JPS61123183A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61123183A
JPS61123183A JP24480784A JP24480784A JPS61123183A JP S61123183 A JPS61123183 A JP S61123183A JP 24480784 A JP24480784 A JP 24480784A JP 24480784 A JP24480784 A JP 24480784A JP S61123183 A JPS61123183 A JP S61123183A
Authority
JP
Japan
Prior art keywords
layer
gate electrode
oxide film
electrode material
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24480784A
Other languages
Japanese (ja)
Inventor
Yoichi Hiruta
陽一 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24480784A priority Critical patent/JPS61123183A/en
Publication of JPS61123183A publication Critical patent/JPS61123183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To eliminate the irregularities of the thickness of a resist layer, and to improve the degree of integration of a gate electrode by formig the resist layer having the same etching rate as a gate electrode material onto a gate electrode material layer directly or just after patterning and flattening the whole surface. CONSTITUTION:A field oxide film 22 is formed onto a P type Si substrate 21, a gate oxide film 24 is shaped into an element region 23, a polycrystalline silicon layer 25 and a resist layer 26 having the same etching rate as the layer 25 are formed onto the whole surface, and the whole surface is flattened. The layers 26, 25 are etched through reactive ion etching until the surface of the field oxide film 22 is exposed. A resist pattern 27 is shaped onto the layer 25, the layer 25 is removed selectively through etching while using the resist pattern 27 as a mask to form a gate electrode 28, the film 24 is removed while employing the gate electrode 28 as a mask, and an N type impurity is introduced to the substrate 21 while using the electrode 28 as a mask to form N<+> type source-drain regions 29, 30.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特Kf−)!極の形成に改良を施した半導体
装置の製造方法に%する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention is characterized by a special feature of Kf-)! % to a method of manufacturing a semiconductor device with improved electrode formation.

〔発明の技術的背景〕[Technical background of the invention]

従来、題S型トランジスタは、例えば第4図(ml〜C
c)、第5図及び第6図に示す如く製造されている。
Conventionally, the S-type transistor has been proposed, for example, as shown in FIG.
c), manufactured as shown in FIGS. 5 and 6.

まず、例えばP型の半導体基板10表面にフィールド酸
化膜2を形成する。つづいて、このフィール−酸化膜2
で囲まれた基板ノの素子領域3に’l’−)酸化膜4を
形成した後、全面に多結晶シリコン層5を形成する(第
4図(a)図示)。
First, a field oxide film 2 is formed on the surface of a P-type semiconductor substrate 10, for example. Next, this field - oxide film 2
After forming an oxide film 4 on the element region 3 of the substrate surrounded by , a polycrystalline silicon layer 5 is formed on the entire surface (as shown in FIG. 4(a)).

次いで、多結晶シリコン層5上にレジスト層6を形成す
る(第4図(b)図示)。しかる後、露光、現像を行っ
てレノスト/臂ターン(図示せず)を形成した後、この
パターンをマスクとして前記多結晶シリコン層5を選択
的にエツチング除去し、多結晶シリコンからなるP−ト
電極7 ft:形成する。更に、レノストパターンを剥
離し、r−上電極7をマスクとして前記ゲート酸化膜4
を選択的に除去する。ひきつづき、r−上電極7をマス
クとして基板1にn型不純物を導入し、N+!j1のソ
ース、ドレイン領域8.9を形成してMO8O8型トラ
ンジスタ造する(第4図(C)、第5図及び第6図図示
)。ここで、第5図は第4図Celの平面図、第6図は
第5図のX−X線に石う断面図である。
Next, a resist layer 6 is formed on the polycrystalline silicon layer 5 (as shown in FIG. 4(b)). Thereafter, exposure and development are performed to form a renost/arm turn (not shown), and then the polycrystalline silicon layer 5 is selectively etched away using this pattern as a mask to form a P-tall made of polycrystalline silicon. Electrode 7 ft: Formed. Furthermore, the Rennost pattern is peeled off, and the gate oxide film 4 is removed using the r-upper electrode 7 as a mask.
selectively remove. Subsequently, using the r- upper electrode 7 as a mask, n-type impurities are introduced into the substrate 1, and N+! The source and drain regions 8.9 of j1 are formed to form a MO8O8 type transistor (as shown in FIGS. 4(C), 5, and 6). Here, FIG. 5 is a plan view of Cel in FIG. 4, and FIG. 6 is a sectional view taken along the line X--X in FIG.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来のMO8型トランノスタによれば、
半導体集積回路の高集積化に伴ってゲートz極が微細化
されるにつれ、第5図に示す如< r −トフリンジ1
1をフィールド酸化膜2の平坦部に延在する程長くする
必要があり、素子と素子の間隔あるいは素子と配線の間
隔を狭くできないという問題を有する。以下、これにつ
いて詳述する。即ち、従来、r−)!極となる多結晶シ
リコン層5はフィールド酸化膜2上にもまたがるため凹
凸をもって形成され、これによシレノスト層6も凹凸を
生じる。したがって、第4図(b)で例えば矢印Aの真
下の部分に焦点を合わせ露光した場合、矢印Bの真下の
部分には幅の狭い像が形成される。それ故、露光、現像
後多結晶シリコン層5のエツチングを行うと得られるf
 −上電極7の幅が第5図の如くゲート7リンゾのみな
らず素子領域に於ても不均一となシ、微細化した場合素
子特性を確実に制御することが困難となる。なお、第5
図中の10はフィールド酸化膜2の平坦部を除く領域を
示す。また、多結晶シリコンj−5が凹凸をもつためレ
ジストの厚さが一様でなくツクターンの抜けが悪い。こ
のようなことから、従来技術ではy −上電極7が素子
領域3に乗ることを保証するために、ゲートフリンゾ1
1を長くする必要が生ずる。
However, according to the conventional MO8 type trannostar,
As the gate z-pole becomes finer with the increase in the degree of integration of semiconductor integrated circuits, the
1 needs to be long enough to extend over the flat portion of the field oxide film 2, which poses a problem in that the spacing between elements or the spacing between elements and wiring cannot be narrowed. This will be explained in detail below. That is, conventionally, r-)! Since the polycrystalline silicon layer 5 serving as the pole also extends over the field oxide film 2, it is formed with unevenness, and as a result, the silenost layer 6 also has unevenness. Therefore, in FIG. 4(b), for example, when the part directly below arrow A is focused and exposed, a narrow image is formed in the part directly below arrow B. Therefore, when the polycrystalline silicon layer 5 is etched after exposure and development, f
- As shown in FIG. 5, the width of the upper electrode 7 is non-uniform not only in the gate 7 but also in the device region, making it difficult to reliably control device characteristics when miniaturized. In addition, the fifth
Reference numeral 10 in the figure indicates a region of the field oxide film 2 excluding the flat portion. In addition, since the polycrystalline silicon J-5 has irregularities, the thickness of the resist is not uniform, and it is difficult to cut through the resist. For this reason, in the prior art, in order to ensure that the y-upper electrode 7 is placed on the element region 3, the gate fringe 1 is
1 will need to be made longer.

〔発明の目的] 本発明は上記事情に鑑みてなされたもので、f−上電極
材料層の凹凸をなくし平坦化することによシ、この上に
塗布するレノスト層の厚みのむらをなくシ、もってr−
上電極の高集積化をなし得る高集積化した半導体装置の
製造方法を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above circumstances, and it is possible to eliminate unevenness in the thickness of the Renost layer coated thereon by eliminating unevenness and flattening the f-upper electrode material layer. Motte r-
It is an object of the present invention to provide a method for manufacturing a highly integrated semiconductor device that can achieve high integration of an upper electrode.

〔発明の概要〕[Summary of the invention]

本発明は、ゲート電極材料層上に直接あるいはこれを・
臂ターニングした直後に前記ダート電極材料層と同じエ
ツチング速度をレノスト層を形成して全面を平坦化する
ことを最大の特徴とするもので、この後RIEによるエ
ツチング、ゲート電極材料のパターニングにより前記目
的を達成しようとするものである。
The present invention can be applied directly onto the gate electrode material layer or by applying the same to the gate electrode material layer.
The main feature of this method is that immediately after the arm turning, a renost layer is formed at the same etching rate as the dirt electrode material layer to flatten the entire surface, and then etching by RIE and patterning of the gate electrode material are performed to achieve the above-mentioned purpose. This is what we are trying to achieve.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をMO8型トランジスタの製造に適用した
場合について図を参照して説明する。
Hereinafter, a case in which the present invention is applied to manufacturing an MO8 type transistor will be described with reference to the drawings.

実施例1 まず、例えばP型のシリコン基板21の表面にフィール
ド酸化膜22を形成した後、こ9フイールド酸化膜22
で囲まれた素子領域23KP−トfi化膜24を形成し
た。つづいて、全面にy−トg極材料層としてのエツチ
ング速腿が約3000X/rf11nの多結晶シリコン
ノー25、粘性が小さく前記多結晶シリコン層25とエ
ツチング速度が同一のレジスト層26を塗布した。これ
により、全面が平坦化した(第1図Cm1図示)。
Embodiment 1 First, a field oxide film 22 is formed on the surface of, for example, a P-type silicon substrate 21, and then this nine field oxide film 22 is formed.
An element region 23 KP surrounded by a fi film 24 was formed. Subsequently, a polycrystalline silicon No. 25 having an etching speed of about 3000X/RF11n and a resist layer 26 having a low viscosity and the same etching speed as the polycrystalline silicon layer 25 were applied as a Y-to-G electrode material layer on the entire surface. . As a result, the entire surface was flattened (as shown in Cm1 in FIG. 1).

つづいて、前記レジスト層26及び多結晶シリコン層2
5を反応性イオンエツチング(RIK)によシ、フィー
ルド酸化膜22の表面が露出するまでエツチングした。
Subsequently, the resist layer 26 and the polycrystalline silicon layer 2
5 was etched by reactive ion etching (RIK) until the surface of the field oxide film 22 was exposed.

これにより、エツチングされた多結晶シリコン層25の
表面は、フィールド酸化膜22の表面と同一レベルで平
坦となった(第1図(b3図示)。次いで、所定形状の
レジストパターン27を前記多結晶シリコン層25上に
形成した(第1図jc1図示)。しかる後、レジストパ
ターン27をマスクとして多結晶シリコン層25を選択
的にエツチング除去し、多結晶シリコンからなるr−上
電極28を形成した。更に、このf−)電極28をマス
クとして前記y−ト酸化膜24を選択的に除去した後、
同r−)電極28をマスクとして基板21にn型不純物
を導入し、P型のソース、ドレイン領域29.30を形
成した(第1図「j、第2図及び第3図図示)。ここで
、第2図は奸1図(dlの平面図、第3図は第2図のX
−X線に沿う断面図である。なお、第2図で31はフィ
ールド酸化膜22の平坦部を除く領域(素子領域及びフ
ィールド酸化膜の傾斜部)を、32(斜線部分)はr−
)フリンジを示す。
As a result, the surface of the etched polycrystalline silicon layer 25 became flat at the same level as the surface of the field oxide film 22 (as shown in FIG. 1 (b3)). The polycrystalline silicon layer 25 was formed on the silicon layer 25 (as shown in FIG. 1). Thereafter, the polycrystalline silicon layer 25 was selectively etched away using the resist pattern 27 as a mask, and an r-upper electrode 28 made of polycrystalline silicon was formed. Furthermore, after selectively removing the y-t oxide film 24 using this f-) electrode 28 as a mask,
r-) Using the electrode 28 as a mask, n-type impurities were introduced into the substrate 21 to form P-type source and drain regions 29 and 30 (FIG. 1 "j", shown in FIGS. 2 and 3). So, Figure 2 is the top view of the first figure (dl), and Figure 3 is the X of Figure 2.
- It is a sectional view along the X-line. In FIG. 2, reference numeral 31 indicates a region of the field oxide film 22 excluding the flat part (device region and sloped part of the field oxide film), and 32 (shaded region) indicates r-
) indicates a fringe.

しかして、実施例1によれば、多結晶シリコン層25上
にこれとエツチング速度が同一で粘性の小さいレノスト
層26を形成するため、全面を凹凸なく平坦にできる。
According to the first embodiment, since the renost layer 26 having the same etching rate and low viscosity is formed on the polycrystalline silicon layer 25, the entire surface can be made flat without unevenness.

その結果、従来技術では露光時にマスクパターンから歪
んだ像が形成されたのに対し、本実施例ではレジスト層
26上忙歪みのない像を形成できる。したがって、RI
EI7Cよりレジスト層26、多結晶シリコン層25を
適宜エツチングすることによって第1図1b1に示す如
く、領域31のみにフィールド酸化膜22の表面と同一
レベルの多結晶シリコン層25を残存でき、更にこれを
レジストパターン27をマスクとして選択的にエツチン
グすることにより第2図に示す如く幅が均一なy −上
電極28を形成できる。このため、集積回路中の各素子
の特性を確実に制御することができる。
As a result, in the conventional technique, an image distorted from the mask pattern was formed during exposure, whereas in this embodiment, an image without distortion can be formed on the resist layer 26. Therefore, R.I.
By appropriately etching the resist layer 26 and the polycrystalline silicon layer 25 from EI7C, the polycrystalline silicon layer 25 can remain only in the region 31 at the same level as the surface of the field oxide film 22, as shown in FIG. 1b1. By selectively etching the resist pattern 27 using the resist pattern 27 as a mask, a Y-upper electrode 28 having a uniform width can be formed as shown in FIG. Therefore, the characteristics of each element in the integrated circuit can be reliably controlled.

また、前述″した如く多結晶シリコン層25をその表面
が多結晶シリコン層25の表面と同一平面となるまでエ
ッチバ、りを行うことによシ、ゲート7リンゾ32をセ
ルファラインに形成できるため、f−)7リンゾ32の
長さを従来と比べ短くでき、素子と素子の間隔あるいは
素子と配線の間隔を狭くして高集積化を図ることができ
る。
Furthermore, as described above, by etching the polycrystalline silicon layer 25 until its surface becomes flush with the surface of the polycrystalline silicon layer 25, the gate 7 liner 32 can be formed in a self-aligned manner. f-) The length of the 7-line connector 32 can be made shorter than in the past, and the intervals between elements or the intervals between elements and wiring can be narrowed to achieve high integration.

実施例2 まず、実施例1と同様にしてP型のシリコン基板21の
表面にフィールド酸化膜22及びゲート酸化膜24を形
成した。次に1全面に多結晶シリコン層を堆積した後、
パターニングして多結晶シリコンパターン41を形成シ
タ。つづいて、全面にこのシリコンミ4ターフ41とエ
ツチング速度が同一で粘性の小さいレジストM42全形
成した(第7図(a1図示)。次いで、レジストrfl
142及び多結晶シリコン/9ターン41をRIEによ
りフィールド酸化膜22の表面が露出するまでエツチン
グした。この結果、多結晶シリコンパターン41の表面
とフィールド酸化膜22の表面とは同一平面となった。
Example 2 First, in the same manner as in Example 1, a field oxide film 22 and a gate oxide film 24 were formed on the surface of a P-type silicon substrate 21. Next, after depositing a polycrystalline silicon layer on the entire surface,
A polycrystalline silicon pattern 41 is formed by patterning. Next, a resist M42 having the same etching speed as the silicon M4 turf 41 and having a low viscosity was formed on the entire surface (see FIG. 7 (a1)).
142 and polycrystalline silicon/9 turns 41 were etched by RIE until the surface of field oxide film 22 was exposed. As a result, the surface of polycrystalline silicon pattern 41 and the surface of field oxide film 22 became on the same plane.

以下、実施例1と同様にして?−)電極43の形成、ゲ
ートd化膜24の選択的エツチング、N+型のソース、
ドレイン領域29.30の形成を行ってMO8O8型ト
ランジスタ造した(第7必笈び第8図図示)。ここで、
第8図は第7δゲートW:極の幅方向に切断した断面図
である。
The following is the same as in Example 1. -) Formation of electrode 43, selective etching of gate d-oxide film 24, N+ type source,
Drain regions 29 and 30 were formed to fabricate an MO8O8 type transistor (as shown in FIG. 7 and FIG. 8). here,
FIG. 8 is a cross-sectional view taken in the width direction of the seventh δ gate W: pole.

しかるに、実施例2によれば、実施例1と同様の効果を
得ることができる。
However, according to the second embodiment, effects similar to those of the first embodiment can be obtained.

実施例3 まず、実施例1と同様に、P型のシリコン基板21表面
にフィールド酸化膜22、’i’−ト酸化膜24を形成
し、更忙多結晶シリコン層25、レノストWt26を形
成した(第9図ra1図示)。
Example 3 First, in the same manner as in Example 1, a field oxide film 22 and an 'i'-to oxide film 24 were formed on the surface of a P-type silicon substrate 21, and a polycrystalline silicon layer 25 and a Renost Wt 26 were formed. (Illustrated in Figure 9 ra1).

つづいて、前記レジスト層26及び多結晶シリコン層2
5を、RIEによシ多結晶シリコン層25が平坦化する
所までエツチングした(第9図(b)図示)。以下、常
法により前記多結晶シリコン層25t−パターニングし
てr−上電極51を形成し、更に内のソース、ドレイン
領域(いずれも図示せず)を形成してMOS ! トラ
ンジへりを製造した(第9晶示)。
Subsequently, the resist layer 26 and the polycrystalline silicon layer 2
5 was etched by RIE until the polycrystalline silicon layer 25 was flattened (as shown in FIG. 9(b)). Thereafter, the polycrystalline silicon layer 25t is patterned by a conventional method to form an r-upper electrode 51, and inner source and drain regions (none of which are shown) are formed to form a MOS! A transition edge was manufactured (9th crystal presentation).

しかして、実施例3によれば、実施例1と同様な効果を
得ることができる。
Therefore, according to the third embodiment, the same effects as those of the first embodiment can be obtained.

なお、上記実施例では、r−上電極材料層として多結晶
シリコン層を用いたが、これに限らない。例えば、MO
層等の金FA層、MoS2層等の金属シリサイド層を用
いてもよい。
In the above embodiment, a polycrystalline silicon layer is used as the r-upper electrode material layer, but the present invention is not limited to this. For example, M.O.
A gold FA layer, a metal silicide layer such as a MoS2 layer, etc. may also be used.

また、上記実施例では、MO8O8型トランジスタ造に
適用した場合について述べたが、これに限らず、CMO
8型トランノスタ等のyL造にも同様に適用できる。
In addition, in the above embodiment, the case where it is applied to the MO8O8 type transistor structure is described, but it is not limited to this.
It can be similarly applied to yL construction such as 8-type Tranostar.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、’r’−ト電極材料
層上に塗布するレノスト層厚みのむらを解消してy−上
電極の微細化をなし得、もって高集積化した半導体装置
を製造する方法を提供できる。
As described in detail above, according to the present invention, it is possible to eliminate the unevenness in the thickness of the Renost layer applied on the 'r'-top electrode material layer and to miniaturize the y-top electrode, thereby achieving highly integrated semiconductor devices. We can provide a manufacturing method.

【図面の簡単な説明】[Brief explanation of drawings]

m1図(a)〜((至)は本発明の実施例10MO8型
トランジスタの製造方法を工程順に示す断面図、第2図
は第1図(田の平面図、第3図は第2図のX−X?sK
沿う断面図、第4図(a) 〜(c) ハ従来のMO8
型トランノスタの製造方法を工程順に示す断面図、第5
図は第4図rc)の平面図、第6図はff15図のX−
X線に沿う断面図、第7図(d 、 (b)は本発明の
実施例2のMO8型トランジスタの製造方法を工程順に
示す断面図、第8図は第7図のf−)電極の幅方向に切
断した断面図、第9図ral〜(clは本発明の実施例
3のMO8型トランジスタの製造方法を工程順に示す断
面図である。 21・・・P型のシリコン基板、22・・・フィールド
酸化膜、23・・・素子領域、24・・・r−)酸化l
i省、25・・・多結晶シリコン層、26.42・・・
レノスト層、27・・・レジストノ々ターン、28.4
3゜5ノ・・・ダート電極、29・・・N1のソース領
域、30・・・P型のドレイン領域、32・・・r−)
フリンジ、41・・・多結晶シリコンパターン。 出願人代理人 弁理土鈴 圧式 彦 、        [ 第60 第9因
Figures m1 (a) to ((to) are cross-sectional views showing the manufacturing method of an MO8 type transistor according to Example 10 of the present invention in the order of steps, Figure 2 is a plan view of Figure 1 (Fig. X-X?sK
Cross-sectional view along Fig. 4 (a) to (c) c. Conventional MO8
Cross-sectional diagram showing the manufacturing method of the type Tranostar in order of steps, No. 5
The figure is a plan view of Fig. 4 rc), and Fig. 6 is a plan view of Fig. ff15.
7(d) and (b) are cross-sectional views showing the manufacturing method of the MO8 type transistor according to the second embodiment of the present invention in the order of steps, and FIG. 8 is a cross-sectional view taken along the X-ray. Cross-sectional views cut in the width direction, FIGS. ...field oxide film, 23...element region, 24...r-) oxidation l
i Ministry, 25... Polycrystalline silicon layer, 26.42...
Renost layer, 27...Resist number turns, 28.4
3゜5ノ...Dirt electrode, 29...N1 source region, 30...P type drain region, 32...r-)
Fringe, 41...polycrystalline silicon pattern. Applicant's attorney Hiko Ushiki, Patent Attorney Dosu, [No. 60, 9th cause]

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の表面に素子分離領域を形成する工程
と、この素子分離領域で囲まれた前記基板の素子領域に
ゲート酸化膜を形成する工程と、全面にゲート電極材料
層を形成する工程と、前記ゲート電極材料層上に直接あ
るいはこれをパターニングした直後に前記ゲート電極材
料層と同じエッチング速度を有したレジスト層を形成す
る工程と、前記レジスト層及びゲート電極材料層を反応
性イオンエッチングによりゲート電極材料層が残存する
ようにエッチングし全面を平坦化させる工程、前記ゲー
ト電極材料層をパターニングしてゲート電極を形成する
工程とを具備することを特徴とする半導体装置の製造方
法。
(1) A step of forming an element isolation region on the surface of a semiconductor substrate, a step of forming a gate oxide film in the element region of the substrate surrounded by the element isolation region, and a step of forming a gate electrode material layer on the entire surface. a step of forming a resist layer having the same etching rate as the gate electrode material layer directly or immediately after patterning the gate electrode material layer; and reactive ion etching of the resist layer and the gate electrode material layer. 1. A method for manufacturing a semiconductor device, comprising: etching the gate electrode material layer so that it remains so as to planarize the entire surface; and patterning the gate electrode material layer to form a gate electrode.
(2)ゲート電極材料層が多結晶シリコン層であること
を特徴とする特許請求の範囲第1項記載の半導体装置の
製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the gate electrode material layer is a polycrystalline silicon layer.
JP24480784A 1984-11-20 1984-11-20 Manufacture of semiconductor device Pending JPS61123183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24480784A JPS61123183A (en) 1984-11-20 1984-11-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24480784A JPS61123183A (en) 1984-11-20 1984-11-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61123183A true JPS61123183A (en) 1986-06-11

Family

ID=17124232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24480784A Pending JPS61123183A (en) 1984-11-20 1984-11-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61123183A (en)

Similar Documents

Publication Publication Date Title
JPS6324616A (en) Manufacture of semiconductor device and the semiconductor device manufactured
CN100454500C (en) Semiconductor structure forming method
US6187694B1 (en) Method of fabricating a feature in an integrated circuit using two edge definition layers and a spacer
JPH0691033B2 (en) Method of manufacturing contact studs on a semiconductor structure
JPS6020908B2 (en) Method for manufacturing MOS dual polycrystalline integrated circuit
KR0169279B1 (en) Semiconductor device and a method for manufacturing thereof
JPS58124243A (en) Manufacture of semiconductor device
JPS61502925A (en) Manufacturing method of MIS type integrated circuit
JPS61123183A (en) Manufacture of semiconductor device
JPS6046804B2 (en) Manufacturing method of semiconductor device
JP2964635B2 (en) Method for manufacturing semiconductor memory device
JPH0563206A (en) Manufacture of nonvolatile semiconductor memory
JPS62183183A (en) Formation of sidewall
JPS59154068A (en) Semiconductor memory device and manufacture thereof
JPS5935186B2 (en) Manufacturing method of MOS type semiconductor device
JPS6297331A (en) Manufacture of semiconductor device
JPS6384071A (en) Manufacture of semiconductor device
JPS61125087A (en) Insulated gate type field effect semiconductor device and manufacture thereof
JPS5863158A (en) Manufacture of semiconductor device
JPH09252058A (en) Semiconductor memory device and manufacture thereof
JPS59154070A (en) Manufacture of semiconductor memory device
JPH02234473A (en) Semiconductor device and manufacture thereof
JPS59126628A (en) Manufacture of semiconductor device
JPS61150379A (en) Manufacture of semiconductor device
JPS6084869A (en) Manufacture of solid-state image pickup device