JPS61124162A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61124162A
JPS61124162A JP24530384A JP24530384A JPS61124162A JP S61124162 A JPS61124162 A JP S61124162A JP 24530384 A JP24530384 A JP 24530384A JP 24530384 A JP24530384 A JP 24530384A JP S61124162 A JPS61124162 A JP S61124162A
Authority
JP
Japan
Prior art keywords
resistor
coated
wiring
insulating film
wiring metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24530384A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shiraki
弘之 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24530384A priority Critical patent/JPS61124162A/en
Publication of JPS61124162A publication Critical patent/JPS61124162A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To dissipate heat from upper surface by connecting one electrode wiring metal of a resistor coated with an insulating film with wiring metal having high area space factor, and coating the wiring metal through an insulating film widely on the resistor. CONSTITUTION:A resistor 1 is obtained by a polycrystalline silicon of layer resistor 200OMEGA/square, and thermally oxidized at the bottom at a silicon substrate 6, coated with a silicon dioxide film 5 of 1.6mum thick, and coated at the upper and side surfaces with vapor phase grown silicon dioxide film 2 of 0.3mum thick. Electrode wirings 3 are connected with one end of the resistor 1, extended to one side to form an electric circuit, the resistor 1 is simultaneously coated widely, electrode wirings are connected with power source wirings or ground wiring having large area space factor in a semiconductor integrated circuit device. Since both upper and lower surfaces are heat sink structure, local high temperature rise in one device can be replaced by the entire low temperature rise in the device. Thus, long lifetime of the wiring life inversely proportional to the temperature in the device can be performed.

Description

【発明の詳細な説明】 (技術分野) 本発明は、半導体集積回路装置に関するものでアシ、特
に抵抗体の放熱に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor integrated circuit device, and particularly to heat dissipation from a resistor.

(従来技術) 従来、半導体集積回路装置においては、高速化の目的か
ら寄生容量の小さい抵抗体として、すべての面が二酸化
硅素等の絶縁膜で囲まれた多結晶硅素(ポリシリコン)
が用いられている。ところが、多結晶硅素を囲むこの絶
縁膜は、絶縁物でおるが故に熱伝導率が小さく、従って
当該抵抗体に電流を流すことによって発生する熱の放散
を妨げている。更に、この放熱は、半導体集積回路に使
われる抵抗体特有の構造によっても、制限されている。
(Prior art) Conventionally, in semiconductor integrated circuit devices, polycrystalline silicon (polysilicon), which is surrounded on all sides by an insulating film such as silicon dioxide, has been used as a resistor with low parasitic capacitance for the purpose of increasing speed.
is used. However, since the insulating film surrounding the polycrystalline silicon is an insulator, it has a low thermal conductivity, and therefore prevents the dissipation of heat generated by passing a current through the resistor. Furthermore, this heat dissipation is also limited by the unique structure of resistors used in semiconductor integrated circuits.

つまり、当該抵抗体は平板状であるのが一般的であシ、
その表面積から考えると、平板の上面と底面とから、は
とんどの熱が放散されなければならない。ところが、底
面側の絶縁膜(この絶縁膜は熱伝導率が大きい硅素基板
に接している。)からのみ放熱が行なわれ、上面側の絶
縁膜(この絶縁膜は熱伝導率が非常に小さい、空気等の
気体に接している。)からの放熱はほとんど行なわれな
い構造に森っている。
In other words, the resistor is generally flat,
Considering its surface area, most of the heat must be dissipated from the top and bottom surfaces of the plate. However, heat is dissipated only from the insulating film on the bottom side (this insulating film is in contact with the silicon substrate, which has a high thermal conductivity), and the heat is radiated only from the insulating film on the top side (this insulating film has a very low thermal conductivity). The structure is such that almost no heat is dissipated from the air (in contact with gases such as air).

(発明の目的) 本発明の目的は、多結晶抵抗体の底面のみならず上面か
らも放熱可能な半導体集積回路装置の構造を提供するこ
とにある。
(Object of the Invention) An object of the present invention is to provide a structure of a semiconductor integrated circuit device that can dissipate heat not only from the bottom surface of a polycrystalline resistor but also from the top surface.

(発明の構成) 本発明は、絶縁膜で被覆された抵抗体の一方の電極配線
金属が、その抵抗体を使用している半導体集積回路装置
における面積占有率の高い配線(例えば電源配線)金属
に接続されておシ、かつその配線金属が絶縁膜を介して
、当該抵抗体を広く被覆している構造によって構成され
る。
(Structure of the Invention) The present invention provides that one electrode wiring metal of a resistor covered with an insulating film is a metal wiring (for example, a power supply wiring) that occupies a high area in a semiconductor integrated circuit device using the resistor. The resistor is connected to the resistor, and its wiring metal widely covers the resistor through an insulating film.

(発明の作用) 本発明によれば、抵抗体の上面は配線金属に覆われてい
る。一般に金属は熱伝導率が大きく、シかも当該配線金
属は半導体集積回路装置内に広い領域を占める配線金属
に接続されているため熱容量も大きい。従って、抵抗体
底面からの従来通りの放熱に加えて、抵抗体上面からの
放熱も可能になる。
(Action of the invention) According to the invention, the upper surface of the resistor is covered with wiring metal. In general, metal has a high thermal conductivity, and since the metal wiring is connected to a metal wiring that occupies a large area within a semiconductor integrated circuit device, it also has a large heat capacity. Therefore, in addition to conventional heat radiation from the bottom surface of the resistor, heat radiation from the top surface of the resistor is also possible.

(発明の効果) 多結晶硅素抵抗体の上面と下面の双方から放熱可能な構
造のため、電源を流すことによる抵抗体の温度上昇を低
くおさえることができる。つまり、一つの半導体集積回
路装置内における局所的な高い温度上昇を当該装置内の
全域的な低い温度上昇に置きかえることができる。その
結果として、装置内温度に反比例する配線寿命の長寿命
化が可能になる。
(Effects of the Invention) Since the polycrystalline silicon resistor has a structure that allows heat to be dissipated from both the upper and lower surfaces, the temperature rise in the resistor due to power supply can be suppressed to a low level. In other words, a locally high temperature rise within one semiconductor integrated circuit device can be replaced with a low temperature rise throughout the entire area within the device. As a result, it becomes possible to extend the life of the wiring, which is inversely proportional to the temperature inside the device.

(実施例) 以下に本発明の実施例を、図面を用いて説明する。抵抗
体1は層抵抗200Ω/口の多結晶硅素である。この抵
抗体の底面は硅素基板6を熱酸化して得られた、厚さ1
.6μmの二酸化硅素膜5に被着しておシ、−力紙抗体
の上面および側面は、厚さ0.3μmの気相成長二酸化
硅素膜2に被着している。
(Example) Examples of the present invention will be described below with reference to the drawings. The resistor 1 is made of polycrystalline silicon with a layer resistance of 200 Ω/hole. The bottom surface of this resistor has a thickness of 1 mm obtained by thermally oxidizing the silicon substrate 6.
.. The top and side surfaces of the paper antibody were deposited on a 6 μm thick silicon dioxide film 5, and a 0.3 μm thick vapor grown silicon dioxide film 2 was deposited on the paper antibody.

電極配線3は抵抗体1の一端に接続し一方側(図面で右
側)に延在して電気的回路を形成すると同時に、図示す
るように抵抗体1を広く覆っており、かつ、この電極配
線は半導体集積回路装置内における面積占有率の大きい
電源配線または接地配線に接続されておシ、材質はアル
ミニウムである。
The electrode wiring 3 is connected to one end of the resistor 1 and extends to one side (right side in the drawing) to form an electrical circuit, and at the same time widely covers the resistor 1 as shown in the figure. is connected to the power supply wiring or ground wiring which occupies a large area within the semiconductor integrated circuit device, and is made of aluminum.

電極配線4は抵抗体1の他端に接続され他方側(図面で
左側)に延在している。
The electrode wiring 4 is connected to the other end of the resistor 1 and extends to the other side (left side in the drawing).

硅素の熱伝導率は1.5W/ (cm −d e g 
)、アルミニウムの熱伝導率は2.38W/(cm−d
eg)、空気の熱伝導率は2.6X10 ’W/(Cm
−dr+g)であることを考えると、アルミニウムから
なる電極配線金属3の存在は抵抗体の発熱の放熱に大き
く寄与していることがわかる。これらの熱伝導率と、二
酸化硅素の熱抵抗1.02W/ (cm−d e g 
)、抵抗幅10μm1抵抗に流す電流値を5mAとして
、電極配線金属3の有無による抵抗体の上昇温度を計算
すると各々80’e、12.5°Cとなり、実際に電極
配線金属3の放熱に対する寄与を確認することができる
The thermal conductivity of silicon is 1.5W/ (cm - de g
), the thermal conductivity of aluminum is 2.38W/(cm-d
eg), the thermal conductivity of air is 2.6X10'W/(Cm
-dr+g), it can be seen that the presence of the electrode wiring metal 3 made of aluminum greatly contributes to the heat dissipation of the heat generated by the resistor. These thermal conductivities and the thermal resistance of silicon dioxide 1.02W/ (cm-d e g
), the resistance width is 10 μm, and the current value flowing through one resistor is 5 mA, and the temperature rise of the resistor depending on the presence or absence of the electrode wiring metal 3 is calculated to be 80'e and 12.5°C, respectively. Contribution can be confirmed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断面概略図である。 1・・・・・・抵抗体(多結晶硅素)、2・・・・・・
絶縁体(気相成長二酸化硅素)、3・・・・・・半導体
集積回路装置内における面積占有率の大きい配線金属に
接続される電極配線金属(アルミニウム)、4・・・・
・・電極配線金属(アルミニウム)、5・・・・・・絶
縁体(熱酸化二酸化硅素)、6・・・・・・半導体基板
(硅素)。 第 l 図
FIG. 1 is a schematic cross-sectional view of an embodiment of the invention. 1...Resistor (polycrystalline silicon), 2...
Insulator (vapor-phase growth silicon dioxide), 3... Electrode wiring metal (aluminum) connected to wiring metal that occupies a large area in a semiconductor integrated circuit device, 4...
... Electrode wiring metal (aluminum), 5 ... Insulator (thermal oxidized silicon dioxide), 6 ... Semiconductor substrate (silicon). Figure l

Claims (1)

【特許請求の範囲】[Claims]  絶縁膜で被覆された抵抗体に接続された少なくとも一
方の電極配線金属が該抵抗体を広く被覆するごとく絶縁
膜を介して該抵抗体上を延在していることを特徴とする
半導体集積回路装置。
A semiconductor integrated circuit characterized in that at least one electrode wiring metal connected to a resistor covered with an insulating film extends over the resistor through the insulating film so as to broadly cover the resistor. Device.
JP24530384A 1984-11-20 1984-11-20 Semiconductor device Pending JPS61124162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24530384A JPS61124162A (en) 1984-11-20 1984-11-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24530384A JPS61124162A (en) 1984-11-20 1984-11-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61124162A true JPS61124162A (en) 1986-06-11

Family

ID=17131664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24530384A Pending JPS61124162A (en) 1984-11-20 1984-11-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61124162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214048A (en) * 1988-02-23 1989-08-28 Fujitsu Ltd Semiconductor integrated device
CN100369250C (en) * 2003-09-02 2008-02-13 罗姆股份有限公司 Semiconductor integrated circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497997A (en) * 1972-05-12 1974-01-24
JPS5080787A (en) * 1973-11-14 1975-07-01
JPS58143561A (en) * 1982-02-22 1983-08-26 Toshiba Corp Semiconductor device
JPS59143358A (en) * 1983-02-03 1984-08-16 Seiko Instr & Electronics Ltd Semiconductor thin film resistance element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497997A (en) * 1972-05-12 1974-01-24
JPS5080787A (en) * 1973-11-14 1975-07-01
JPS58143561A (en) * 1982-02-22 1983-08-26 Toshiba Corp Semiconductor device
JPS59143358A (en) * 1983-02-03 1984-08-16 Seiko Instr & Electronics Ltd Semiconductor thin film resistance element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214048A (en) * 1988-02-23 1989-08-28 Fujitsu Ltd Semiconductor integrated device
CN100369250C (en) * 2003-09-02 2008-02-13 罗姆股份有限公司 Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US4700273A (en) Circuit assembly with semiconductor expansion matched thermal path
JPH05129733A (en) Sub-mount type laser
US4951118A (en) Semiconductor device having resistor structure
JPS61124162A (en) Semiconductor device
JPH01214048A (en) Semiconductor integrated device
JPH03171657A (en) Semiconductor device
JPS62199047A (en) Polycrystalline silicon resistor
JPS62108567A (en) Semiconductor integrated circuit device
JPH0642357Y2 (en) Optical semiconductor device
JPH03274799A (en) Metallic insulating substrate of semiconductor device
US20230317543A1 (en) Structure, system and method for a temperature regulated electrical device
JPS6144450Y2 (en)
JPH03248458A (en) Polysilicon resistor for semiconductor integrated circuit
JPH01196157A (en) Semiconductor device
JPH0636592Y2 (en) Hybrid integrated circuit device
JP2005197357A (en) Diode and semiconductor device having the same
JPS59944A (en) Semiconductor device
JPH08107165A (en) Semiconductor cooling device
JPH0536892U (en) Heat dissipation structure for electronic devices
JPH0719863B2 (en) Cooling device for electric heating element
JPS6240757A (en) Semiconductor device
JPH05110116A (en) Structure of diode chip
JPH0723958Y2 (en) Semiconductor device
GB2090058A (en) An electrode structure for a semiconductor wafer
JPS61294843A (en) Forced cooling type semiconductor device