JPS61136255A - Composite semiconductor device - Google Patents

Composite semiconductor device

Info

Publication number
JPS61136255A
JPS61136255A JP25745284A JP25745284A JPS61136255A JP S61136255 A JPS61136255 A JP S61136255A JP 25745284 A JP25745284 A JP 25745284A JP 25745284 A JP25745284 A JP 25745284A JP S61136255 A JPS61136255 A JP S61136255A
Authority
JP
Japan
Prior art keywords
semiconductor layer
metal silicide
conductivity type
silicide film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25745284A
Other languages
Japanese (ja)
Other versions
JPH0666425B2 (en
Inventor
Takahiro Aoki
隆宏 青木
Ryota Kasai
笠井 良太
Katsuji Horiguchi
勝治 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25745284A priority Critical patent/JPH0666425B2/en
Publication of JPS61136255A publication Critical patent/JPS61136255A/en
Publication of JPH0666425B2 publication Critical patent/JPH0666425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0711Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors
    • H01L27/0716Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors in combination with vertical bipolar transistors and diodes, or capacitors, or resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To bring an integrated circuit, which never generate a latch-up phenomenon and which has a high-load driving power in low power consumption, into a high-density state by a method wherein the MOSFET and the bipolar transistor are structurally formed in one body. CONSTITUTION:A metal silicide film shows a Schottky junction property to an N type semiconductor layer and shows an ohmic property to a P type semiconductor layer. When the source and drain of the PMOSFET are respectively formed of a metal silicide film 112c and a metal silicide film 112b, the Schottky PMOSFET is formed, and moreover, the ohmic contact with a P type semiconductor layer 104a can be also made directly. Moreover, the well contact with a semiconductor layer 103 can be made by a metal silicide film 112c through a high-concentration N type semiconductor layer 105b. Furthermore, the gate direct contact can be made by forming a metal silicide film 112f in a self- matching manner with the source and drain. As a result, it can be contrived to drop the gate resistance and to bring the integrated circuit into a high-density state.

Description

【発明の詳細な説明】 (腫業上の利用分針) 不発−は、小型にして、爾負#駆動、低消費電力注を有
するバイポーラ・CMO8*合型半害体裂置に関装るも
のである。
[Detailed description of the invention] (Minute hand for use in medicine) The misfire is a device that is small in size, has a negative drive, and has low power consumption Note. It is.

(従来技術) 従来、この徨複合型半導体装置は第2図に示す構造を有
してい7t。第2因において100はP型中導体基板、
101はP型中導体エビ層、102は高濃度のN型半導
体埋め込み層、103はN型半導体9エル、104はP
型半導体層、105は高濃就のN個半導体層、106は
高濃度のP型半導体層、111はポリシリコンゲート鳩
、110μ金属電極である。第2図の左から、105b
 ’iミニミッタ106a ’frベース、105a 
fコレクタとする縦型npnバイポーラトランジスタQ
n−106c 2ドレイン、1061) をソース、1
05cをバックゲート、111a をゲートとするPナ
ヤネルIViO8FET。
(Prior Art) Conventionally, this composite semiconductor device has a structure shown in FIG. 2 and has a length of 7t. In the second factor, 100 is a P-type medium conductor substrate,
101 is a P-type medium conductor layer, 102 is a high concentration N-type semiconductor buried layer, 103 is an N-type semiconductor 9L, and 104 is a P-type semiconductor layer.
105 is a highly concentrated N type semiconductor layer, 106 is a highly concentrated P type semiconductor layer, 111 is a polysilicon gate layer, and a 110μ metal electrode. From the left in Figure 2, 105b
'i minimitter 106a' fr base, 105a
Vertical npn bipolar transistor Q with f collector
n-106c 2 drain, 1061) source, 1
P Nayanel IViO8FET with 05c as the back gate and 111a as the gate.

105d kドレイン、105e fソース、1llf
i をゲートとするNナヤネルMO8FET ’にそれ
ぞれ示す。
105d k drain, 105e f source, 1llf
N Nayanel MO8FET' with gate i is shown respectively.

い1.106aと106b i金属1L極110 i介
して紹醸し、″また、105aと105cを同様に結線
することにエフ、第3図に示す回路が構成できる。第3
図Khいて、MPはPナヤ不ルMO8FET、 Qnは
npnバイポーラトランジスタである。2MO8FET
の次段にnpnバイポーラ全桐成することVC工り、見
かけ上大きなgoを有する2MO8FETが構成でき、
相補型回路の出力負荷駆動舵力を大幅に改嵜することが
期待できる。
1. Introducing 106a and 106b through the metal 1L pole 110i, and by connecting 105a and 105c in the same way, the circuit shown in Figure 3 can be constructed.
In the figure Kh, MP is a P-type MO8FET, and Qn is an npn bipolar transistor. 2MO8FET
By constructing npn bipolar all paulownia in the next stage, 2MO8FET with apparently large go can be constructed.
It is expected that the output load drive steering force of the complementary circuit will be significantly improved.

(発明が勢決しょうとする問題点) し〃為しながら、第2図の構造においてPMO8FET
 とバイポーラトランジスタを構造的に複合化して1次
占有面棟化するために、もし、103aと1031) 
’に一体化し九とすると第4図の工うになり、106c
 fエミッタ、103a kベース、104jL をコ
レクタとするmWpnpバイポーラトランジスタ(Qp
)か耕ら7?:に形成される。ここで、Qpのペースと
Qnのコレクタが、QpのコレクタとQnのベースか、
それぞれ共有するので、106c 。
(Problems that the invention is trying to solve) However, in the structure shown in Figure 2, PMO8FET
103a and 1031) in order to structurally combine the bipolar transistors and create a primary occupied surface.
'If you combine it with 9, you will get the shape shown in Figure 4, which is 106c.
mWpnp bipolar transistor (Qp) with f emitter, 103a k base, 104jL collector
) or 7? : is formed. Here, Qp's pace and Qn's collector are Qp's collector and Qn's base,
106c as they each share.

103i、 104a 、 105bで寄生pnpnサ
イリスタ構造となる。この構造では、Qnのコレクタ電
充に=9、Qpのベース−エミッタ間電圧を上昇さぜ、
Qpをオンさせ、バルクCMO8で問題となるラツテア
ッグ現象という欠点が軒ら友に生じる。
103i, 104a, and 105b form a parasitic pnpn thyristor structure. In this structure, the collector charge of Qn is =9, and the base-emitter voltage of Qp is increased.
When Qp is turned on, the drawback of the ratteag phenomenon, which is a problem in bulk CMO8, occurs.

このため、第2図において、npnノ(イボーラトラン
ジスタ(Qn)のペースと2MO8FETのバックゲー
ト層ヶ分岨丁°る必要かbす、その結果、非常に大きな
占有1ILI槓を必要とするという欠点があった。
For this reason, in Figure 2, it is necessary to divide the space of the npn transistor (Qn) and the back gate layer of the 2MO8FET, and as a result, a very large occupied 1ILI is required. There were drawbacks.

〔問題点f:ps決するための中段〕[Problem f: middle step to resolve PS]

本発明は、大占有面積化の欠点を除去するために提案さ
れたもので、MOS  FETとバイポーラトランジス
タラ禰遺的に一体化することを#似とし、ラツナアッグ
現象金生ずることなく、かつ低消費電力で尚負何駆動能
力の集積回路を高留厩化した半導体装置を提供すること
全目的とする。
The present invention was proposed in order to eliminate the disadvantage of increasing the occupying area, and by making it similar to integrating a MOS FET and a bipolar transistor, it is possible to eliminate the lattice effect and reduce consumption. The overall object of the present invention is to provide a semiconductor device that has a high-capacity integrated circuit that can be driven by electric power.

上記の目的を達成するため、本発明は′#、1の害′4
型の半導体基板を形成する第1の半導体層と、前8Cの
第10半都体層の主表面の一部領域に設けられ、かつ第
2の導電型のウェル領域全形成する第2の半導体層と、
前記り末2の半導体層の一部に形成され、第2の半導体
層の深さ二りも光分浅い第1の導電型の第3の半導体1
11と、前記の第30半都体層円の一部に形成された高
一度の第2の4−型の第4の半導体層と、前記の第3の
#P尋体層の題域二り前記の第20LP導体層憤域1c
延在し、かつ第1導篭型に対してにショットキ接合を肩
し、第241NL型に対してはオーミック接合を形成す
る第1の金嶋シリサイド−と、前記のbiの金橋シリサ
イド喚と15′I足り間隔t″離して削配り第2の半導
体層領域に形成された、第1の金橋シリサイド寝と四じ
第2の金糾シリサイド嗅と、前記の第1および第2の金
鞠シリサイド喚と0間に形成された薄い喰化嗅を有する
第1リゲートと、前記の第2の金槁シリサイド膜下■一
部に形成された高濃度の第2の4mWの第5の半導体層
と、前gピの第4(1)半導体階上に形成され、かつ第
1の金橋シリ丈イド喚と同様の第3の金属シリサイド喚
と上製え、前記の第1.第2.第3の金槁シリサイド映
を夫々第1、第2.第3の電極とすること七′#徴とす
る複合型半導体装置を発明の要旨とするものである。
In order to achieve the above object, the present invention
a first semiconductor layer forming a type semiconductor substrate; and a second semiconductor layer provided in a partial region of the main surface of the tenth semiconductive layer of the previous 8C and forming the entire well region of the second conductivity type. layer and
A third semiconductor 1 of a first conductivity type, which is formed in a part of the semiconductor layer of Part 2 and is shallower than the depth of the second semiconductor layer by an amount of light.
11, a second 4-type fourth semiconductor layer with a height formed in a part of the 30th half-body layer, and a second 4-type semiconductor layer of the third #P half-body layer. The above-mentioned 20th LP conductor layer region 1c
A first Kanajima silicide which extends and forms a Schottky junction for the first conductor type and forms an ohmic contact for the 241st NL type, and the Kanahashi silicide of the above bi. The first Kanabashi silicide layer, the second Kanamari silicide layer, and the first and second Kanamari silicide layers are formed in the second semiconductor layer region by cutting and distributing them at a sufficient distance t''. and 0, and a second 4 mW fifth semiconductor layer with a high concentration formed in a part under the second metal silicide film, A third metal silicide layer is formed on the fourth (1) semiconductor layer of the first metal silicide layer, and is formed on top of the third metal silicide layer similar to the first metal silicide layer. The gist of the invention is a composite semiconductor device in which silicide films are used as the first, second, and third electrodes, respectively.

さらに不発fy)は第1の導電域の半導体基板を形成す
る第1の半導体層と、前記のwJlの半導体層の主表面
の一部領域に設けらnlかつ第2V導電型のワエル領域
を形成する第2の半導体層と、i1]記の第2の半導体
層の一部に形成され、第2の半導体層の菌さエフも光分
浅い稟1の導1Laの第3の半導体層と、前記の楽30
半導体RIII内の一部に形成された高衾凝の第2の4
屯型の第4の半導体層と、前との第3の半導体層の電域
エリ前記の第2の半導体層領域に延在し、刀ムつ第1尋
嵐型に対してはショットキ接合を有し、第2導電型に対
してはオーミック接合を形成する第1の全編シリサイド
喚と、前Hごの第1の金槁シリサイド哄と庚足の間隔を
離して前記の#42の半導体層画成に形成された、第1
の金椙シリナイド映と同じ第2の金楓シリ丈イド膜と、
前記の第1および第2の金楓シリサイド寝とり閣に形成
された薄い酸化ag會有する第1のゲートと、前記の第
2の金楓シリサイド換下の一部に形成され7?:高濃度
の第2の尋屯型の第5の半導体層と、前記の第4の半導
体層上に形成され、刀λつ第1の金椙シリサ・fド膜と
同様の第3の金属7リサイド横とを備え、カ「dごの第
1゜第2.第3の金稙シリサイド換を夫々第1.第2、
第3の11L極とした半導体装置と、SΔごの第1の#
!−1Iipf4:層の王衣面の一部冒城に形成された
第1の害紙型の第6の半導体層と一前acの第6の半導
体層領域に用足の間隔′をIQItして形成され丸薬2
の導11L型の第7及び第8の半導体層と、前肥り第7
.第8の半導体層の上に、夫々第1の尋嵐型に対しては
ショットキ慟合金有し、第2の11亀型に対してはオー
ミック接合を形成する第4及び第5の金属シリサイド映
と、前記の第4及び第5の金属シリサイド映の間に薄い
酸化膜をMするゲートとを有する半導体装置全具備する
ことを特徴とする複合型半導体装#/Itを発明の要旨
とするものである。
Furthermore, the non-explosion fy) is formed in the first semiconductor layer forming the semiconductor substrate of the first conductive region and the Wael region of nl and second V conductivity type provided in a partial region of the main surface of the semiconductor layer of the above wJl. a second semiconductor layer formed on a part of the second semiconductor layer described in i1], and a third semiconductor layer of a conductive layer 1La having a diameter of 1 and a depth of 100 nm, Raku 30 mentioned above
The second 4 of the high-density structure formed in a part of the semiconductor RIII
The electric field area of the fourth semiconductor layer and the third semiconductor layer is extended to the second semiconductor layer region, and a Schottky junction is formed for the first and second semiconductor layer regions. For the second conductivity type, the first full-length silicide layer forming an ohmic contact and the #42 semiconductor layer are separated from each other by a distance between the first metal silicide layer and the first metal silicide layer. The first
A second Kinkaede siri-d film, which is the same as the Kanasu sili-d film,
A first gate having a thin oxidized AG layer formed on the first and second gold maple silicide bed, and a part of the second gold maple silicide layer 7? : A high-concentration second silica-type fifth semiconductor layer and a third metal similar to the first Kanazawa silica film formed on the fourth semiconductor layer. 7 silicide sides, and the 1st, 2nd, and 3rd Kinten silicides of each of the 1st, 2nd, and
A semiconductor device with a third 11L pole and a first #
! -1Iipf4: The distance between the first ac-shaped sixth semiconductor layer and the first ac sixth semiconductor layer region formed on a part of the surface of the layer is IQIt. formed pills 2
7th and 8th semiconductor layers of conductive type 11L, and
.. On the eighth semiconductor layer, fourth and fifth metal silicide films are formed, each having a Schottky alloy for the first Hironan type and forming an ohmic contact for the second 11-Turtle type. The gist of the invention is a composite semiconductor device #/It characterized by comprising: a semiconductor device having a thin oxide film M between the fourth and fifth metal silicide mirrors; It is.

欠に不発明の詳細な説明する。なお実施例は一つの例示
であって、本発明の梢神を逸脱しない範囲で、檀々I/
)変更あるいは改良上行いうることは1°うまでもない
A detailed explanation of the invention will be given below. It should be noted that the examples are merely illustrative, and the invention may be modified without departing from the spirit of the present invention.
) It goes without saying that there is nothing that can be done to change or improve it.

第1図は本発明の実施例を示すもので、図において、1
00はP型半導体基板(第1の半導体層〕、101はP
型半導体エビメキシャル層、102は高濃度のN型半導
体厘め込み+=、103はN型半導体ウェル(第2の半
導体層)、104a 、 104bは夫々P型半尋体層
(第2.第6の半導体層)、105a 、 105b 
、 105c 、 105dは夫々高娘度ON型半導体
層(m9.第5.第7.第8の半導体層)、1lla 
、 Lllb uゲート層、112a 、 112b。
FIG. 1 shows an embodiment of the present invention, and in the figure, 1
00 is a P-type semiconductor substrate (first semiconductor layer), 101 is P
102 is a high-concentration N-type semiconductor epimexial layer, 103 is an N-type semiconductor well (second semiconductor layer), and 104a and 104b are P-type semicircular layers (second and sixth semiconductor layers). ), 105a, 105b
, 105c, and 105d are high-density ON-type semiconductor layers (m9.5th, 7th, and 8th semiconductor layers), 1lla, respectively.
, Lllb u gate layer, 112a, 112b.

112c 、 112d 、 1L2e 、 H2f 
、 112gは夫々金属シリサイド映(第3.第1.第
2.第4.第5゜第6.第7の劃1を示す。
112c, 112d, 1L2e, H2f
, 112g indicate the metal silicide films (3rd, 1st, 2nd, 4th, 5th, 6th, and 7th section 1), respectively.

しη工してこの金属シリサイド暎セN型半導体に対して
はショットキ接合t% P型半導体に対してはオーミッ
ク注を示す特徴を有するものである。例えは、Pt3i
(白金シリサイド)は、バリア高さかN型シリコン#−
導体に対しては・0.85 eV、  P型シリコン半
導体に対しては、0.25 eVであるので、上述の特
徴を満足する。
However, when this metal silicide is used, it has the characteristic of exhibiting a Schottky junction t% for an N-type semiconductor and an ohmic junction for a P-type semiconductor. For example, Pt3i
(Platinum silicide) is barrier height or N-type silicon #-
Since it is 0.85 eV for a conductor and 0.25 eV for a P-type silicon semiconductor, the above-mentioned characteristics are satisfied.

そこで、第1図中、2MO8FETのソースeドレイン
を上δC1金栖シリサイドllI!112c 、 11
2bで形成することにLリショットキPMO8FETか
形成され、かつ、104aとのオーミックコンタクトも
直接とれる。ま友、半導体層103とのワエルコンタク
トにri高濃度N型牛纒体m 105bを介して金属シ
リサイド112eでとれる。さらにゲートダイレクトコ
ンタクトとして金属シリサイド112f 、 112g
 ’にソース−ドレインと自己壷金的に形成することに
エフ、低ゲート抵抗と縄va匿化が図れる。第1凶中、
縦型npnバイポーラトランジスタのエミッタ電極t!
112a、ベース嵐極は1121) 、  コレクタ電
極は112c、2MO8FETのソース電極は112c
 、  ゲート電極は1t2f 、  ドレイン電極は
112b 、バックゲート電極は112c″C″ある。
Therefore, in FIG. 1, the source e drain of the 2MO8FET is connected to the upper δC1 Kanasu silicide llI! 112c, 11
By forming 2b, an L-Lischottky PMO8FET is formed, and ohmic contact with 104a can also be made directly. A contact with the semiconductor layer 103 can be made with the metal silicide 112e via the RI high concentration N-type conductor m 105b. Furthermore, metal silicides 112f and 112g are used as gate direct contacts.
By forming the source and drain in a self-contained manner, low gate resistance and barrier shielding can be achieved. The first attack,
Emitter electrode of vertical npn bipolar transistor t!
112a, the base electrode is 1121), the collector electrode is 112c, and the source electrode of 2MO8FET is 112c.
, the gate electrode is 1t2f, the drain electrode is 112b, and the back gate electrode is 112c"C".

ここで、電極112cはnpnトランジスタのコレクタ
電極と2MO8FETのドレイン電極と共有するので、
低占有面積化が図れる。さらに、ショット千PMO8F
E’rk用いているので、第2図の従来構造に比べ、寄
生横WpnP)ランジスタのエミッタが形成されないた
めラツテアッグの問題がないのでワエル層103 をn
 p nバイポーラトランジスタと2MO8FETで分
離する必要がなく、高密度化が図れる。
Here, since the electrode 112c is shared with the collector electrode of the npn transistor and the drain electrode of the 2MO8FET,
The area occupied can be reduced. In addition, shot thousand PMO8F
Since E'rk is used, the emitter of the parasitic lateral WpnP) transistor is not formed compared to the conventional structure shown in FIG.
There is no need to separate the pn bipolar transistor and the 2MO8FET, allowing for higher density.

なお第1図の美施例においてはP MOS F’ET 
In addition, in the beautiful example shown in Fig. 1, P MOS F'ET
.

8MO8FET及びバイポーラトランジスタ金具備する
実施Nか示されているが、バイポーラトランジスタ及び
2MO8ITにエフ半導体装置を信成することも可能で
ある。
Although an implementation with 8MO8FETs and bipolar transistor hardware is shown, it is also possible to fabricate the F semiconductor device with bipolar transistors and 2MO8ITs.

(@明り効果) 以上、説明し7tJCうに、本発明に工れば小さな占有
面棟内にバイポーラトランジスタとMOSFETを構造
的に複合化でき、さらに、ラツテアッグ問題もないので
低消費電力で、高負荷駆動能力の*m回路′を高密度化
できる効果を有するものである。
(@Light effect) As explained above, if the present invention is implemented, bipolar transistors and MOSFETs can be structurally combined in a small occupied area.Furthermore, since there is no rattling problem, power consumption is low and high load is achieved. This has the effect of increasing the density of *m circuits with driving capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合型半導体装置の実施例、第2図は
従来の複合型半導体装置の餠面桶遺で1、左からnpn
バイポーラトランジスタ、 PMO8FET 、NMO
8ITを示す。第3図は従来の複合製半導体装置の回路
図、@4図は第2凶の構造的マージ化を因つ之断面倦造
を示す。 100°・・・・・・・・・・・・・・P型−P導体基
板101・・・・・・・・・・・・・・・P型半導体エ
ビ層102・・・・・・・・・・・・・・・扁@度N型
半導体埋め込み層103・・・・・・・・・・・・・・
・N型子導体クエル104a、 104b・・・・・・
P型半導体105a−105d・・・・・・高濃度N型
半導体層111JL、1llb  ・、  ・・・ ゲ
 − ト Jl−1128〜112g・・・・・・金楠
シリサイド襄(*極層)Qn  ・・・・・・・・・・
−・・・・npnバイポーラトランジスタMP・・・・
・・・・・・・・・・・PチャネルMO8PET特許出
願人 日本′#L信電話公社 第1図 第2F!2t 第3図 第4図
Figure 1 shows an embodiment of the composite semiconductor device of the present invention, and Figure 2 shows the remains of a conventional composite semiconductor device.
Bipolar transistor, PMO8FET, NMO
8IT is shown. FIG. 3 is a circuit diagram of a conventional composite semiconductor device, and FIG. 4 shows a cross-sectional fabrication resulting from the second problem of structural merging. 100°...P-type-P conductor substrate 101...P-type semiconductor shrimp layer 102... ...... Flattened N-type semiconductor buried layer 103 ......
・N-type child conductor quell 104a, 104b...
P-type semiconductors 105a-105d... High concentration N-type semiconductor layers 111JL, 1llb... Gates Jl-1128-112g... Gold camphor silicide layer (*polar layer) Qn・・・・・・・・・・・・
-...npn bipolar transistor MP...
・・・・・・・・・P-channel MO8PET patent applicant Japan'#L Telephone Public Corporation Figure 1 2F! 2t Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)第1の導電型の半導体基板を形成する第1の半導
体層と、前記の第1の半導体層の主表面の一部領域に設
けられ、かつ第2の導電型のウエル領域を形成する第2
の半導体層と、前記の第2の半導体層の一部に形成され
、第2の半導体層の深さより充分浅い第1の導電型の第
3の半導体層と、前記の第3の半導体層内の一部に形成
された高濃度の第2の導電型の第4の半導体層と、前記
の第3の半導体層の領域より前記の第2の半導体層領域
に延在し、かつ第1導電型に対してはショットキ接合を
有し、第2導電型に対してはオーミック接合を形成する
第1の金属シリサイド膜と、前記の第1の金属シリサイ
ド膜と所定の間隔を離して前記の第2の半導体層領域に
形成された、第1の金属シリサイド膜と同じ第2の金属
シリサイド膜と、前記の第1および第2の金属シリサイ
ド膜との間に形成された薄い酸化膜を有する第1のゲー
トと、前記の第2の金属シリサイド膜下の一部に形成さ
れた高濃度の第2の導電型の第5の半導体層と、前記の
第4の半導体層上に形成され、かつ第1の金属シリサイ
ド膜と同様の第3の金属シリサイド膜とを備え、前記の
第1、第2、第3の金属シリサイド膜を夫々第1、第2
、第3の電極とすることを特徴とする複合型半導体装置
(1) A first semiconductor layer forming a semiconductor substrate of a first conductivity type, and a well region of a second conductivity type provided in a partial region of the main surface of the first semiconductor layer. Second to do
a third semiconductor layer of the first conductivity type formed in a part of the second semiconductor layer and sufficiently shallower than the depth of the second semiconductor layer; a highly concentrated fourth semiconductor layer of a second conductivity type formed in a part of the semiconductor layer; and a first conductivity type extending from the third semiconductor layer region to the second semiconductor layer region A first metal silicide film having a Schottky junction with the type and forming an ohmic contact with the second conductivity type, and the first metal silicide film separated from the first metal silicide film by a predetermined distance. a second metal silicide film formed in the second semiconductor layer region, the second metal silicide film being the same as the first metal silicide film, and a thin oxide film formed between the first and second metal silicide films; 1 gate, a highly concentrated fifth semiconductor layer of a second conductivity type formed under the second metal silicide film, and a fifth semiconductor layer formed on the fourth semiconductor layer, and a third metal silicide film similar to the first metal silicide film;
, a third electrode.
(2)第2の導電型の第2の半導体層の底面部に、第2
の導電型の高濃度半導体層を埋め込んだことを特徴とす
る特許請求の範囲第1項記載の複合型半導体装置。
(2) A second semiconductor layer is placed on the bottom of the second semiconductor layer of the second conductivity type.
2. The composite semiconductor device according to claim 1, wherein a high concentration semiconductor layer of a conductivity type of is embedded.
(3)第1の導電型の半導体基板を形成する第1の半導
体層と、前記の第1の半導体層の主表面の一部領域に設
けられ、かつ第2の導電型のウェル領域を形成する第2
の半導体層と、前記の第2の半導体層の一部に形成され
、第2の半導体層の深さよりも充分浅い第1の導電型の
第3の半導体層と、前記の第3の半導体層内の一部に形
成された高濃度の第2の導電型の第4の半導体層と、前
記の第3の半導体層の領域より前記の第2の半導体層領
域に延在し、かつ第1導電型に対してはショットキ接合
を有し、第2導電型に対してはオーミック接合を形成す
る第1の金属シリサイド膜と、前記の第1の金属シリサ
イド膜と所定の間隔を離して前記の第2の半導体層領域
に形成された、第1の金属シリサイド膜と同じ第2の金
属シリサイド膜と、前記の第1および第2の金属シリサ
イド膜との間に形成された薄い酸化膜を有する第1のゲ
ートと、前記の第2の金属シリサイド膜下の一部に形成
された高濃度の第2の導電型の第5の半導体層と、前記
の第4の半導体層上に形成され、かつ第1の金属シリサ
イド膜と同様の第3の金属シリサイド膜とを備え、前記
の第1、第2、第3の金属シリサイド膜を夫々第1、第
2、第3の電極とした半導体装置と、前記の第1の半導
体層の主表面の一部領域に形成された第1の導電型の第
6の半導体層と、前記の第6の半導体層領域に所定の間
隔を離して形成された第2の導電型の第7及び第8の半
導体層と、前記の第7、第8の半導体層の上に、夫々第
1の導電型に対してはショットキ接合を有し、第2の導
電型に対してはオーミック接合を形成する第4及び第5
の金属シリサイド膜と、前記の第4及び第5の金属シリ
サイド膜の間に薄い酸化膜を有するゲートとを有する半
導体装置を具備することを特徴とする複合型半導体装置
(3) A first semiconductor layer forming a semiconductor substrate of a first conductivity type, and a well region provided in a partial region of the main surface of the first semiconductor layer and having a second conductivity type. Second to do
a third semiconductor layer of the first conductivity type formed in a part of the second semiconductor layer and sufficiently shallower than the depth of the second semiconductor layer, and the third semiconductor layer a highly concentrated fourth semiconductor layer of a second conductivity type formed in a part of the semiconductor layer; A first metal silicide film having a Schottky junction for the conductivity type and forming an ohmic contact for the second conductivity type; a second metal silicide film formed in the second semiconductor layer region, the same as the first metal silicide film, and a thin oxide film formed between the first and second metal silicide films. a first gate, a highly concentrated fifth semiconductor layer of a second conductivity type formed under a portion of the second metal silicide film, and a fifth semiconductor layer formed on the fourth semiconductor layer; and a third metal silicide film similar to the first metal silicide film, the semiconductor device having the first, second, and third metal silicide films as first, second, and third electrodes, respectively. and a sixth semiconductor layer of the first conductivity type formed in a partial region of the main surface of the first semiconductor layer, and a sixth semiconductor layer formed at a predetermined distance from the sixth semiconductor layer region. Schottky junctions are provided on the seventh and eighth semiconductor layers of the second conductivity type, respectively, and Schottky junctions are provided on the seventh and eighth semiconductor layers of the second conductivity type. For the conductivity type, the fourth and fifth
A composite semiconductor device comprising: a metal silicide film; and a gate having a thin oxide film between the fourth and fifth metal silicide films.
JP25745284A 1984-12-07 1984-12-07 Composite semiconductor device Expired - Lifetime JPH0666425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25745284A JPH0666425B2 (en) 1984-12-07 1984-12-07 Composite semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25745284A JPH0666425B2 (en) 1984-12-07 1984-12-07 Composite semiconductor device

Publications (2)

Publication Number Publication Date
JPS61136255A true JPS61136255A (en) 1986-06-24
JPH0666425B2 JPH0666425B2 (en) 1994-08-24

Family

ID=17306535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25745284A Expired - Lifetime JPH0666425B2 (en) 1984-12-07 1984-12-07 Composite semiconductor device

Country Status (1)

Country Link
JP (1) JPH0666425B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328060A (en) * 1986-07-04 1988-02-05 シ−メンス、アクチエンゲゼルシヤフト Integrated circuit and manufacture of the same
JPS63179564A (en) * 1987-01-21 1988-07-23 Mitsubishi Electric Corp Semiconductor integrated circuit device
EP0436297A2 (en) * 1989-12-04 1991-07-10 Raytheon Company Small BiCMOS transistor
US5128741A (en) * 1988-06-16 1992-07-07 Telefonaktiebolaget L M Ericsson Methods producing on a semi-conductor substructure a bipolar transistor, or a bipolar and a field effect transistor or a bipolar and a field effect transistor with a complementary field effect transistor and devices resulting from the methods
JPH05145023A (en) * 1991-11-22 1993-06-11 Mitsubishi Electric Corp Semiconductor device
EP0638935A1 (en) * 1993-08-13 1995-02-15 Texas Instruments Incorporated Method of making a BicMOS device
WO2000065656A1 (en) * 1999-04-27 2000-11-02 Infineon Technologies Ag Substrate contact for a conductive trough in a semiconductor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328060A (en) * 1986-07-04 1988-02-05 シ−メンス、アクチエンゲゼルシヤフト Integrated circuit and manufacture of the same
JPS63179564A (en) * 1987-01-21 1988-07-23 Mitsubishi Electric Corp Semiconductor integrated circuit device
US5128741A (en) * 1988-06-16 1992-07-07 Telefonaktiebolaget L M Ericsson Methods producing on a semi-conductor substructure a bipolar transistor, or a bipolar and a field effect transistor or a bipolar and a field effect transistor with a complementary field effect transistor and devices resulting from the methods
EP0436297A2 (en) * 1989-12-04 1991-07-10 Raytheon Company Small BiCMOS transistor
EP0436297A3 (en) * 1989-12-04 1992-06-17 Raytheon Company Small bicmos transistor
JPH05145023A (en) * 1991-11-22 1993-06-11 Mitsubishi Electric Corp Semiconductor device
EP0638935A1 (en) * 1993-08-13 1995-02-15 Texas Instruments Incorporated Method of making a BicMOS device
US5541134A (en) * 1993-08-13 1996-07-30 Texas Instruments Incorporated Bicmos process that supports merged devices
WO2000065656A1 (en) * 1999-04-27 2000-11-02 Infineon Technologies Ag Substrate contact for a conductive trough in a semiconductor

Also Published As

Publication number Publication date
JPH0666425B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
JP3174043B2 (en) Integrated circuit having latch protection circuit
JPS61136255A (en) Composite semiconductor device
JPS6211017Y2 (en)
JPH04267551A (en) Thin film transistor
JPS6362904B2 (en)
JPH0722182B2 (en) Complementary semiconductor device
JPS5944782B2 (en) semiconductor integrated circuit
JPH0369181B2 (en)
JPH03108766A (en) High breakdown strength transistor
JP3080800B2 (en) Semiconductor device
JP2926785B2 (en) Semiconductor device
JPH0630388B2 (en) Semiconductor device
JP3071819B2 (en) Insulated gate type semiconductor device
JPS62104068A (en) Semiconductor integrated circuit device
JPH0691264B2 (en) Method for manufacturing semiconductor device
JPS592363A (en) Complementary insulated gate field effect device
JPS5856262B2 (en) logic integrated circuit device
JPS61135148A (en) Semiconductor integrated circuit device
JPS6395658A (en) Semiconductor device
JPH0491455A (en) Gate array type lsi
JPS6395654A (en) Bicmos integrated circuit
JPH04206660A (en) Semiconductor device and manufacture thereof
JPS58158961A (en) Semiconductor integrated circuit device
JPH0286163A (en) Semiconductor device and its manufacture
JPS60249359A (en) Manufacture of semiconductor ic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term