JPS6113668A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6113668A
JPS6113668A JP59133147A JP13314784A JPS6113668A JP S6113668 A JPS6113668 A JP S6113668A JP 59133147 A JP59133147 A JP 59133147A JP 13314784 A JP13314784 A JP 13314784A JP S6113668 A JPS6113668 A JP S6113668A
Authority
JP
Japan
Prior art keywords
impurity concentration
drain
electrode
source
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59133147A
Other languages
Japanese (ja)
Inventor
Katsutada Horiuchi
勝忠 堀内
Takaaki Hagiwara
萩原 隆旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59133147A priority Critical patent/JPS6113668A/en
Publication of JPS6113668A publication Critical patent/JPS6113668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To attain the increase of withstanding voltage and the augmentation of currents by a fine occupying area by elevating only impurity concentration in a contact section with a wiring electrode and bringing impurity concentration in a drain region to one through which the drain region is fitted to the increase of withstanding voltage and currents hardly lower. CONSTITUTION:A field oxide film 2 is formed into a P conduction type Si substrate 1, and a gate electrode and a gate protective insulating film 5 are shaped onto the surface of the substrate 1 in an active region. An Si oxide film 8 is formed only onto the side wall sections of the electrode 4 and the film 5. A low impurity-concentration source region 6 and a low impurity-concentration drain region 7 are shaped into the substrate 1 so that surface impurity concentration of 10<17>-10<20>cm<-3> is obtained by implanting the ions of phosphorus into the substrate 1 while using the film 5 and the film 8 as masks. A source Si electrode 14 and a drain Si electrode 15 are formed, and the ions of arsenic are implanted under the state and thermally treated, thus shaping not less than 10<19>cm<-3> high impurity concentration layer and a region. Accordingly, a superfine type semiconductor device in which withstanding voltage between a source and a drain is increased and current driving capability hardly lowers can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特に高耐圧特性と高い電流
駆動能力を合わせ持つ超微細MO8型電界効果トランジ
スタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to an ultra-fine MO8 field effect transistor having both high breakdown voltage characteristics and high current drive capability.

〔発明の背景〕[Background of the invention]

1μm以下の実効チャネル長を有する従来の超微細MO
8型電界効果トランジスタ(以下単にMOSと略記する
。、)は5v電源で動作を可能にするため、第1図及び
第2図に示すような高耐圧構造を有しており、第1図に
示すものはLDD(Lightly旦aped旦rai
n)構造、第2図に示すものはDD (Double 
Drain二重ドレイン)構造と称されているe  (
IEEE taransactJ、ong on el
sctrondaviess vol、27 Na8.
 Design and characteristi
cof lightly dooped drain−
sauce(L、D、D)insulatedgate
 field−effect transisor p
、1359N1367、 S。
Conventional ultra-fine MO with effective channel length of less than 1 μm
The 8-type field effect transistor (hereinafter simply abbreviated as MOS) has a high breakdown voltage structure as shown in Figures 1 and 2 in order to be able to operate with a 5V power supply. What it shows is LDD (Lightly Danaped Danrai)
n) Structure, the one shown in Figure 2 is DD (Double
Drain (double drain) structure is called e (
IEEE taransact J,ong on el
sctrondaviess vol, 27 Na8.
Design and character
cof lightly dooped drain-
sauce (L, D, D) insulated gate
field-effect transistor p
, 1359N1367, S.

Ogura at at、 ) 第1図及び第2図において、1はp導電形シリコン基板
、2は素子間分離用の厚いフィールド酸化膜、3はゲー
ト絶縁膜、4はゲート電極、5はゲート保護絶縁膜であ
る。6はn導電形の低不純物濃度ソース領域(n−拡散
層)、7はn導電形の低不純物濃度ドレイン領域(n−
拡散層)であリ、ゲート電極4をマスクにした不純物導
入により形成される。8はゲート側壁絶縁膜、9はn導
電形の高不純物濃度ソース領域(n+拡散層)、10は
n導電形の高不純物濃度ドレイン領域(n+拡散層)で
あり、LDD構造(第1図)においてはゲート側壁絶縁
膜8を、またDD溝構造第2図)においてはゲート電極
4を不純物導入の際のマスクとして形成される。11は
表面保護絶縁膜、12はソース電極、13はドレイン電
極である。
) In Figures 1 and 2, 1 is a p-conductivity type silicon substrate, 2 is a thick field oxide film for isolation between elements, 3 is a gate insulating film, 4 is a gate electrode, and 5 is a gate protection insulator. It is a membrane. Reference numeral 6 indicates an n-conductivity type low impurity concentration source region (n- diffusion layer), and 7 indicates an n-conductivity type low impurity concentration drain region (n-
(diffusion layer), which is formed by introducing impurities using the gate electrode 4 as a mask. 8 is a gate sidewall insulating film, 9 is an n-conductivity type high impurity concentration source region (n+ diffusion layer), 10 is an n-conductivity type high impurity concentration drain region (n+ diffusion layer), and has an LDD structure (Fig. 1). In the case of the DD trench structure (FIG. 2), the gate sidewall insulating film 8 is used as a mask, and in the case of the DD trench structure (FIG. 2), the gate electrode 4 is used as a mask when introducing impurities. 11 is a surface protection insulating film, 12 is a source electrode, and 13 is a drain electrode.

第1図及び第2図に示す従来構造の超微細MO8におい
て、ドレイン印加電圧はn導電形の低不純物濃度ソース
及びドレイン領域(n−拡散層)6,7内で降下するた
め、製造時にこのn−拡散層幅を任意に制御すなわち広
げることによって実効チャネル長が1μm以下の超微細
MO8において5vなるドレイン電圧を印加しても雪崩
降服を生じない高耐圧化が可能となっている。特に第1
図に示すL D D構造においては、前述のように低不
純物濃度ソース及びドレイン領域(n−拡散層)6,7
と高不純物濃度ソース及びドレイン領域(n+拡散層)
9.10の不純物導入境界が異なるため、ゲート側壁絶
縁膜8の幅を広げることにより高耐圧化は原理的にどこ
までも可能となる。しかしながらLDD構造における低
不純物濃度ソース及びドレイン領域6.7の領域の一部
は図示のようにゲート電極4で覆われていないため、こ
の低不純物濃度ソース及びドレイン領域6,7はゲート
電圧で制御することができない。すなわちLDD構造に
おける低不純物濃度ソース及びドレイン領域6,7は直
列抵抗として作用し、高耐圧化をはかるためにこの低不
純物濃度ソース及びドレイン領域6,7の幅を増大させ
る程電流駆動能力が低下する欠点が生ずる。この欠点は
半導体装置を微細化する最大の目的である高速動作化を
無効にするものである。
In the ultra-fine MO8 with the conventional structure shown in FIGS. 1 and 2, the drain applied voltage drops within the n conductivity type low impurity concentration source and drain regions (n-diffusion layer) 6 and 7, so this By arbitrarily controlling or widening the width of the n-diffusion layer, it is possible to achieve a high breakdown voltage that does not cause avalanche precipitation even when a drain voltage of 5V is applied in ultrafine MO8 having an effective channel length of 1 μm or less. Especially the first
In the LDD structure shown in the figure, as mentioned above, the low impurity concentration source and drain regions (n-diffusion layers) 6, 7
and high impurity concentration source and drain regions (n+ diffusion layer)
Since the impurity doping boundaries of 9.10 are different, it is theoretically possible to increase the breakdown voltage to any extent by widening the width of the gate sidewall insulating film 8. However, since part of the low impurity concentration source and drain regions 6 and 7 in the LDD structure is not covered with the gate electrode 4 as shown in the figure, the low impurity concentration source and drain regions 6 and 7 are controlled by the gate voltage. Can not do it. In other words, the low impurity concentration source and drain regions 6 and 7 in the LDD structure act as a series resistance, and in order to increase the withstand voltage, the current driving ability decreases as the width of the low impurity concentration source and drain regions 6 and 7 increases. There are disadvantages to this. This drawback negates the main purpose of miniaturizing semiconductor devices, which is high-speed operation.

LDD構造の他の欠点は、低不純物濃度ソース及びドレ
イン領域6,7と高不純物濃度ソース及びドレイン領域
9,10の不純物導入境界が異なることにより生ずる。
Another drawback of the LDD structure arises from the fact that the impurity doping boundaries of the low impurity concentration source and drain regions 6 and 7 and the high impurity concentration source and drain regions 9 and 10 are different.

すなわち、LDD構造においては、ゲート電極4をマス
クにして低不鈍物濃度ソース及びドレイン領域6,7を
形成した後、ゲート側壁絶縁膜8を形成し、この、ゲー
ト側壁絶縁膜8をマスクとして高不純物濃度ソース及び
ドレイン領域9,10を形成する。しかし、ゲート側壁
絶縁膜8はスパッタエツチングにより残置形成するため
、その幅の制御性が常道悪く、従って、低不純物濃度ソ
ース及びドレイン領域6,7の幅はゲート側壁絶縁膜8
の幅のバラツキに依存して変動する。このことはソース
・ドレイン間耐圧特性、及び電流駆動能力のバラツキと
なって表われ、製造歩留まりを著しく低下させてしまう
That is, in the LDD structure, after the low impurity concentration source and drain regions 6 and 7 are formed using the gate electrode 4 as a mask, the gate sidewall insulating film 8 is formed, and the gate sidewall insulating film 8 is used as a mask. High impurity concentration source and drain regions 9 and 10 are formed. However, since the gate sidewall insulating film 8 is left behind by sputter etching, the controllability of its width is usually poor.
It varies depending on the variation in the width. This manifests itself in variations in source-drain breakdown voltage characteristics and current drive capability, which significantly reduces manufacturing yield.

−力筒2図のとときDD溝構造おいては、前述のように
低不純物濃度ソース及びドレイン領域6゜7と高不純物
濃度ソース及びドレイン領域9゜10の不純物導入境界
が一致しているため、低不純物濃度ソース及びドレイン
領域6.7の変動幅も小さく、歩留まり低下の問題は無
視できる。さらに、低不純物濃度ソース及びドレイン領
域6゜7の表面部分はゲート電極4で覆われており、電
流駆動能力の低下も問題にならない。しかじなから、こ
のDD溝構造おいては、高耐圧化を図るためには低不純
物濃度ソース及びドレイン領域6゜7を十分深く形成し
、かつ高不純物濃度ソース及びドレイン領域9,10を
十分浅く形成しなければならない。ところが、現状の製
造方法においては高不純物濃度ソース及びドレイン領域
9,10の接合深さを0.1 μm以下に十分に浅く形
成することは技術上困難である。一方、低不純物濃度ソ
ース及びドレイン領域6,7の深さを十分深くすると、
実効チャネル長が1μm以下と超微細構造の場合、ソー
ス・ドレイン間でパンチスルー現象が生じ、耐圧が低下
して高耐圧化が実現できなくなる。さらに、DD溝構造
他の欠点はゲート電極4と低不純物濃度ソース領域6及
び高不純物濃度ソース領域9間、及び低不純物濃度ドレ
イン領域7及び高不純物濃度ドレイン領域10間の容量
が大きくなり、高速動作を阻害することである。
- In the case of Figure 2, in the DD trench structure, as mentioned above, the impurity introduction boundaries of the low impurity concentration source and drain regions 6°7 and the high impurity concentration source and drain regions 9°10 coincide. The fluctuation width of the low impurity concentration source and drain regions 6.7 is also small, and the problem of yield reduction can be ignored. Furthermore, since the surface portions of the low impurity concentration source and drain regions 6.7 are covered with the gate electrode 4, there is no problem with a decrease in current driving ability. Therefore, in this DD groove structure, in order to achieve high breakdown voltage, the low impurity concentration source and drain regions 6°7 are formed sufficiently deep, and the high impurity concentration source and drain regions 9 and 10 are formed sufficiently deep. Must be formed shallowly. However, with the current manufacturing method, it is technically difficult to form the highly impurity-concentrated source and drain regions 9 and 10 with a sufficiently shallow junction depth of 0.1 μm or less. On the other hand, if the depth of the low impurity concentration source and drain regions 6 and 7 is made sufficiently deep,
In the case of an ultrafine structure with an effective channel length of 1 μm or less, a punch-through phenomenon occurs between the source and drain, and the withstand voltage decreases, making it impossible to achieve a high withstand voltage. Furthermore, another disadvantage of the DD groove structure is that the capacitance between the gate electrode 4 and the low impurity concentration source region 6 and the high impurity concentration source region 9, and between the low impurity concentration drain region 7 and the high impurity concentration drain region 10 becomes large, and the high speed It is to obstruct movement.

[発明の目的] 本発明の目的は、上述した従来技術の欠点を解消し、ソ
ース・ドレイン間耐圧が十分に高く、かつ電流駆動能力
の低下度合いの小さい半導体装置を提供することにある
[Object of the Invention] An object of the present invention is to eliminate the drawbacks of the conventional techniques described above, and to provide a semiconductor device having a sufficiently high source-drain breakdown voltage and a small degree of decrease in current drive capability.

〔発明の概要〕[Summary of the invention]

本発明は高耐圧化構造を有する超微細MO3のソース・
ドレイン電流(以下単に電流と称する。)の低下現象に
関する要因解析結果に基づいてなされたものである。実
効チャネル長が1μm以下の超微細高耐圧化構造の従来
MO8において、第1図に示したLDD構造が高耐圧化
特性に関して優れているこ・とは前述した。しかしなが
ら、ソース・ドレイン間耐圧(以下mに耐圧と称する。
The present invention is an ultra-fine MO3 source with a high breakdown voltage structure.
This was done based on the results of factor analysis regarding the phenomenon of decrease in drain current (hereinafter simply referred to as current). As mentioned above, in the conventional MO8 having an ultra-fine high breakdown voltage structure with an effective channel length of 1 μm or less, the LDD structure shown in FIG. 1 is superior in terms of high breakdown voltage characteristics. However, the source-drain breakdown voltage (hereinafter m is referred to as breakdown voltage).

)9vを確保させたLDDJ造にj9いて、実効チャネ
ル長0.3 μmの超微細MO8の電流はゲート及びド
レイン電圧5vなる条件で、同一実効チヤネル長を有す
る通常MO8の電流値に較べて20%も低下する欠点を
有する。この電流低下は電流経路に挿入された低不純物
濃度ソース及びドレイン領域(n−拡散層)6,7によ
るものである。
) In the LDDJ structure that secures 9V, the current of the ultra-fine MO8 with an effective channel length of 0.3 μm is 20% compared to the current value of a normal MO8 with the same effective channel length under the condition that the gate and drain voltage is 5V. % also decreases. This current drop is due to the low impurity concentration source and drain regions (n- diffusion layers) 6 and 7 inserted into the current path.

本発明者等は種々のn−拡散層構成について数値解析的
に電流低下特性を詳細に解析したところ、n−拡散層の
表面不純物濃度、n−拡散層幅、及びゲート電極がn−
拡散層上を覆う割合等が電流低下特性に密接に関連があ
ることが明らかになった。特に、実効チャネル長0.3
 μmの超微細MO8でソース・ドレイン間耐圧9v程
度を保証するLDD構造MO8においては、n−及びn
+拡散層を形成する拡散マスク境界間幅(ゲート電極端
とゲート側壁絶縁膜端との距離)0.3 μm、n−拡
散層表面不純物濃度5 X 1017■−3等が最適条
件となるが、上記のような低濃度n−拡散層の場合、ゲ
ート電極がn−拡散層上を部分的にも覆わないことが電
流低下の最大要因であることが明らかになった。さらに
、上記の電流低下傾向は1017G−3以下の不純物濃
度領域上がゲート電極で覆われていない場合、特に顕著
となり、不純物濃度が1017an−”以上の領域上は
ゲート電極で覆われなくても電流低下にあまり影響しな
いこともMO8特性の数値解析結果から明らかになった
The present inventors conducted a detailed numerical analysis of the current drop characteristics of various n-diffusion layer configurations, and found that the surface impurity concentration of the n-diffusion layer, the width of the n-diffusion layer, and the gate electrode
It has become clear that the coverage ratio of the diffusion layer is closely related to the current reduction characteristics. In particular, the effective channel length is 0.3
In the LDD structure MO8, which guarantees a source-drain breakdown voltage of about 9V with an ultra-fine MO8 of μm, n- and n
The optimal conditions are + width between boundaries of the diffusion mask forming the diffusion layer (distance between the edge of the gate electrode and the edge of the gate sidewall insulating film) 0.3 μm, n- diffusion layer surface impurity concentration 5 × 1017■-3, etc. In the case of a low concentration n-diffusion layer as described above, it has become clear that the biggest factor in the current reduction is that the gate electrode does not even partially cover the n-diffusion layer. Furthermore, the current decreasing tendency described above becomes particularly noticeable when the impurity concentration region below 1017G-3 is not covered with a gate electrode, and even when the impurity concentration region above 1017an-'' is not covered with a gate electrode. It has also become clear from the results of numerical analysis of MO8 characteristics that it does not significantly affect the current drop.

すなわち、電流低下の観点からはソース・ドレイン不純
物濃度に関し、従来構造のように、1020■−3以上
の高不純物濃度に構成する必要はなく、10”an−”
以上であればよいことが明らかになった。上記解析結果
に基づけば従来の高耐圧構造MO8に必ず設置されてい
たn+拡散層はMOSの高耐圧化、及び電流低下防止の
点で無意味であり、半導体基板内の活性領域内に設置す
る必然性がないことがわかる。すなわち、n+拡散層は
配線電極との良好なオーミック接触を確保するためにの
み必要となり、上記役割りを果すためには半導体基板上
に1afWされても何等問題がない。
In other words, from the viewpoint of current reduction, it is not necessary to configure the source/drain impurity concentration to be as high as 1020 -3 or higher as in the conventional structure, but instead
It has become clear that the above is sufficient. Based on the above analysis results, the n+ diffusion layer, which was always installed in the conventional high voltage structure MO8, is meaningless in terms of increasing the voltage resistance of the MOS and preventing current drop, and it should be installed in the active region in the semiconductor substrate. It turns out that there is no necessity. That is, the n+ diffusion layer is required only to ensure good ohmic contact with the wiring electrode, and there is no problem even if it is formed 1afW on the semiconductor substrate in order to fulfill the above role.

本発明は上記数値解析結果に基づき、配線電極との良好
なオーミック接触にのみ必要な101311以上の高不
純物濃度を有する拡散層を半導体基板上に設けた半導体
薄膜内に設け、半導体基板内の低不純物濃度ドレイン領
域は高耐圧化に適し、かつ電流低下が極めて少ない10
”Qll−”以上10”cm−”未満の拡散層で構成す
るものである。
Based on the above numerical analysis results, the present invention provides a diffusion layer having a high impurity concentration of 101311 or higher, which is necessary only for good ohmic contact with wiring electrodes, in a semiconductor thin film provided on a semiconductor substrate. The impurity-concentrated drain region is suitable for high breakdown voltage and has extremely low current drop10
It is composed of a diffusion layer with a thickness of "Qll-" or more and less than 10"cm-".

すなわち1本発明の基本思想は従来の超微細・高耐圧M
O8の低不純物濃度ドレイン領域が高耐圧化と良好なオ
ーミック接触なる2つの役割りを合わせ持つことに基づ
く欠を克服し、半導体基板内においては低不純物濃度ド
レイン領域全域を強電界緩和と大電流確保の目的にのみ
限定させ、極限までその効果を追求せんとするものであ
る。
In other words, the basic idea of the present invention is the conventional ultra-fine, high-voltage M
The low impurity concentration drain region of O8 has overcome the two roles of high breakdown voltage and good ohmic contact, and in the semiconductor substrate, the entire low impurity concentration drain region can be used for strong electric field relaxation and large current. The goal is to limit the use of security only to the purpose of securing security, and to pursue its effectiveness to the utmost.

高不純物濃度拡散層を半導体基板内に設けないことによ
る第1の利点は、従来構造に較べてより微小な占有面積
により高耐圧化及び大電流化に適したMO8構造を実現
することができ、高集積化が可能となる点である。また
、第2の利点は半導体基板内に設けるソース・ドレイン
拡散層が高不純物濃度層でないため、ゲート電位による
制御がソース・トレイン拡散層領域にまで多少可能であ
り、超微細MO8において重大な欠点であったパンチス
ルー電圧または閾電圧値の低下のような二次元効果、ま
たは短チャンネル効果と称される欠点を緩和することが
できることである。
The first advantage of not providing a high impurity concentration diffusion layer in the semiconductor substrate is that an MO8 structure suitable for high breakdown voltage and large current can be realized with a smaller occupied area than conventional structures. This makes it possible to achieve high integration. In addition, the second advantage is that the source/drain diffusion layer provided in the semiconductor substrate is not a high impurity concentration layer, so it is possible to control the gate potential to some extent even in the source/train diffusion layer region, which is a serious drawback in ultrafine MO8. Two-dimensional effects such as a reduction in punch-through voltage or threshold voltage value, or short channel effects, can be alleviated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

なお、図面においては要部が拡大して示されているので
注意を要する。
Note that important parts are shown enlarged in the drawings, so care must be taken.

実施例1 第3図(a)〜(c)は本発明の第1の実施例の半導体
装置の製造工程を示す断面図である。まず、比抵抗1Ω
・■のp導電形シリコン電極配線に公知の素子分離技術
を利用して0.6 μmの厚いフィールド酸化膜2を選
択的に形成した後、このフィールド酸化膜2で囲まれた
活性領域内の半導体表面上に、公知の方法により10n
mの正常なゲート酸化膜3.0.3 μmのシリコン薄
膜4を逐次形成する。シリコン薄膜4にはPOCQ z
を拡散源とする熱拡散により燐の高濃度拡散を行ない、
しかる後、燐を僅かに添加した膜厚0.2  μmのシ
リコン酸化膜5を公知の方法により全面に堆積した。続
いて、シリコン薄膜4及びシリコン酸化膜5からなる2
層重合わせ膜を公知の写真食刻法により加工し、ゲート
電極4及びゲート保護絶縁膜5を形成した。なお、ゲー
ト電極4長は0.5μmとした。次に、テトラエトキシ
シラン(sl(oczHi)4)を用いた化学気相反応
により膜厚0.1μmのシリコン酸化膜を全面に堆積し
た。このシリコン酸化膜を反応性イオンオツチング法に
より半導体基板表面と垂直方向にのみエツチングを行な
い、平坦部に堆積されたシリコン酸化膜を除去すると第
3図(a)に示すように、ゲート電極4及びゲート保護
絶縁膜5の側壁部にのみシリコン酸化膜が残置され、ゲ
ート側壁絶縁膜8を形成することができる。この状態で
ゲート電極4.ゲート保護絶縁膜5及びゲート側壁絶縁
膜8をマスクとしてゲート酸化膜3を介して燐を加速エ
ネルギー30KeVの条件でシリコン基板1内にイオン
打込みを行なった。このイオン打込みの注入量に関して
は1017〜10102Ga”の表面不純物濃度が最終
的に得られるように種々の注入量条件を設定し、多数個
のトランジスタを作製した。上記のイオン打込みの後、
注入イオンを活性化熱処理を施し、低不純物濃度ソース
領域6及び低不純物濃度ドレイン領域7を半導体基板1
内に形成した。上記の熱処理は950℃で行なったが、
注入量に関係なく接合深さが0.2  μmとなるよう
に熱処理時間を設定した(本実施例では30分間)。続
いて、第3図(a)に示すように低不純物濃度ソース及
びドレイン領域6,7上に露出しているゲート酸化膜3
を全面的に除去した。
Embodiment 1 FIGS. 3(a) to 3(c) are cross-sectional views showing the manufacturing process of a semiconductor device according to a first embodiment of the present invention. First, specific resistance 1Ω
・After selectively forming a 0.6 μm thick field oxide film 2 on the p-conductivity type silicon electrode wiring (■) using a known device isolation technique, the active region surrounded by this field oxide film 2 is 10n on the semiconductor surface by a known method.
A normal gate oxide film of 3 m and a silicon thin film 4 of 0.3 μm are successively formed. POCQ z for silicon thin film 4
A high concentration of phosphorus is diffused by thermal diffusion using a diffusion source.
Thereafter, a silicon oxide film 5 slightly doped with phosphorus and having a thickness of 0.2 μm was deposited on the entire surface by a known method. Next, a silicon thin film 4 and a silicon oxide film 5 are formed.
The layered film was processed by a known photolithography method to form a gate electrode 4 and a gate protection insulating film 5. Note that the length of the gate electrode 4 was 0.5 μm. Next, a silicon oxide film with a thickness of 0.1 μm was deposited on the entire surface by a chemical vapor phase reaction using tetraethoxysilane (sl(oczHi)4). When this silicon oxide film is etched only in the direction perpendicular to the semiconductor substrate surface using the reactive ion etching method and the silicon oxide film deposited on the flat areas is removed, the gate electrode 4 is etched as shown in FIG. 3(a). A silicon oxide film is left only on the sidewall portions of the gate protection insulating film 5, and a gate sidewall insulating film 8 can be formed. In this state, the gate electrode 4. Phosphorus was ion-implanted into the silicon substrate 1 through the gate oxide film 3 using the gate protection insulating film 5 and the gate sidewall insulating film 8 as masks at an acceleration energy of 30 KeV. Regarding the implantation amount of this ion implantation, various implantation amount conditions were set so that a surface impurity concentration of 1017 to 10102 Ga'' was finally obtained, and a large number of transistors were manufactured.After the above ion implantation,
The implanted ions are subjected to activation heat treatment, and the low impurity concentration source region 6 and the low impurity concentration drain region 7 are formed in the semiconductor substrate 1.
formed within. The above heat treatment was carried out at 950°C,
The heat treatment time was set so that the junction depth was 0.2 μm regardless of the implantation amount (30 minutes in this example). Subsequently, as shown in FIG. 3(a), the gate oxide film 3 exposed on the low impurity concentration source and drain regions 6 and 7 is removed.
was completely removed.

次に第3図(b)に示すように、膜厚0.35μmのシ
リコン薄膜を公知の方法により堆積し、写真食刻法によ
り所望の回路構成に従い加工してソースシリコン電極1
4.ドレインシリコン電極15を含むシリコン電極配線
を形成した。この状態で砒素を加速エネルギー70Ka
V、打込量5X 10”m−”の条件でイオン打込みを
行なった。
Next, as shown in FIG. 3(b), a silicon thin film with a thickness of 0.35 μm is deposited by a known method, and processed according to a desired circuit configuration by photolithography to form a source silicon electrode 1.
4. A silicon electrode wiring including a drain silicon electrode 15 was formed. In this state, arsenic is accelerated with an energy of 70Ka.
Ion implantation was performed under the following conditions: V, implantation amount: 5 x 10"m-".

この条件はシリコン薄膜表面から約43nmの深さ近傍
で最大不純物濃度となる打込み条件である。
This condition is an implantation condition in which the maximum impurity concentration occurs near a depth of approximately 43 nm from the surface of the silicon thin film.

上記イオン打込みの後、1100℃、30秒間の短時間
熱処理により注入イオンの活性化を行なった。
After the ion implantation, the implanted ions were activated by short-time heat treatment at 1100° C. for 30 seconds.

このようにして形成された多結晶質または非晶質からな
るソースシリコン電極14及びトレインシリコン電極1
5内における不純物の拡散係数は単結晶シリコン内での
拡散係数に較べて10〜20倍も大きい、従って、上記
の短時間高温熱処理によりソースシリコン電極14及び
ドレインシリコン電極15内における不純物は、シリコ
ン薄膜内テ不M物II R1,0” rs−3以上M 
* If i、 O” an−aテはぼ均一分布となる
ように分布するが、シリコン基板1内の低不純物濃度ソ
ース及びドレイン領域6.7の不純物分布はほとんど影
響を受けない。
The source silicon electrode 14 and the train silicon electrode 1 made of polycrystalline or amorphous material formed in this way
The diffusion coefficient of impurities in the source silicon electrode 14 and the drain silicon electrode 15 is 10 to 20 times larger than the diffusion coefficient in single crystal silicon. Therefore, the impurities in the source silicon electrode 14 and the drain silicon electrode 15 are Thin film inner material II R1,0” rs-3 or more M
* If i, O'' an-a is distributed almost uniformly, but the impurity distribution in the low impurity concentration source and drain regions 6.7 in the silicon substrate 1 is hardly affected.

上記短時間高温熱処理によりソースシリコン電極14及
びドレインシリコン電極15内の均一分布不純物濃度(
1021an−a)とほぼ同一濃度を有する高不純物濃
度層が半導体基板1内の低不純物濃度ソース及びドレイ
ン領域6,7内にも形成される。しかしながら上記高不
純物濃度層の接合深さは第3図(b)に示すように約3
0nmと極めて浅いものである。
The uniformly distributed impurity concentration within the source silicon electrode 14 and drain silicon electrode 15 (
A high impurity concentration layer having substantially the same concentration as 1021an-a) is also formed in the low impurity concentration source and drain regions 6 and 7 in the semiconductor substrate 1. However, the junction depth of the above-mentioned high impurity concentration layer is about 3
It is extremely shallow at 0 nm.

短時間高温熱処理を施した後、公知の技術を用いて第3
図(Q)に示すように表面保護絶縁膜11と堆積と所望
箇所への開孔、さらにはAQ膜の蒸着とその蝕刻を行な
い、ソース金属電極12及びドレイン金属電極13を含
む電極配線を所望の回路方式に従って形成した。
After a short period of high-temperature heat treatment, a third
As shown in Figure (Q), the surface protection insulating film 11 is deposited and holes are formed at desired locations, and the AQ film is deposited and etched to form the desired electrode wiring including the source metal electrode 12 and drain metal electrode 13. It was formed according to the circuit system of.

上記の製造工程を経て製造された低不純物濃度ソース及
びドレイン領域6,7の表面不純物濃度C,lが異なる
種々のMOSに関してソース・ドレイン間耐圧とソース
・ドレイン電流の関係を測定した。ソース・ドレイン間
耐圧BvDllはゲート電圧及び基板電圧Ovの条件で
測定し、ソース・ドレイン電流■、、6に関しては基板
電圧をO■に設定し、ゲート電圧V。及びドレイン電圧
v、、は5■の条件で測定した。」二記の各印加電圧は
いずれもソース電圧を基準とした値である。本実施例に
基づいて製造したMOSにおけるBV□値は約9■であ
った。また上記条件におけるIDa値は約5.9mAで
あった。本実施例に基づき製造したゲート長0.5 μ
mのMOSにおける実効チャネル長は約0.3  μm
であったが、実効チャネル長及びBvl、、値が本実施
例のものと一致するごとく設計・製造した公知のLDD
構造MO8においてはV、=V、=5Vなる条件でID
a値は5 、1  m Aであった。なお、このLDD
構造MO8は低不純物濃度ソース及びドレイン領域6,
7の接合深さが0.1  μm、表面不純物濃度が5 
X 1017an−”、低不純物濃度ソース領域6また
は低不純物濃度ドレイン領域7と高不純物濃度ソース領
域9または高不純物濃度ドレイン領域10との間の間隔
すなわちゲート電極4端とゲート側壁絶縁膜8端間の距
離は0.3 μmになるように製造した(第1図参照)
。上記の各工、値を評価するために実効チャネル長0.
3 μmの通常構造MO8+1製造したが、そのBV□
値は4.8 vにしかならなかった。
The relationship between source-drain breakdown voltage and source-drain current was measured for various MOSs with low impurity concentration source and drain regions 6 and 7 having different surface impurity concentrations C and l manufactured through the above manufacturing process. The source-drain breakdown voltage BvDll is measured under the conditions of the gate voltage and the substrate voltage Ov, and for the source-drain currents 2, , and 6, the substrate voltage is set to O2 and the gate voltage is V. and the drain voltage v, , were measured under the conditions of 5. '' Both applied voltages are values based on the source voltage. The BV□ value of the MOS manufactured according to this example was about 9■. Further, the IDa value under the above conditions was about 5.9 mA. Gate length manufactured based on this example: 0.5 μ
The effective channel length in a MOS of m is approximately 0.3 μm.
However, the known LDD was designed and manufactured so that the effective channel length and Bvl values matched those of this example.
In structure MO8, ID under the conditions of V, =V, =5V
The a value was 5.1 mA. Furthermore, this LDD
Structure MO8 includes low impurity concentration source and drain regions 6,
Junction depth of 7 is 0.1 μm, surface impurity concentration is 5
X 1017an-”, the distance between the low impurity concentration source region 6 or the low impurity concentration drain region 7 and the high impurity concentration source region 9 or the high impurity concentration drain region 10, that is, between the end of the gate electrode 4 and the end of the gate sidewall insulating film 8 were manufactured so that the distance between them was 0.3 μm (see Figure 1).
. In order to evaluate each of the above values, the effective channel length is 0.
3 μm normal structure MO8+1 was manufactured, but its BV□
The value was only 4.8v.

通常構造M OS ニおけるV0=VI、’=5Vなる
条件における。、8値に関しては■。=V、=3V以上
の飽和領域における平常な電流電圧特性を外挿し、降服
状態にないとした時■、値を算出すると6.4mAとな
った。各構造MO8における上記各々の工□値を通常構
造のものを基準にして比較すると、公知の高耐圧構造で
あるLDD構造MO8において、約20%の電流低下が
不可避であるのに対し、同一の高耐圧特性を有する本実
施例のMOSにおいては約8%の電流低下に押えられた
。超微細MO8における電流低下は動作速度の低下を招
き、微細化の最大の特長を半減するものであるが、本実
施例に基づ<MO8構造においては5■通常電源使用の
条件を維持しつつ、微細化とともにさらに高速動作を可
能にしている。
Under the conditions of V0=VI and '=5V in the normal structure M OS. , ■ for 8 values. By extrapolating the normal current-voltage characteristics in the saturation region of =V, =3V or higher, and assuming that there is no breakdown state, the value was calculated to be 6.4 mA. Comparing the above-mentioned engineering values for each structure MO8 with respect to the normal structure, it is found that in the LDD structure MO8, which is a known high breakdown voltage structure, a current drop of about 20% is unavoidable, whereas the same In the MOS of this example having high breakdown voltage characteristics, the current drop was suppressed to about 8%. The drop in current in the ultra-fine MO8 leads to a decrease in operating speed, which halves the greatest advantage of miniaturization. However, based on this example, <5> In the MO8 structure, while maintaining the conditions for using a normal power supply, With miniaturization, even higher speed operation is possible.

本実施例に基づく高耐圧・超微細MO8の大きさは同一
の高耐圧特性を有する従来のLDD構造MO8の寸法よ
りさらに小さく、集積化にもより優れていることがわか
る。すなわち、ゲート側壁絶縁膜8端の間隔で両者を比
較すると本実施例に基づく場合0.7  μmとなり、
LDD構造においては1.1 μmとなる。従って、本
実施例に基づけばゲート長0.5  μm M OSに
おいてゲート長とほぼ同等のを寸法0.4 μmもの微
細化が可能となっている。
It can be seen that the size of the high breakdown voltage and ultra-fine MO8 based on this example is smaller than that of the conventional LDD structure MO8 having the same high breakdown voltage characteristics, and is also superior in integration. That is, when comparing the two in terms of the distance between the ends of the gate sidewall insulating film 8, it is 0.7 μm based on this example,
In the LDD structure, it is 1.1 μm. Therefore, based on this embodiment, in an MOS with a gate length of 0.5 μm, it is possible to miniaturize the gate length by as much as 0.4 μm, which is approximately the same as the gate length.

本実施例に基づく他の効果はチヤネル長の縮小に伴って
閾電圧値が低下するいわゆる短チヤネル効果が通常構造
MO8に較べて緩和されていることである。すなわち%
2μmの実効チャネル長を有するMOSの閾電圧値に比
較して、実効チャネル長が各々0.8 μm、0.5 
 μmの通常構造MO8のV、=5Vにおける各閾電圧
値がそれぞれ0.3 ■及び0.87以上低下するのに
対し、本実施例に従って実効チャネル長が各々0.8p
m、0.5  μm、及び0.3  μmとなるように
設計・製造したMOSの各閾電圧値は各々0.IV、0
.2 V及びQ、48Vの低下に留まっていた。上記の
閾電圧値の低下傾向は公知のLDD構造における短チヤ
ネル効果(実効チャネル長0.3μmの場合で0.3 
 V)に較べてやや劣るが実用化上問題にならない範囲
に留まっている。
Another effect based on this embodiment is that the so-called short channel effect, in which the threshold voltage value decreases as the channel length decreases, is alleviated compared to the normal structure MO8. i.e.%
Compared to the threshold voltage value of a MOS with an effective channel length of 2 μm, the effective channel length is 0.8 μm and 0.5 μm, respectively.
While the threshold voltage values of the normal structure MO8 of μm at V=5V are lowered by more than 0.3 and 0.87, respectively, the effective channel length according to this embodiment is reduced by 0.8p, respectively.
The threshold voltage values of the MOSs designed and manufactured to be 0.5 μm, 0.5 μm, and 0.3 μm are respectively 0.5 μm and 0.3 μm. IV, 0
.. 2 V and Q, the decrease remained at 48 V. The above tendency for the threshold voltage value to decrease is due to the short channel effect (0.3 μm when the effective channel length is 0.3 μm) in the known LDD structure.
Although it is slightly inferior to V), it remains within a range that does not pose a problem in practical use.

実施例2 第4図(a)〜(c)は本発明の第2の実施例の製造工
程を示す断面図である。
Embodiment 2 FIGS. 4(a) to 4(c) are cross-sectional views showing the manufacturing process of a second embodiment of the present invention.

第3図(a)〜(Q)に示した前述の第1の実施例にお
いて、フィールド酸化膜2を形成した後、所望領域を膜
厚1μmのホトレジスト膜で覆い、ホトレジスト膜で覆
われない活性領域内の所望領域に燐のイオン打込みを行
ない、その後の熱処理による接合深さ2μm、表面不純
物濃度3X10”Cal −”のn導電形ウェル16を
形成する。その後、第1の実施例に従ってゲート酸化膜
3.ゲート電極4.ゲート保護絶縁膜5及びシリコン酸
化膜によるゲート側壁絶縁膜8を形成する。次に、ウェ
ル領域16上をホトレジスト膜で選択的に覆った後、第
1の実施例の条件に従い燐イオン打込みによりn導電形
の低不純物濃度ソース領域6及び低不純物濃度ドレイン
領域7を形成する。次にウェル領域16以外の活性領域
をホトレジストII々で選択的に覆い、加速エネルギー
25 K e Vの条件でボロンのイオン打込みを行な
い、ウェル領域16内のゲート電極5及びゲート側壁絶
縁膜8以外の領域に選択的にp導電形波散層を形成した
。しかる後、イオン打込みのマスクとして使用したホト
レジスト膜を除去し、熱処理により打込みイオンの活性
化を施してn導電形の低不純物濃度ソース領域17及び
低不純物濃度ドレイン領域18を形成した。このイオン
打込みの注入量に関しては1017〜10”cs−”の
表面不純物濃度が最終的に得られるように種々の注入量
条件を設定し、多数個のトランジスタを作製した。上記
イオン打込みの活性化は800℃〜900℃の熱処理に
よったが、熱処理時間は各注入量によらず接合深さが0
.2  μmとなるように各々設定した。次に、第4図
(a)に示すようにn導電形の低不純物濃度ソース・ド
レイン領域6,7、さらにはn導電形の低不純物濃度ソ
ース・ドレイン領域17.18上に露出しているゲート
酸化膜3を全面的に除去した。
In the above-described first embodiment shown in FIGS. 3(a) to (Q), after forming the field oxide film 2, the desired area is covered with a photoresist film with a thickness of 1 μm, and the active areas not covered with the photoresist film are Phosphorus ions are implanted into a desired region within the region, and an n-conductivity type well 16 having a junction depth of 2 μm and a surface impurity concentration of 3×10"Cal-" is formed by subsequent heat treatment. Thereafter, a gate oxide film 3. is formed according to the first embodiment. Gate electrode 4. A gate protection insulating film 5 and a gate sidewall insulating film 8 made of a silicon oxide film are formed. Next, after selectively covering the well region 16 with a photoresist film, a low impurity concentration source region 6 and a low impurity concentration drain region 7 of n conductivity type are formed by implanting phosphorus ions according to the conditions of the first embodiment. . Next, the active region other than the well region 16 is selectively covered with photoresist II, and boron ions are implanted under the condition of an acceleration energy of 25 K e V. A p-conductivity type wave diffusion layer was selectively formed in the region. Thereafter, the photoresist film used as a mask for ion implantation was removed, and the implanted ions were activated by heat treatment to form a low impurity concentration source region 17 and a low impurity concentration drain region 18 of n conductivity type. Regarding the implantation amount of this ion implantation, various implantation amount conditions were set so that a surface impurity concentration of 1017 to 10"cs-" was finally obtained, and a large number of transistors were manufactured. The above ion implantation was activated by heat treatment at 800°C to 900°C, but the heat treatment time was independent of each implantation amount and the junction depth was 0.
.. Each was set to 2 μm. Next, as shown in FIG. 4(a), the n-conductivity type low impurity concentration source/drain regions 6, 7 and further the n-conductivity type low impurity concentration source/drain regions 17 and 18 are exposed. Gate oxide film 3 was completely removed.

次に、第4図(b)に示すように、0.35 μmの膜
厚のシリコン薄膜を堆積し、写真蝕刻法により所望の回
路構成に従い加工し、n導電形ソース低濃度拡散層6及
びp導電形ソース低濃度拡散層17を接続するソース電
極21.n導電形の低不純物濃度ドレイン領域7に接続
する第1のドレイン電極20、さらにはn導電形の低不
純物濃度ドレイン領域18に接続する第2のドレイン電
極22を含むシリコン電極配線を形成した。その後、ウ
ェル領域16上を選択的に覆うごとくホトレジスト膜を
塗布・加工し、砒素イオンを加速エネルギー70KeV
、打込量5 X 10”an−”の条件でイオン打込み
を行ない、シリコン薄膜からなるソ−スミ極21の一部
、及び第1のドレイン電極20に砒素を注入した。次に
、砒素イオン打込みのマスクに使用したホトレジスト膜
を除去し、ウェル領域16上以外を選択的に覆うように
第2のホトレジスト膜23を形成した。この状態でボロ
ンイオンを加速エネルギー30KeV、打込量IX 1
. O” cM−”の条件でイオン打込みを行なった。
Next, as shown in FIG. 4(b), a silicon thin film with a thickness of 0.35 μm is deposited and processed according to the desired circuit configuration by photolithography, forming the n-conductivity type source low concentration diffusion layer 6 and A source electrode 21 connecting the p-conductivity type source low concentration diffusion layer 17. A silicon electrode wiring including a first drain electrode 20 connected to the n-conductivity type low impurity concentration drain region 7 and a second drain electrode 22 connected to the n-conductivity type low impurity concentration drain region 18 was formed. Thereafter, a photoresist film is applied and processed to selectively cover the well region 16, and arsenic ions are accelerated with an energy of 70 KeV.
Arsenic was implanted into a part of the source electrode 21 made of a silicon thin film and into the first drain electrode 20 by ion implantation with an implantation amount of 5.times.10 "an-". Next, the photoresist film used as a mask for arsenic ion implantation was removed, and a second photoresist film 23 was formed to selectively cover areas other than the well region 16. In this state, boron ions are accelerated with an energy of 30 KeV and an implantation amount of IX 1.
.. Ion implantation was performed under the condition of O''cM-''.

1−記ボロン打込みの後、ホトレジスト膜23を除去し
、第1の実施例に従い1100”C,30秒の短時間熱
処理を行なって打込みイオンの活性化を実施した。なお
、この熱処理によっては半導体基板1内の低濃度不純物
層の分布はほとんど変化せず、一方高不純物濃度のn導
電形第1ドレイン電極20、p導電形第2ドレイン電極
22及びn導電形とp導電影領域からなるソース電極2
1はシリコン薄膜内で不純物濃度10”Qll−”以上
例えば10”an−”でほぼ均一分布を有して形成され
る。
1- After the boron implantation, the photoresist film 23 was removed and the implanted ions were activated by short-time heat treatment at 1100''C for 30 seconds according to the first example. The distribution of the low-concentration impurity layer in the substrate 1 hardly changes, while the highly impurity-concentrated n-conductivity type first drain electrode 20, p-conductivity type second drain electrode 22, and source consisting of n-conductivity type and p-conductivity shadow regions. Electrode 2
1 is formed in a silicon thin film with an impurity concentration of 10"Qll-" or more, for example 10"an-", with a substantially uniform distribution.

また第4図(c)に示すように、シリコン基板1内の低
不純物濃度ソース及びドレイン領域6,7内に形成され
る高不純物濃度領域は第[の実施例の場合と同様に30
nm程度と極めて浅いものであった。上記短時間熱処理
の後、第1の実施例に従い表面保護絶縁膜11の堆積と
所望箇所への開孔、さらにはAQ膜の形成とその蝕刻に
より第1のドレイン金属電極24.ソース金属電極25
及び第2のドレイン金属電極26を含む電極配線を所望
の回路構成に従って形成した。
Further, as shown in FIG. 4(c), the high impurity concentration regions formed in the low impurity concentration source and drain regions 6 and 7 in the silicon substrate 1 are 3
It was extremely shallow, on the order of nm. After the above-mentioned short-time heat treatment, the surface protection insulating film 11 is deposited and holes are formed at desired locations in accordance with the first embodiment, and the AQ film is formed and etched to form the first drain metal electrode 24. Source metal electrode 25
And electrode wiring including the second drain metal electrode 26 was formed according to a desired circuit configuration.

上記の製造工程を終ることにより相補型絶縁ゲート電界
効果トランジスタ(以下CMO3と略記する)。
By completing the above manufacturing process, a complementary insulated gate field effect transistor (hereinafter abbreviated as CMO3) is produced.

が製造されたが、この0MO3においては第1の実施例
の場合と同様に高耐圧でかつ電流低下率が極めて小さい
特性が超微細CMO3において実現できた。
was manufactured, but in this 0MO3, the characteristics of high breakdown voltage and extremely small current reduction rate were realized in the ultrafine CMO3 as in the case of the first embodiment.

本実施例の0MO3においては、第1の実施例で得られ
た際立った全ての効果が得られたが、さらに本実施例固
有の効果も見出された。すなわち、本実施例のCMO8
においては、従来構造CMO8で重大な欠点となってい
たラッチアップ現象による素子破壊が大幅に緩和される
ことである。0MO3のラッチアップ現象は、n導電形
の低不純物濃度ドレイン領域7.シリコン基板1.ウェ
ル領域16及びp導型彫の低不純物濃度ソース領域18
間にnpnp構造を有する寄生サイリスタが過電圧の印
加や通常スイッチ動作中の内部過渡的過電圧により触発
されて動作を開始し、電源を停止するまでサイリスタ動
作を抑制できなくなりトランジスタを破壊するものであ
る。この現象はCMO3の微細化に伴って各拡散層間隔
が縮小され寄生pnpバイポーラトランジスタ及び寄生
npnバイポーラトランジスタの各々の電流利得率の積
が1より大きくなるために生ずることが知られている。
In 0MO3 of this example, all the outstanding effects obtained in the first example were obtained, but additional effects unique to this example were also found. That is, CMO8 of this example
In this case, element destruction due to the latch-up phenomenon, which was a serious drawback in the conventional structure CMO8, is significantly alleviated. The latch-up phenomenon of 0MO3 is caused by the n-conductivity type low impurity concentration drain region 7. Silicon substrate 1. Well region 16 and p-type low impurity concentration source region 18
A parasitic thyristor having an npnp structure in between starts operating when triggered by the application of an overvoltage or an internal transient overvoltage during normal switch operation, and the thyristor operation cannot be suppressed until the power supply is stopped, destroying the transistor. It is known that this phenomenon occurs because the distance between each diffusion layer is reduced with the miniaturization of the CMO 3, and the product of the current gain factors of the parasitic pnp bipolar transistor and the parasitic npn bipolar transistor becomes larger than 1.

本実施例のCMO3の対ラッチアップ特性の評価には次
のものを測定した。すなわち、n導電形ドレイン拡散層
7をエミッタ、半導体基板1をベース、ウェル領域16
をコレクタとする寄生npn トランジスタの電流利得
率β、と、p導電形の低不純物濃度ソース領域17をエ
ミッタ、ウェル領域16をベース、シリコン基板1をコ
レクタとする寄生pnpトランジスタの電流利得率β2
との積β、・β、を測定した。この測定ではベース・コ
レクタ間に5■の電圧を印加し、10−6〜1O−2A
の範囲のエミッタ電流の関数としてβ、・β、積を求め
た。その結果、ns@形の低不純物濃度ドレイン領域7
及びp導電形の低不純物濃度ドレイン領域18の各表面
不純物濃度がともに5 X 10”s−”、1×10i
san−”及び3 X 1017co−’で実効チャネ
ル長が0.3  μmの各トランジスタにおける各β1
 ・β、積の最高値はいずれも10−2〜10−4であ
つ、 た。上記の値はラッチアップが発生する条件β。
To evaluate the anti-latch-up characteristics of CMO3 of this example, the following were measured. That is, the n-conductivity type drain diffusion layer 7 is used as an emitter, the semiconductor substrate 1 is used as a base, and the well region 16 is used as an emitter.
The current gain factor β of a parasitic npn transistor with the collector being , and the current gain factor β2 of the parasitic pnp transistor having the p conductivity type low impurity concentration source region 17 as the emitter, the well region 16 as the base, and the silicon substrate 1 as the collector.
The product β, β, was measured. In this measurement, a voltage of 5μ was applied between the base and collector, and a voltage of 10-6 to 1O-2A was applied.
The product β,·β, was determined as a function of the emitter current in the range of . As a result, the ns@ type low impurity concentration drain region 7
and the surface impurity concentration of the p conductivity type low impurity concentration drain region 18 are both 5 x 10"s-", 1 x 10i
each β1 in each transistor with an effective channel length of 0.3 μm and 3 × 1017co-’
・The highest values of β and product were all between 10-2 and 10-4. The above value is the condition β for latch-up to occur.

・β、≧1を満たすものではなく、対ラッチアップ特性
の観点から本実施例に基づ< CMO8は優れたもので
あることが判明した。なお、上記ドレイン表面不純物濃
度を10”am−’以上に設定したCMO3も同時に製
造したが、β、・β、積はドレイン表面不純物濃度が高
くなる程大きくなり、最小でも0.1 以上であった。
・β≧1 was not satisfied, and based on this example, it was found that <CMO8 was excellent from the viewpoint of anti-latch-up characteristics. Note that CMO3 with the above drain surface impurity concentration set to 10"am-' or more was also manufactured at the same time, but the product β, ·β, increases as the drain surface impurity concentration increases, and the minimum value was 0.1 or more. Ta.

すなわち、 10”C!l−”以上のドレイン表面不純
物濃度を有するCMO3においては、対ラッチアップ特
性においても前述の結果に較べると劣ることがわかった
That is, it was found that in CMO3 having a drain surface impurity concentration of 10"C!l-" or more, the anti-latch-up characteristics were also inferior compared to the above results.

なお、前述の第1の実施例においては説明の都合」二p
導型彫のシリコン基板1を用い、n導電形不純物による
ソース領域及びドレイン領域を構成するいわゆるnチャ
ネル型MO8について示したが、本発明に基づく半導体
装置は上記のとときnチャネル型に限定されることなく
、n導電形半導体基板とp導電形不純物によるソース領
域及びドレイン領域で構成されるいわゆるpチャネル型
MO8にも適用できる。
In addition, in the above-mentioned first embodiment, for the sake of explanation,
Although a so-called n-channel type MO8 has been described in which a conductive silicon substrate 1 is used and source and drain regions are formed with n-conductivity type impurities, the semiconductor device based on the present invention is limited to the n-channel type in the above case. The present invention can also be applied to a so-called p-channel type MO8, which is composed of an n-conductivity type semiconductor substrate and a source region and a drain region made of p-conductivity type impurities.

また、本発明は前記のごとき単体MO8に限定されるこ
となく、半導体集積回路装置さらにはゲート絶縁膜がシ
リコン窒化膜、アルミナ膜、チタン酸化膜、タンタル酸
化膜、珪燐酸ガラス酸、硅硼酸ガラス膜、またはシリコ
ン酸化膜を含めた上記絶縁膜の重合わせ膜で構成される
いわゆるMIS型構造の単体及びその集積回路にも適用
できる。
Further, the present invention is not limited to the above-mentioned single MO8, and the present invention is also applicable to semiconductor integrated circuit devices in which the gate insulating film is silicon nitride film, alumina film, titanium oxide film, tantalum oxide film, silicophosphoric glass acid, silicoborate glass. The present invention can also be applied to a so-called MIS-type structure composed of a film or a superimposed film of the above-mentioned insulating films including a silicon oxide film, and an integrated circuit thereof.

さらに、本発明は絶縁ゲート型電界効果トランジスタに
限定されることなく、ショットキーゲート型電界効果ト
ランジスタにも適用できる。また、基板はシリコンに限
らず、GaAs等化合物半導体でもよい。
Furthermore, the present invention is not limited to insulated gate field effect transistors, but can also be applied to Schottky gate field effect transistors. Further, the substrate is not limited to silicon, and may be a compound semiconductor such as GaAs.

上記実施例においては、高濃度イオン打込み層の熱処理
法として短時間高温熱処理法を用いる例につき記載した
が、上記熱処理工程は800℃以下の低温・長時間熱処
理法、パルス状ランプ加熱法、レーザ照射法、あるいは
電子線照射法等他の手法に基づいてもよい。さらにソー
ス・ドレインシリコン電極14.15は多結晶質または
非晶質に限定されることなく、単結晶であってもよい。
In the above embodiment, an example is described in which a short time high temperature heat treatment method is used as a heat treatment method for the high concentration ion implantation layer. It may be based on other methods such as irradiation method or electron beam irradiation method. Further, the source/drain silicon electrodes 14, 15 are not limited to polycrystalline or amorphous, but may be single crystal.

この場合、高濃度ソース・ドレイン拡散層は半導体基板
表面にまで到達する必要はなく、最低シリコン薄膜表面
部分にのみ存在すればよい。
In this case, the high concentration source/drain diffusion layer does not need to reach the surface of the semiconductor substrate, but only needs to be present at the lowest silicon thin film surface portion.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、5vなる通常電源で動作でき、かつ電
流低下を従来構造より1.2%以上も改善できる極超微
細MO8を得ることができる。このMOSにおいては、
高不純物濃度を有するソースまたはドレイン領域を半導
体基板上に設置するため、実効チャネル長0.3  μ
mの極超微細MO8において、公知のLDD構造を有す
る高耐圧MO3に比較し、約0.4  μmも寸法を縮
小できる効果も有する。また、本発明によれば、いわゆ
る短チヤネル効果と称される閾電圧低下傾向も、実効チ
ャネル長0.3  μmの場合においても0.5 v以
下と実用上許容できる範囲内に押える効果も有している
According to the present invention, it is possible to obtain an ultra-fine MO8 that can operate with a normal power supply of 5V and can improve the current drop by 1.2% or more compared to the conventional structure. In this MOS,
Since the source or drain region with high impurity concentration is placed on the semiconductor substrate, the effective channel length is 0.3 μm.
The ultra-fine MO8 of m has the effect of being able to be reduced in size by about 0.4 μm compared to the high breakdown voltage MO3 having a known LDD structure. Furthermore, according to the present invention, there is also the effect of suppressing the tendency of threshold voltage reduction, so-called short channel effect, to be within a practically acceptable range of 0.5 V or less even in the case of an effective channel length of 0.3 μm. are doing.

さらに、本発明によれば従来構造の超微細相補型絶縁ゲ
ート電界トランジスタで重大な問題となっていたラッチ
アップ現象を完全に防止できるので、高速動作を損うこ
となく超微細型捕型絶縁ゲートトランジスタを実現する
ことが可能である。
Furthermore, according to the present invention, it is possible to completely prevent the latch-up phenomenon that has been a serious problem in ultra-fine complementary insulated gate field transistors with conventional structures, so that the ultra-fine trap type insulated gate field transistor can be completely prevented without impairing high-speed operation. It is possible to realize a transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のLDD構造のMOSを示す断面図、第2
図は従来のDD槽構造有するMOSを示す断面図、第3
図(a)〜(c)は本発明の第1の実施例の半導体装置
の製造工程を示す断面図、第4図(a)〜(o)は本発
明の第2の実施例の半導体装置のjl造工程を示す断面
図である。 1・・・シリコン基板、2・・・フィールド酸化膜、3
・・・ゲート酸化膜、4・・・ゲート電極、5・・・ゲ
ート保護絶縁膜、6.17・・・低不純物濃度ソース領
域、7゜18・・・低不純物濃度ドレイン領域、8・・
・ゲート側壁絶縁膜、9・・・高不純物濃度ソース領域
、10・・・高不純物濃度ドレイン領域、11・・・表
面保護絶縁膜、12・・・ソース電−113・・・ドレ
イン電極、14・・・ソースシリコン電極、15・・・
ドレインシリコン電極、16・・・ウェル領域、20・
・・第1のドレイン電極、21・・・ソース電極、22
・・・第2のドレY J 図 (bン (C) 181m8aG1−1311iG8(9)Z 4  図 Cb) (C,) 第 4 図 (久) B4慢7)−一し8
Figure 1 is a cross-sectional view showing a conventional LDD structure MOS, Figure 2
The figure is a cross-sectional view showing a MOS with a conventional DD tank structure.
Figures (a) to (c) are cross-sectional views showing the manufacturing process of a semiconductor device according to a first embodiment of the present invention, and Figures 4 (a) to (o) are cross-sectional views showing a semiconductor device according to a second embodiment of the present invention. It is a sectional view showing the JL construction process. 1... Silicon substrate, 2... Field oxide film, 3
...Gate oxide film, 4...Gate electrode, 5...Gate protection insulating film, 6.17...Low impurity concentration source region, 7゜18...Low impurity concentration drain region, 8...
- Gate sidewall insulating film, 9... High impurity concentration source region, 10... High impurity concentration drain region, 11... Surface protection insulating film, 12... Source electrode - 113... Drain electrode, 14 ...Source silicon electrode, 15...
Drain silicon electrode, 16... Well region, 20.
...first drain electrode, 21...source electrode, 22
...Second DoreY

Claims (2)

【特許請求の範囲】[Claims] 1.ゲート電極と、該ゲート電極端に隣接して形成され
たゲート側壁絶縁膜と、半導体基板と反対導電形を有し
、上記ゲート側壁絶縁膜端を不純物導入境界として半導
体基板内に導入された10^1^7cm^−^3以上1
0^2^0cm^−^3未満の表面濃度の低不純物濃度
ドレイン領域と、上記ゲート側壁絶縁膜に隣接し、上記
低不純物濃度ドレイン領域上に形成された10^1^9
cm^−^3以上の高不純物濃度を有する半導体薄膜と
を具備することを特徴とする半導体装置。
1. A gate electrode, a gate sidewall insulating film formed adjacent to the end of the gate electrode, and a gate electrode having a conductivity type opposite to that of the semiconductor substrate, and introduced into the semiconductor substrate with the end of the gate sidewall insulating film as an impurity introduction boundary. ^1^7cm^-^3 or more 1
A low impurity concentration drain region with a surface concentration of less than 0^2^0cm^-^3, and a 10^1^9 layer adjacent to the gate sidewall insulating film and formed on the low impurity concentration drain region.
1. A semiconductor device comprising: a semiconductor thin film having a high impurity concentration of cm^-^3 or more.
2.上記半導体薄膜がp導電形を有することを特徴とす
る特許請求の範囲第1項記載の半導体装置。
2. 2. The semiconductor device according to claim 1, wherein the semiconductor thin film has p conductivity type.
JP59133147A 1984-06-29 1984-06-29 Semiconductor device Pending JPS6113668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59133147A JPS6113668A (en) 1984-06-29 1984-06-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59133147A JPS6113668A (en) 1984-06-29 1984-06-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6113668A true JPS6113668A (en) 1986-01-21

Family

ID=15097820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59133147A Pending JPS6113668A (en) 1984-06-29 1984-06-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6113668A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291176A (en) * 1986-06-11 1987-12-17 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6315465A (en) * 1986-07-07 1988-01-22 Nec Corp Manufacture of semiconductor device
EP0488154A2 (en) * 1990-11-28 1992-06-03 Seiko Epson Corporation Contact for semiconductor device and method of manufacturing the same
JPH0541517A (en) * 1991-01-21 1993-02-19 Mitsubishi Electric Corp Semiconductor device including mos field-effect transistor and its manufacture
JPH05145025A (en) * 1991-11-20 1993-06-11 Nec Corp Manufacture of semiconductor device
JP2008529900A (en) * 2005-02-09 2008-08-07 リアクター スピリッツ ノルウェー リミテッド Bottle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137269A (en) * 1976-05-12 1977-11-16 Hitachi Ltd Semiconductor device
JPS58141570A (en) * 1982-02-17 1983-08-22 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137269A (en) * 1976-05-12 1977-11-16 Hitachi Ltd Semiconductor device
JPS58141570A (en) * 1982-02-17 1983-08-22 Toshiba Corp Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291176A (en) * 1986-06-11 1987-12-17 Hitachi Ltd Semiconductor device and manufacture thereof
JPH0581051B2 (en) * 1986-06-11 1993-11-11 Hitachi Ltd
JPS6315465A (en) * 1986-07-07 1988-01-22 Nec Corp Manufacture of semiconductor device
EP0488154A2 (en) * 1990-11-28 1992-06-03 Seiko Epson Corporation Contact for semiconductor device and method of manufacturing the same
US5315150A (en) * 1990-11-28 1994-05-24 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
JPH0541517A (en) * 1991-01-21 1993-02-19 Mitsubishi Electric Corp Semiconductor device including mos field-effect transistor and its manufacture
JPH05145025A (en) * 1991-11-20 1993-06-11 Nec Corp Manufacture of semiconductor device
JP2008529900A (en) * 2005-02-09 2008-08-07 リアクター スピリッツ ノルウェー リミテッド Bottle

Similar Documents

Publication Publication Date Title
US4946799A (en) Process for making high performance silicon-on-insulator transistor with body node to source node connection
US4965213A (en) Silicon-on-insulator transistor with body node to source node connection
US5517046A (en) High voltage lateral DMOS device with enhanced drift region
US5777362A (en) High efficiency quasi-vertical DMOS in CMOS or BICMOS process
US4906587A (en) Making a silicon-on-insulator transistor with selectable body node to source node connection
JP3226650B2 (en) Lateral double diffusion insulated gate field effect transistor and method of manufacturing the same
US5427964A (en) Insulated gate field effect transistor and method for fabricating
US5674762A (en) Method of fabricating an EPROM with high voltage transistors
EP0902482B1 (en) SOI-MOSFET and fabrication process thereof
US4922315A (en) Control gate lateral silicon-on-insulator bipolar transistor
KR20000005452A (en) Silicon carbide cmos and method of fabrication
JPS61156882A (en) Double-diffused igfet and manufacture thereof
US8102011B2 (en) Semiconductor device including a field effect transistor and method for manufacturing the same
GB2045525A (en) Field effect transistor construction
US5451536A (en) Power MOSFET transistor
US5786265A (en) Methods of forming integrated semiconductor devices having improved channel-stop regions therein, and devices formed thereby
JPH08255841A (en) Fet technique having dielectric separation type source and drain
US5047820A (en) Semi self-aligned high voltage P channel FET
JP2001284540A (en) Semiconductor device and its manufacturing method
JPS6113668A (en) Semiconductor device
JP2633873B2 (en) Method for manufacturing semiconductor BiCMOS device
JP2002141502A (en) Semiconductor device and its manufacturing method
JPH01120067A (en) Semiconductor device and its manufacture
JPS60247974A (en) Semiconductor device
JPH04260335A (en) Manufacture of field-effect transistor