JPS61133662A - Active matrix type thin film transistor substrate - Google Patents

Active matrix type thin film transistor substrate

Info

Publication number
JPS61133662A
JPS61133662A JP25403384A JP25403384A JPS61133662A JP S61133662 A JPS61133662 A JP S61133662A JP 25403384 A JP25403384 A JP 25403384A JP 25403384 A JP25403384 A JP 25403384A JP S61133662 A JPS61133662 A JP S61133662A
Authority
JP
Japan
Prior art keywords
gate
layer
wire
sin
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25403384A
Other languages
Japanese (ja)
Inventor
Takashi Enoki
榎木 隆
Osamu Takamatsu
修 高松
Atsushi Mizutome
敦 水留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25403384A priority Critical patent/JPS61133662A/en
Publication of JPS61133662A publication Critical patent/JPS61133662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the manufacturing yield rate of a liquid crystal display device, by using a double-layer structure of SiN:N and Al2O3 for inter-wire insulating layers between a gate and a drain and between a source and the drain, and providing a thickness of 200-500Angstrom for the Al2O3 film. CONSTITUTION:A double-layer structure of an SiN:H layer and an oxide insulating layer of a gate wire metal is used for inter-wire insulating films between a gate and a drain and between the gate and a source, in an active matrix type thin film transistor. In manufacturing the substrate on the side of a thin film transistor, an Al gate wire 2 is patterned on an insulating substrate comprising glass and the like, and an Al2O3 insulating film 9 is formed on the surface by anodic oxidation. Then, a picture element electrode 3 is formed by a transparent conducting film. A gate insulating layer 7 made of SiN:H, an amorphous silicon semiconductor layer 4 and an n<+> amorphous silicon layer 8 are deposited by a plasma CVD method. Patterning is performed in a specified shape. Finally a source wire 5 and a drain wire 6 are formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アクティブマトリクス型(以下、A、M型と
称す)の薄膜トランジスタ基板(以下、TPT基板と称
す)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an active matrix type (hereinafter referred to as A or M type) thin film transistor substrate (hereinafter referred to as TPT substrate).

[従来の技術] 従来、A、M型TFT基板は、ガラス等の絶縁基板上に
Au、Ta、Mo、Cr、N1Cr−−−一等でゲート
線をパターニングし、次に酸化インジニウム−スズ酸化
物膜(以下、ITOと称す)等の透明導電膜で画素を形
成し、さらに絶縁層としてSiN:H膜、半導体層とし
て、アモルファスシリコン層、ソース、ドレイン電極と
オーミックコンタクトをとるためのn+7モル7779
937層を堆積し、通常のホトリソプロセスにより所定
の形状にパターニングし、最後にソース線、ドレイン線
をAll、Ta、Mo、Cr、NiCr等で形成すると
いう工程で製造される(下ゲートスタガー型TPT)。
[Prior art] Conventionally, A and M type TFT substrates are produced by patterning a gate line with Au, Ta, Mo, Cr, N1Cr, etc. on an insulating substrate such as glass, and then patterning a gate line with indium oxide-tin oxide. A pixel is formed with a transparent conductive film such as a transparent conductive film (hereinafter referred to as ITO), an SiN:H film is used as an insulating layer, an amorphous silicon layer is used as a semiconductor layer, and n+7 moles are used to make ohmic contact with the source and drain electrodes. 7779
937 layers are deposited, patterned into a predetermined shape by a normal photolithography process, and finally source lines and drain lines are formed using Al, Ta, Mo, Cr, NiCr, etc. (lower gate stagger). type TPT).

この場合、SiN:H層は、ゲート絶縁層とソース、ゲ
ート間の線間絶縁層を兼ねている。プラズマCVD法に
より形成したSiN:H膜は低温(〜250℃)で形成
でき、5i02等他の無機絶縁膜に比べて比誘電率が大
きい等の特長があり、TPTのゲート絶縁膜として用い
ると極めて良好なトランジスタ特性を得ることができる
。しかし、SiN:H膜にピンホール等が存在するとソ
ースルゲート間又はドレイン−ゲート間のショートの原
因となり表示パネル上にはライン欠陥として現われTP
T基板の欠陥の原因となっていた。
In this case, the SiN:H layer also serves as a gate insulating layer and an interline insulating layer between the source and gate. The SiN:H film formed by the plasma CVD method can be formed at low temperatures (~250°C) and has features such as a higher relative permittivity than other inorganic insulating films such as 5i02, so it can be used as a gate insulating film for TPT. Extremely good transistor characteristics can be obtained. However, if there are pinholes or the like in the SiN:H film, it may cause a source-to-gate or drain-to-gate short, which appears as a line defect on the display panel.
This caused defects in the T-substrate.

近年では、TPTの大面積、高精細化に伴い、TPTの
数及びソース線、ゲート線の引き出し線数が増大し、ソ
ース線とゲート線、又はドレイン線とゲート線がSiN
:H膜等の絶縁層を介して重なり合う部分の数が多くな
る。このためSiN:H膜等の絶縁層に絶縁不良がある
とTPT基板の製造歩留りが著しく低下する。
In recent years, as TPTs have become larger in area and higher in definition, the number of TPTs and the number of source lines and gate lines have increased.
:The number of overlapping parts increases with an insulating layer such as an H film interposed therebetween. Therefore, if there is an insulation defect in an insulating layer such as a SiN:H film, the manufacturing yield of TPT substrates will be significantly reduced.

[発明が解決しようとする問題点] 本発明は、SiN:H膜等の絶縁層のピンホールに起因
するTPT基板の不良を著しく低減させ、液晶表示装置
の製造歩留りを向上することを目的とする。
[Problems to be Solved by the Invention] The purpose of the present invention is to significantly reduce defects in TPT substrates caused by pinholes in insulating layers such as SiN:H films, and to improve manufacturing yields of liquid crystal display devices. do.

[問題点を解決するための手段及び作用]本発明者らは
、これらの問題を解決するために種々研究を重ね、絶縁
層をSiN:H膜とともに、ゲート線金属表面の酸化層
と、絶縁層を二層構成にすることによって目的を達し得
ることを見出して本発明をなしたものである。すなわち
、本発明はゲートル194フ間及びゲートルソース間の
線間絶縁層をSiN:H層とゲート線金属の酸化絶縁層
の二層構成としたアクティブ・マトリクス型薄膜トラン
ジスタ基板である。
[Means and effects for solving the problems] In order to solve these problems, the inventors of the present invention have conducted various studies, and have developed an insulating layer with a SiN:H film, an oxide layer on the gate line metal surface, and an insulating layer. The present invention was made based on the discovery that the object could be achieved by forming the layers into a two-layer structure. That is, the present invention is an active matrix type thin film transistor substrate in which the line insulating layer between the gaiters 194 and between the gaiter source has a two-layer structure of a SiN:H layer and an oxide insulating layer of gate line metal.

[実施例] 次に、添付の図面に基づいて本発明の詳細な説明する。[Example] Next, the present invention will be described in detail based on the accompanying drawings.

第1図は、本発明のA、M型TFT基板の一実施例を示
す平面図である。1はガラス等のTFT側絶縁基板、2
は酸化処理可能な金属(たとえばAM、Ta、Mo、C
r、NiCr等)を基板l上にパターニングしたゲート
線、3はITO等の画素電極、4はアモルファス・シリ
コン等の半導体層、5はソース線、6はドレイン線であ
る。第2図(a)、第2図(b)はそれぞれ第1図のA
−A ”断面、B−B ”断面を示した断面図である。
FIG. 1 is a plan view showing an embodiment of the A and M type TFT substrates of the present invention. 1 is a TFT side insulating substrate such as glass, 2
is a metal that can be oxidized (e.g. AM, Ta, Mo, C
3 is a pixel electrode such as ITO, 4 is a semiconductor layer such as amorphous silicon, 5 is a source line, and 6 is a drain line. Figures 2(a) and 2(b) are A of Figure 1, respectively.
-A" cross-section and B-B" cross-section.

7はプラズマCVD法を用いて形成したSiN:H層等
のゲート絶縁層、8はn1アモルファスシリコン層、9
はゲート線2の表面をたとえば陽極酸化して得られた絶
縁層である。
7 is a gate insulating layer such as a SiN:H layer formed using a plasma CVD method; 8 is an n1 amorphous silicon layer; 9
is an insulating layer obtained by, for example, anodic oxidation of the surface of the gate line 2.

以下、ゲート線としてAA、を用いた場合について説明
する。第3図(a)〜(e)は絶縁層としてプラズマC
VD  SiN:H膜とA文陽極酸化膜を用いた場合の
TFT側庶板の製造工程の一例を示したものである。ガ
ラス等の絶縁基板1上にA4fLゲート線2をパターニ
ングし、表面にA文。
The case where AA is used as the gate line will be described below. Figures 3(a) to (e) show plasma C as an insulating layer.
This figure shows an example of the manufacturing process of a TFT side plate using a VD SiN:H film and an A-pattern anodic oxide film. A4fL gate line 2 is patterned on an insulating substrate 1 such as glass, and A pattern is formed on the surface.

03絶縁層9を陽極酸化により形成する。次に画素電極
3をITO等の透明導電膜で形成し、さらにプラズマC
VD法を用いてSiN:Hのゲート絶縁層7、アモルフ
ァスシリコンの半導体層4、n+アモルファスシリコン
層8を堆積し、通常のホトリソ・プロセスにより所定の
形状にパターニングし、最後にソース線5、ドレイン線
6を形成する。
03 Insulating layer 9 is formed by anodic oxidation. Next, the pixel electrode 3 is formed of a transparent conductive film such as ITO, and then plasma
A gate insulating layer 7 of SiN:H, a semiconductor layer 4 of amorphous silicon, and an n+ amorphous silicon layer 8 are deposited using the VD method, and patterned into a predetermined shape using a normal photolithography process.Finally, a source line 5, a drain Line 6 is formed.

AJIゲート線の酸化処理は、陽極酸化法によることが
好ましく第4図に示した様にゲート電極パターニング後
、ゲート配線取出し部分を除いて電解液中に浸し、グー
)AJIを陽極として、所定の化成電圧を一定時間保ち
陽極酸化を行なう。電解液としては、ホウ酸アンモニウ
ム(NH4・B505)1%水溶液あるいは、酒石酸(
CH2(OH)2  ・ (COOH)2 )3%水溶
液をアンモニアでPH6〜7に調整した溶液1に対しプ
ロピレングリコール(CH3CH(OH) CH20H
)を3の割合で混合した溶液を用いた。上記の方法で形
成したA l 203は、ち密でピンホールのない無孔
質な膜であり、又、All、03の膜厚が化成電圧に比
例することがら膜厚制御が容易である等の特長がある。
It is preferable to oxidize the AJI gate line by an anodic oxidation method, as shown in Figure 4, after patterning the gate electrode, immerse it in an electrolytic solution except for the gate line lead-out part, and then oxidize the AJI gate line in a predetermined manner using the AJI as an anode. The anodizing voltage is maintained for a certain period of time to perform anodic oxidation. As the electrolyte, a 1% aqueous solution of ammonium borate (NH4/B505) or tartaric acid (
Propylene glycol (CH3CH(OH) CH20H
) was used. Al 203 formed by the above method is a dense, non-porous film without pinholes, and since the film thickness of All, 03 is proportional to the formation voltage, the film thickness can be easily controlled. It has its features.

第1表に絶縁層としてSiN:H及び陽極酸化A l 
203二層構造を用いた場合と従来例のSiN:Hのみ
の場合のショート発生確率を実際にTPT基板を作成し
て几較した結果を示す。第1表から明らかなようにA 
l 203を200Å以上形成すればソースルゲート間
又はドレイン−ゲート間のショート発生確率が大巾に減
少する。又、AlzO3の膜厚が約500Å以下であれ
ば、従来例の場合とトランジスタ特性にほとんど差がな
いことがわかった。
Table 1 shows SiN:H and anodized Al as an insulating layer.
The results of actually fabricating TPT substrates and comparing the probability of short circuit occurrence when using the 203 double-layer structure and when only SiN:H is used in the conventional example are shown below. As is clear from Table 1, A
If the thickness of l 203 is 200 Å or more, the probability of short circuit occurring between the source and the gate or between the drain and the gate is greatly reduced. Furthermore, it has been found that when the AlzO3 film thickness is approximately 500 Å or less, there is almost no difference in transistor characteristics from that of the conventional example.

又、他の実施例として、すべてのゲート線が短絡する様
にパターニングしておき、駆動回路との接続部等陽極酸
化膜が不要な部分をフォトレジスト(例えば:AZ−1
350J)で覆って陽極酸化を行なう方法もある。短絡
したゲート線は、TFT基板完成後にレーザー等によっ
て切断すればよい。
As another example, all the gate lines are patterned so as to be short-circuited, and portions where an anodic oxide film is not needed, such as the connection with the drive circuit, are covered with photoresist (for example: AZ-1).
There is also a method of performing anodic oxidation by covering with 350 J). The short-circuited gate line may be cut by a laser or the like after the TFT substrate is completed.

[発明の効果] 以上説明したように、本発明は、ゲート〜ドレイン間及
びソースルゲート間の線間絶縁層をSiN:H及びA文
203の二層構造とし、A文203の膜厚を200〜5
00AとしたのでTPT特性を損なわずにマトリクス型
液晶表示装置の製造歩留りを飛躍的に向上させることが
できる。
[Effects of the Invention] As explained above, the present invention has a two-layer structure of SiN:H and the A pattern 203 for the line insulating layer between the gate and the drain and between the source and gate, and the film thickness of the A pattern 203 is reduced. 200-5
00A, it is possible to dramatically improve the manufacturing yield of matrix type liquid crystal display devices without impairing the TPT characteristics.

また、絶縁層の構成はSiN:H及びA文203に限ら
ず無機絶縁膜と金属の酸化膜の組合せであれば、本発明
の範囲に含まれることは言うまでもない。
Furthermore, it goes without saying that the structure of the insulating layer is not limited to SiN:H and A-203, but any combination of an inorganic insulating film and a metal oxide film is within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のアクティブ・マトリクス型薄膜トラ
ンジスタ基板の一実施例を示す平面図、第2図(a)、
第2図(b)は、それぞれ第1図のA−A ’断面、B
−B”断面を示す断面図、第3図は、本発明薄膜トラン
ジスタ基板の製造工程の一例を示す断面図、第4図は、
陽極酸化装置を説明する説明図、第1表はショート発生
確率の比較例を示す表である。 1・・・・・・TFT側絶縁基板 2・・・・・・ゲー
ト線3・・・・・・画素電極     4・・・・・・
半導体層5・・・・・・ソース線     6…・・・
ドレイン線7・・・・・・ゲート絶縁層 8・・・・・・n+7モル7779917層9・・・・
・・絶縁層 特許出願人   キャノン株式会社 代  理  人     豊   1)  善   雄
第3図 (α) 手続補正書 昭和60年4月22 日
FIG. 1 is a plan view showing an embodiment of an active matrix thin film transistor substrate of the present invention, FIG. 2(a),
Figure 2(b) is the cross section AA' and B in Figure 1, respectively.
3 is a sectional view showing an example of the manufacturing process of the thin film transistor substrate of the present invention, and FIG.
An explanatory diagram illustrating an anodizing device and Table 1 are tables showing comparative examples of short-circuit occurrence probabilities. 1...TFT side insulating substrate 2...Gate line 3...Pixel electrode 4...
Semiconductor layer 5...Source line 6...
Drain line 7... Gate insulating layer 8... n+7 moles 7779917 layer 9...
... Insulating layer patent applicant Canon Co., Ltd. Agent Yutaka 1) Yoshio Figure 3 (α) Procedural amendment April 22, 1985

Claims (1)

【特許請求の範囲】[Claims]  ゲート〜ドレイン間及びゲート〜ソース間の線間絶縁
層をSiN:H膜とゲート線金属の酸化層又は酸化絶縁
層の二層構成とすることを特徴とするアクティブマトリ
クス型薄膜トランジスタ基板。
An active matrix thin film transistor substrate characterized in that the line insulating layer between the gate and the drain and between the gate and the source has a two-layer structure of an SiN:H film and an oxide layer of a gate line metal or an oxide insulating layer.
JP25403384A 1984-12-03 1984-12-03 Active matrix type thin film transistor substrate Pending JPS61133662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25403384A JPS61133662A (en) 1984-12-03 1984-12-03 Active matrix type thin film transistor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25403384A JPS61133662A (en) 1984-12-03 1984-12-03 Active matrix type thin film transistor substrate

Publications (1)

Publication Number Publication Date
JPS61133662A true JPS61133662A (en) 1986-06-20

Family

ID=17259301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25403384A Pending JPS61133662A (en) 1984-12-03 1984-12-03 Active matrix type thin film transistor substrate

Country Status (1)

Country Link
JP (1) JPS61133662A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859617A (en) * 1987-06-09 1989-08-22 Oki Electric Industry Co., Ltd. Thin-film transistor fabrication process
JPH0285826A (en) * 1988-09-22 1990-03-27 Hitachi Ltd Display panel
JPH02214143A (en) * 1989-02-15 1990-08-27 Hitachi Ltd Thin-film electronic circuit
WO1991002999A1 (en) * 1989-08-14 1991-03-07 Hitachi, Ltd. Thin-film transistor substrate, method of producing the same, liquid crystal display panel, and liquid crystal display device
JPH05211335A (en) * 1992-01-30 1993-08-20 Nec Corp Semiconductor device and manufacturing method thereof
JPH07245403A (en) * 1994-03-03 1995-09-19 Matsushita Electric Ind Co Ltd Metal wiring, thin-film transistor, and tft liquid crystal display
US6887746B2 (en) 1992-03-25 2005-05-03 Semiconductor Energy Lab Insulated gate field effect transistor and method for forming the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859617A (en) * 1987-06-09 1989-08-22 Oki Electric Industry Co., Ltd. Thin-film transistor fabrication process
JPH0285826A (en) * 1988-09-22 1990-03-27 Hitachi Ltd Display panel
JPH02214143A (en) * 1989-02-15 1990-08-27 Hitachi Ltd Thin-film electronic circuit
WO1991002999A1 (en) * 1989-08-14 1991-03-07 Hitachi, Ltd. Thin-film transistor substrate, method of producing the same, liquid crystal display panel, and liquid crystal display device
US5359206A (en) * 1989-08-14 1994-10-25 Hitachi, Ltd. Thin film transistor substrate, liquid crystal display panel and liquid crystal display equipment
US5672523A (en) * 1989-08-14 1997-09-30 Hitachi, Ltd. Thin film transistor substrate, manufacturing method thereof, liquid crystal display panel and liquid crystal display equipment
US5889573A (en) * 1989-08-14 1999-03-30 Hitachi, Ltd. Thin film transistor substrate, manufacturing method thereof, liquid crystal display panel and liquid crystal display equipment
JPH05211335A (en) * 1992-01-30 1993-08-20 Nec Corp Semiconductor device and manufacturing method thereof
US6887746B2 (en) 1992-03-25 2005-05-03 Semiconductor Energy Lab Insulated gate field effect transistor and method for forming the same
JPH07245403A (en) * 1994-03-03 1995-09-19 Matsushita Electric Ind Co Ltd Metal wiring, thin-film transistor, and tft liquid crystal display

Similar Documents

Publication Publication Date Title
JP4169896B2 (en) Thin film transistor and manufacturing method thereof
JPH0242761A (en) Manufacture of active matrix substrate
JPS62171160A (en) Thin film transistor
US5194136A (en) Process for making a display panel
KR0171648B1 (en) Thin film device and method of producing the same
JPS61133662A (en) Active matrix type thin film transistor substrate
JPH1048664A (en) Liquid crystal display device and its production
JPH0580650B2 (en)
KR0161325B1 (en) Thin film transistor array and liquid crystal display device
JP3094610B2 (en) Method for manufacturing thin film transistor
JPH11119240A (en) Active matrix substrate and liquid crystal display device using the substrate
JP2503615B2 (en) Thin film transistor and manufacturing method thereof
JPH01185522A (en) Substrate for driving display device
JPH06160905A (en) Liquid crystal display device and its production
JP2752983B2 (en) Method of manufacturing thin film transistor for liquid crystal display
JPH10170951A (en) Production of liquid crystal display device
JPH0815733A (en) Thin film transistor panel and its production
JPH01219721A (en) Metal insulator construction and liquid crystal display device
JP3599174B2 (en) Thin film transistor panel and method of manufacturing the same
JPH05150268A (en) Production of thin-film transistor panel
JPH1090717A (en) Active matrix type liquid crystal display device and its manufacture
JP3104356B2 (en) Thin film transistor panel and method of manufacturing the same
JPH04106938A (en) Thin film field-effect transistor
JPH05152327A (en) Manufacturing method of thin film transistor panel
KR20020028014A (en) Method for fabricating tft-lcd