in detail. FIG. 6 is a cross-sectional view of the main part of an IGBT according to Example 3 of the present invention. Portions common to those in FIG. 9 are given the same reference numerals. The collector electrode 12a is different from the MOSFET of FIG. 4 in that the collector electrode 12a is formed on the p + collector layer 14 via the n + buffer layer 15 formed on the other surface of the n drift layer 1. The name of the n + source region 6 is changed to the n + emitter region 6a, and the name of the source electrode 13 is changed to the emitter electrode 13a. As in FIG. 4, the p base region 17 has a shape in which the junction surface 20 with the n drift layer 1 has a finite radius of curvature, and the oxide film trace 36 from which the LOCOS oxide film is removed and the end of the gate electrode 8. In the vicinity of the middle point, the depth from the surface to the bonding surface 20 is the deepest, and a concave-convex shape in which the depth from the surface to the bonding surface 20 is the shallowest is formed at the center 33 of the surface of the p + contact region 22. The

+コンタクト領域22表面の中央部33でp+コンタクト領域22の深さが最も深くなっている。従って、この部分のn-ドリフト層1の厚さが最も薄くなり、逆バイアス時に最初にアバランシェ現象を起こし易い。 The depth of the p + contact region 22 surface of the central portion 33 with p + contact region 22 is deepest. Therefore, the thickness of the n drift layer 1 in this portion is the smallest, and the avalanche phenomenon is likely to occur first at the time of reverse bias.

図17を用いて、本発明の実施例4について説明する。実施例4は、図2に示す実施例1の構造から、n領域32を取り除いた構造である。このn領域32を形成しない場合においても、2つの凹状のウェル領域を持つpベース領域17を形成することは可能である。なぜなら、n領域がなくても、例えば図1に示している酸化膜31aとゲート電極8との間の開口部からボロンをイオン注入し熱拡散をすれば、2つの凹状のウェル領域を持つpベース領域17を形成することができるからである。それゆえ、アバランシェ発生部分16を前記2つのウェル領域の基底部にシフトさせて、アバランシェ電流34をn+ソース領域6の直下に通過させること無く、ソース電極13に流すことができる。よって、n領域が無い構成によっても、前述の課題を解決することは可能である。一方、既に説明したように、n領域を設けることが、より好ましい手段であることは、言うまでも無い。 Embodiment 4 of the present invention will be described with reference to FIG. The fourth embodiment has a structure in which the n region 32 is removed from the structure of the first embodiment shown in FIG. Even when the n region 32 is not formed, it is possible to form the p base region 17 having two concave well regions. This is because, even if there is no n region, if boron is ion-implanted from the opening between the oxide film 31a and the gate electrode 8 shown in FIG. This is because the base region 17 can be formed. Therefore, the avalanche generating portion 16 can be shifted to the base portion of the two well regions, and the avalanche current 34 can be passed through the source electrode 13 without passing under the n + source region 6. Therefore, the above-described problem can be solved even with a configuration without n regions. On the other hand, as already described, it is needless to say that providing the n region is a more preferable means.

以上説明した本発明にかかる実施例1〜3に記載のMOS型半導体装置によれば、p+コンタクト領域22がpベース領域17内にあり且つpベース領域17が有限の曲率半径を有する部分を備え、pベース領域17の表面からの深さが最も深いn+ソース領域6またはn+エミッタ領域6a部分の下方の凹部状のアバランシェ発生部分16が断面にして2点有している。その結果、MOS型半導体装置のpベース領域17およびn+ドレイン層2またはp+コレクタ層14等で形成される寄生バイポーラトランジスタ(または寄生サイリスタ)がオン状態になることを阻止し、素子耐圧の低下や、オン抵抗の増加を招くことなくアバランシェ耐量を向上できる。またこの構造を採用することで、製造コストの低減も図れる。 According to the MOS semiconductor devices described in the first to third embodiments according to the present invention described above, the p + contact region 22 is in the p base region 17 and the p base region 17 has a finite radius of curvature. In addition, a recessed avalanche generating portion 16 below the n + source region 6 or n + emitter region 6a portion having the deepest depth from the surface of the p base region 17 has two points in cross section. As a result, the parasitic bipolar transistor (or parasitic thyristor) formed by the p base region 17 and the n + drain layer 2 or the p + collector layer 14 of the MOS type semiconductor device is prevented from being turned on, and the element breakdown voltage is reduced. The avalanche resistance can be improved without causing a decrease or an increase in on-resistance. In addition, by adopting this structure, the manufacturing cost can be reduced.

1 n-ドリフト層
2 n+ドレイン層
6 n+ソース領域
6a n+エミッタ領域
7 チャネル形成領域
8 ゲート電極
9 ゲート絶縁膜
10 層間絶縁膜
12 ドレイン電極
12a コレクタ電極
13 ソース電極
13a エミッタ電極
14 p+コレクタ層
15 n+バッファ層
16 アバランシェ発生部分
17 pベース領域
20 接合面
21 第2のp+領域
22 p+コンタクト領域
30 寄生バイポーラトランジスタ
31a 酸化膜
31b LOCOS酸化膜
32 n領域
33 中央部
34 アバランシェ電流
35 ネットドーピング濃度線
36 酸化膜跡
41 コンタクト窓
1 n drift layer 2 n + drain layer 6 n + source region 6 a n + emitter region 7 channel forming region 8 gate electrode 9 gate insulating film 10 interlayer insulating film 12 drain electrode 12a collector electrode 13 source electrode 13a emitter electrode 14 p + Collector layer 15 n + Buffer layer 16 Avalanche generating portion 17 p base region 20 junction surface 21 second p + region 22 p + contact region 30 parasitic bipolar transistor 31a oxide film 31b LOCOS oxide film 32 n region 33 central portion 34 avalanche current 35 Net doping concentration line 36 Oxide film trace 41 Contact window

Claims (10)

第1導電型ドリフト層と、
該ドリフト層の表面に選択的に配置され、前記ドリフト層とのpn接合面が、前記ドリフト層の表面層から深さ方向に向かって深さが等しく且つ最も深い2つの凹状部と、該2つの凹状部に挟まれ且つ深さが該凹状部よりも浅い凸状部とを有するダブルウェル領域を少なくとも1つ備える第2導電型ベース層と、
該ベース領域の表面層に選択的に配置される第1導電型ソース層と、
前記ベース層に内包されるとともに該ベース層の表面層に選択的に配置され、前記ベース層より高不純物濃度で、前記ソース層より深く、前記ダブルウェル領域の凸状部の深さよりも浅く、さらに前記ソース層の直下に終端が位置する第2導電型コンタクト層と、
前記ソース層と前記ドリフト層に挟まれた前記ベース層の表面に、ゲート絶縁膜を介して設置されるゲート電極と、
前記ゲート電極を覆い、前記ソース層の表面上に側端が位置する層間絶縁膜と、
前記ソース層の表面と前記ベース層の中央部表面とに導電接触し、前記層間絶縁膜により前記ゲート電極と絶縁されているソース電極と、を備え、
前記ベース層のうち前記コンタクト層より深い所定深さにおいて、前記凸状部の前記表面層側上部のネットドーピング濃度が、前記2つの凹状部の前記表面層側上部のネットドーピング濃度よりも低いとともに、前記ゲート電極下部のネットドーピング濃度よりも高く、
前記ダブルウェル領域の最も深い凹状部の前記表面層側には、前記ソース電極と、該ソース電極と前記ソース層とが接する接触面と、前記ソース層の底面に接する前記コンタクト層と、が形成されており、
前記凹状部の上部であって、接触面下部の前記ソース層に接する前記コンタクト層の底面は、前記接触面と平行であることを特徴とするMOS型半導体装置。
A first conductivity type drift layer;
Two concave portions which are selectively disposed on the surface of the drift layer, and have a pn junction surface with the drift layer, the depths of which are equal and deepest from the surface layer of the drift layer in the depth direction; A second conductivity type base layer comprising at least one double well region sandwiched between two concave portions and having a convex portion whose depth is shallower than the concave portion;
A first conductivity type source layer selectively disposed on a surface layer of the base region;
Embedded in the base layer and selectively disposed on the surface layer of the base layer, having a higher impurity concentration than the base layer, deeper than the source layer, and shallower than the depth of the convex portion of the double well region, A second conductivity type contact layer having a termination located directly under the source layer;
A gate electrode disposed on the surface of the base layer sandwiched between the source layer and the drift layer via a gate insulating film;
An interlayer insulating film covering the gate electrode and having a side edge located on the surface of the source layer;
A source electrode that is in conductive contact with the surface of the source layer and the central surface of the base layer and is insulated from the gate electrode by the interlayer insulating film;
At a predetermined depth deeper than the contact layer in the base layer, the net doping concentration in the upper portion on the surface layer side of the convex portion is lower than the net doping concentration in the upper portion on the surface layer side of the two concave portions. Higher than the net doping concentration under the gate electrode,
On the surface layer side of the deepest concave portion of the double well region, the source electrode, a contact surface in contact with the source electrode and the source layer, and the contact layer in contact with the bottom surface of the source layer are formed. Has been
A MOS type semiconductor device, wherein a bottom surface of the contact layer in contact with the source layer below the contact surface is parallel to the contact surface.
前記コンタクト層の表面は、前記ソース層の表面と同じ深さに位置することを特徴とする請求項1に記載のMOS型半導体装置。   2. The MOS semiconductor device according to claim 1, wherein the surface of the contact layer is located at the same depth as the surface of the source layer. 前記コンタクト層の表面と、前記コンタクト層の底面が、ともに深さ方向に窪みを有する形状を備え、
前記コンタクト層の表面は前記ソース層表面よりも深いことを特徴とする請求項1に記載のMOS型半導体装置。
The surface of the contact layer and the bottom surface of the contact layer both have a shape having a depression in the depth direction,
2. The MOS semiconductor device according to claim 1, wherein a surface of the contact layer is deeper than a surface of the source layer.
前記窪みは、前記凸状部の表面側に位置することを特徴とする請求項3に記載のMOS型半導体装置。   The MOS type semiconductor device according to claim 3, wherein the recess is located on a surface side of the convex portion. 前記ゲート電極下部の前記ドリフト層表面層であって、隣り合う前記ベース層の間に、前記ドリフト層よりも高不純物濃度の第1導電型低抵抗層を有し、
該低抵抗層の第1導電型不純物は前記ベース層内部に延在し、
該延在した第1導電型不純物は、前記ベース層の第2導電型不純物よりも低濃度であり、
前記ソース層よりも下部における前記延在した第1導電型不純物の濃度は、前記ベース層内の2つの前記ソース層に挟まれた部分における前記延在した第1導電型不純物の濃度よりも低いことを特徴とする請求項1〜4のいずれか一項に記載のMOS型半導体装置。
The drift layer surface layer below the gate electrode, and between the adjacent base layers, a first conductivity type low resistance layer having a higher impurity concentration than the drift layer,
The first conductivity type impurity of the low resistance layer extends inside the base layer,
The extended first conductivity type impurity has a lower concentration than the second conductivity type impurity of the base layer,
The concentration of the extended first conductivity type impurity below the source layer is lower than the concentration of the extended first conductivity type impurity in a portion between the two source layers in the base layer. The MOS semiconductor device according to claim 1, wherein the MOS semiconductor device is a semiconductor device.
前記層間絶縁膜の側端は、前記凹状部を前記ソース層の表面に投影させた位置よりもゲート電極側に位置することを特徴とする請求項1〜5のいずれか一項に記載のMOS型半導体装置。   6. The MOS according to claim 1, wherein the side end of the interlayer insulating film is located closer to the gate electrode than a position where the concave portion is projected onto the surface of the source layer. Type semiconductor device. 前記MOS型半導体装置を製造する製造方法であって、
前記ドリフト層表面に選択的に酸化膜を形成する工程と、
該酸化膜から離間するように前記ドリフト層表面に選択的に前記ゲート電極を形成し、該ゲート電極と前記酸化膜との間に前記ドリフト層の表面を露出させた開口部を形成する工程と、
前記開口部から第2導電型不純物をイオン注入し、該注入させたボロンを熱拡散させることにより、前記酸化膜を挟んで隣り合う2つの前記開口部それぞれに対応して第2導電型のウェルが形成されるとともに、該ウェルが互いに重なって前記ダブルウェル領域を構成する前記ベース層を形成する工程と、
該ベース層が形成された後の前記開口部から第1導電型不純物をイオン注入して、前記ベース層の表面に前記ソース層を形成する工程と、
層間絶縁膜を堆積し、前記酸化膜とともに選択的にエッチングして前記ソース電極のコンタクト部を形成する工程と、
前記コンタクト部から第2導電型不純物をイオン注入し、前記コンタクト層を形成する工程と、を有し、
前記ゲート電極から前記酸化膜に向かう方向に沿った前記開口部の幅は、前記ダブルウェル領域の最も深い凹状部の深さよりも短いことを特徴とする請求項1〜6のいずれか一項に記載のMOS半導体装置の製造方法。
A manufacturing method for manufacturing the MOS type semiconductor device,
Selectively forming an oxide film on the surface of the drift layer;
Forming the gate electrode selectively on the surface of the drift layer so as to be separated from the oxide film, and forming an opening exposing the surface of the drift layer between the gate electrode and the oxide film; ,
Second conductivity type impurities are ion-implanted from the opening, and the implanted boron is thermally diffused, so that a second conductivity type well is provided corresponding to each of the two adjacent openings across the oxide film. And forming the base layer constituting the double well region by overlapping the wells;
Forming a source layer on the surface of the base layer by ion-implanting a first conductivity type impurity from the opening after the base layer is formed;
Depositing an interlayer insulating film and selectively etching together with the oxide film to form a contact portion of the source electrode;
A step of ion-implanting a second conductivity type impurity from the contact portion to form the contact layer,
The width of the opening along the direction from the gate electrode toward the oxide film is shorter than the depth of the deepest concave portion of the double well region. A manufacturing method of the MOS semiconductor device described.
前記層間絶縁膜の側端を、前記凹状部を前記ソース層の表面に投影させた位置よりもゲート電極側に位置させることを特徴とする請求項7に記載のMOS型半導体装置の製造方法。   8. The method of manufacturing a MOS type semiconductor device according to claim 7, wherein the side end of the interlayer insulating film is positioned closer to the gate electrode than the position where the concave portion is projected onto the surface of the source layer. 前記酸化膜がLOCOS酸化膜であり、
前記コンタクト部を形成する工程で前記LOCOS膜を除去することで、前記ベース層表面に形成された2つのソース層に挟まれた表面に窪みを形成し、
前記コンタクト層を形成する工程で、前記窪みを含む表面に第2導電型不純物をイオン注入することを特徴とする請求項7または8に記載のMOS半導体装置の製造方法。
The oxide film is a LOCOS oxide film;
By removing the LOCOS film in the step of forming the contact portion, a recess is formed on the surface sandwiched between two source layers formed on the surface of the base layer,
9. The method of manufacturing a MOS semiconductor device according to claim 7, wherein in the step of forming the contact layer, a second conductivity type impurity is ion-implanted into a surface including the depression.
前記酸化膜を形成する工程後であって、前記開口部を形成する工程の前に、前記酸化膜をマスクにして第1導電型不純物をイオン注入し拡散させて、前記ドリフト層より高不純物濃度の第1導電型低抵抗層を形成することを特徴とする請求項7〜9のいずれか一項に記載のMOS型半導体装置の製造方法。   After the step of forming the oxide film and before the step of forming the opening, the first conductivity type impurity is ion-implanted and diffused using the oxide film as a mask, so that the impurity concentration is higher than that of the drift layer. The method of manufacturing a MOS semiconductor device according to claim 7, wherein the first conductivity type low-resistance layer is formed.
JP2015111998A 2015-06-02 2015-06-02 MOS type semiconductor device and manufacturing method of MOS type semiconductor device Expired - Fee Related JP6112141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111998A JP6112141B2 (en) 2015-06-02 2015-06-02 MOS type semiconductor device and manufacturing method of MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111998A JP6112141B2 (en) 2015-06-02 2015-06-02 MOS type semiconductor device and manufacturing method of MOS type semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010173563A Division JP5789928B2 (en) 2010-08-02 2010-08-02 MOS type semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015179869A true JP2015179869A (en) 2015-10-08
JP6112141B2 JP6112141B2 (en) 2017-04-12

Family

ID=54263677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111998A Expired - Fee Related JP6112141B2 (en) 2015-06-02 2015-06-02 MOS type semiconductor device and manufacturing method of MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP6112141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134478A (en) * 2017-03-22 2017-09-05 深圳深爱半导体股份有限公司 Power semiconductor and its manufacture method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280458A (en) * 1987-05-12 1988-11-17 Oki Electric Ind Co Ltd Manufacture of vertical mos semiconductor element
JPH0888233A (en) * 1994-09-19 1996-04-02 Fuji Electric Co Ltd Manufacture of vertical mos semiconductor device
JP2000091572A (en) * 1998-09-14 2000-03-31 Denso Corp Semiconductor device and manufacture thereof
JP2006332232A (en) * 2005-05-25 2006-12-07 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280458A (en) * 1987-05-12 1988-11-17 Oki Electric Ind Co Ltd Manufacture of vertical mos semiconductor element
JPH0888233A (en) * 1994-09-19 1996-04-02 Fuji Electric Co Ltd Manufacture of vertical mos semiconductor device
JP2000091572A (en) * 1998-09-14 2000-03-31 Denso Corp Semiconductor device and manufacture thereof
JP2006332232A (en) * 2005-05-25 2006-12-07 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134478A (en) * 2017-03-22 2017-09-05 深圳深爱半导体股份有限公司 Power semiconductor and its manufacture method

Also Published As

Publication number Publication date
JP6112141B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5789928B2 (en) MOS type semiconductor device and manufacturing method thereof
US9536875B2 (en) Semiconductor device
JP6369173B2 (en) Vertical semiconductor device and manufacturing method thereof
US8957502B2 (en) Semiconductor device
US10109725B2 (en) Reverse-conducting semiconductor device
JP3506676B2 (en) Semiconductor device
US7838926B2 (en) Semiconductor device
US8334563B2 (en) Field-effect semiconductor device and method of producing the same
JP6415749B2 (en) Silicon carbide semiconductor device
JP6606007B2 (en) Switching element
US20130075819A1 (en) Semiconductor device and method of manufacturing same
US9620595B2 (en) Semiconductor device
US20120126317A1 (en) Accufet with integrated clamping circuit
US20210043765A1 (en) Silicon carbide semiconductor device and manufacturing method of same
JP7290973B2 (en) semiconductor equipment
JP6112141B2 (en) MOS type semiconductor device and manufacturing method of MOS type semiconductor device
JP4177229B2 (en) Semiconductor device and manufacturing method thereof
JP2008004872A (en) Semiconductor device
EP1126527A1 (en) High-voltage semiconductor device
US10319851B2 (en) Semiconductor device and method for manufacturing same
CN114388612A (en) Semiconductor device and method for manufacturing semiconductor device
US11127850B2 (en) Semiconductor device
JPH09148566A (en) Mos type semiconductor element
CN112466923A (en) Semiconductor device with a plurality of semiconductor chips
WO2020021298A1 (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6112141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees