JPS611068A - Photosemiconductor device - Google Patents

Photosemiconductor device

Info

Publication number
JPS611068A
JPS611068A JP59122493A JP12249384A JPS611068A JP S611068 A JPS611068 A JP S611068A JP 59122493 A JP59122493 A JP 59122493A JP 12249384 A JP12249384 A JP 12249384A JP S611068 A JPS611068 A JP S611068A
Authority
JP
Japan
Prior art keywords
optical semiconductor
light
resin
semiconductor device
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59122493A
Other languages
Japanese (ja)
Inventor
Takashi Kondo
隆 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59122493A priority Critical patent/JPS611068A/en
Publication of JPS611068A publication Critical patent/JPS611068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

PURPOSE:To obtain a photosemiconductor device having high productivity and high reliability by forming the enclosure of a photosemiconductor element with resin added with particles for passing the prescribed light. CONSTITUTION:A transparent ultrafine powder 71 for transmitting ultraviolet ray substantially by 100% is, for example, mixed in a transparent epoxy resin, and a light of the prescribed wavelength range can be transmitted in the prescribed amount. The powder 71 is selected in response to the required characteristics of an element 1 of high purity SiO2 ultrafine powder, the component and thermal expansion coefficient of the element 1 are substantially equalized to prevent an enclosure 7 from cracking. According to the construction, the productivity and the reliability can be improved to reduce the cost.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、光信号の授受によって機能する光半導体装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical semiconductor device that functions by transmitting and receiving optical signals.

〔従来技術〕[Prior art]

従来、この種の装置として第1図に示すものが一般的で
あった。図において、1は光半導体素子、2は光半導体
素子1を固着収納したパッケージ基板、3は光半導体素
子1と外部リード4とを電気的に接続する金あるいはア
ルミの極細線、5は透光窓51を有するキャップで、こ
れは低融点ガラス6によりパッケージ基板2に封止され
ている。  ゛従来の光半導体装置は以上のように構成
されているので、パッケージが高価になり、又生産性も
悪く、結果として半導体装置を高価なものにしてユーザ
に迷惑をかけていた。また通常、パンケージ基板及びキ
ャップはアルミナセラミックを用いて形成されており、
これが組立工程時に割れたり、欠けたりして発塵源にな
ることから、この塵が光半導体素子の表面に付着し、装
置を不良にすることがあった。
Conventionally, a device of this type as shown in FIG. 1 has been common. In the figure, 1 is an optical semiconductor element, 2 is a package substrate that firmly houses the optical semiconductor element 1, 3 is an ultra-fine gold or aluminum wire that electrically connects the optical semiconductor element 1 and an external lead 4, and 5 is a light-transmitting wire. A cap having a window 51 is sealed to the package substrate 2 by a low melting point glass 6. ``Because the conventional optical semiconductor device is constructed as described above, the package becomes expensive and the productivity is poor, resulting in an expensive semiconductor device that causes inconvenience to users. Additionally, the pan cage substrate and cap are usually formed using alumina ceramic.
Since this cracks or chips during the assembly process and becomes a source of dust, this dust may adhere to the surface of the optical semiconductor element and cause the device to be defective.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、光半導体素子を保護する外囲器を
、所定の光を透過する透明粒体が添加されたモールド樹
脂でもって形成することにより、生産性及び信頼性を向
上できる安価な光半導体装置を提供することを目的とし
ている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the envelope that protects the optical semiconductor element is formed using a molded resin added with transparent particles that transmit a predetermined amount of light. The purpose of this invention is to provide an inexpensive optical semiconductor device that can improve productivity and reliability.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図は本発明の一実施例による光半導体装置を示す。FIG. 2 shows an optical semiconductor device according to an embodiment of the present invention.

図において、1は外部からの光によって制御されあるい
は信号の授受を行なう光半導体素子、8は外部リード8
1及びダイパッド82を有するリードフレームで、上記
ダイパッド82には光半導体素子1が固着されている。
In the figure, 1 is an optical semiconductor element that is controlled by external light or sends and receives signals, and 8 is an external lead 8.
1 and a die pad 82, and the optical semiconductor element 1 is fixed to the die pad 82.

3は光半導体素子1と外部リード81とを電気的に接続
する金。
3 is gold that electrically connects the optical semiconductor element 1 and the external lead 81;

アルミ合金、銅等の布線、7は光半導体素子1を外囲封
止し、大気等からの汚染を防止する透明樹脂外囲部であ
る。
Wires made of aluminum alloy, copper, etc., and 7 are transparent resin enclosures for enclosing the optical semiconductor element 1 and preventing contamination from the atmosphere.

ここでこの透明樹脂としてはエポキシ系の樹脂が用いら
れ、又該樹脂中には所定の波長域の光、例えば紫外線を
ほぼ100%透過する透明な微小粒体71が配合され、
これにより所定の波長域の光が所定量透過されるように
するとともに、信頼性の向上を図っている。この微小粒
体71についてはガラスの微粉末や高純度5i02の微
粉末等、光半導体素子1の要求特性に応じて選択するの
が望ましい。またこの微小粒体71としては光半導体素
子1を構成する基材とほぼ等しい熱膨張係数のものを用
いる必要がある。これは、微小粒体71の添加によって
透明樹脂外囲部7の熱膨張係数を光半導体素子1の基材
のそれに近づけ、透明樹脂外囲部7におけるクラックの
発生を防止するためである。
Here, an epoxy resin is used as the transparent resin, and the resin contains transparent microparticles 71 that transmit almost 100% of light in a predetermined wavelength range, for example, ultraviolet rays.
This allows a predetermined amount of light in a predetermined wavelength range to be transmitted and improves reliability. It is desirable that the fine particles 71 be selected depending on the required characteristics of the optical semiconductor element 1, such as glass fine powder or high purity 5i02 fine powder. Further, it is necessary to use the microparticles 71 having a coefficient of thermal expansion approximately equal to that of the base material constituting the optical semiconductor element 1. This is because the addition of the microparticles 71 brings the coefficient of thermal expansion of the transparent resin envelope 7 close to that of the base material of the optical semiconductor element 1, thereby preventing the occurrence of cracks in the transparent resin envelope 7.

また第3図は添加する微小粒体71の添加量に対する紫
外線の透過率の関係a及び強度の関係すを示す。第3図
によれば、微小粒体71の添加量としては樹脂の約10
容量%〜約90容量%が妥当である。10容量%以下で
は、紫外線の透過率が極端に少なくなり、さらに信頼性
上の問題が生じるからであり、一方90容量%以上では
、強度が著しく低下するのみで、それ以上の透過率の向
上は望めないからである。以上の如く微小粒体71の添
加量は光半導体装置の要求性能を満足させるための適当
な範囲を有する。
Further, FIG. 3 shows the relationship a and the intensity of ultraviolet light transmittance with respect to the amount of added microparticles 71. According to FIG. 3, the amount of the fine particles 71 added is about 10% of the resin.
% by volume to about 90% by volume are reasonable. This is because if it is less than 10% by volume, the transmittance of ultraviolet rays will be extremely low, which will further cause reliability problems, whereas if it is more than 90% by volume, the intensity will only drop significantly, and the transmittance will not increase any further. This is because it cannot be expected. As described above, the amount of the microparticles 71 added has an appropriate range to satisfy the required performance of the optical semiconductor device.

また微小粒体710粒径は大き過ぎると効果が十分でな
く、一方小さ過ぎると高価になり、取扱いも困難になっ
て実用性を欠く。本発明においては、上記容量の微小粒
体71を添加することにより微小粒体71の数と透明樹
脂の分子の数とがほぼ同数になるように、粒体径を0.
01〜1’、cImのものに限定した。これは微小粒体
71の数と透明樹脂の分子数とをほぼ同数にすることに
より、透明樹脂がち密に成長し、これにより透明樹脂が
強度アンプするからである。なお、実用上は10′ μ
m程度の粒径でも満足し得る効果が得られる。
Furthermore, if the particle size of the microparticles 710 is too large, the effect will not be sufficient, while if it is too small, it will become expensive and difficult to handle, thus lacking in practicality. In the present invention, by adding the above-mentioned amount of microparticles 71, the particle diameter is adjusted to 0.0000.degree. so that the number of microparticles 71 and the number of transparent resin molecules become approximately the same.
01-1', cIm. This is because by making the number of microparticles 71 and the number of transparent resin molecules almost the same, the transparent resin grows densely, thereby increasing the strength of the transparent resin. In addition, in practice, 10′ μ
Satisfactory effects can be obtained even with a particle size of about m.

そしてこの透明粒体71は樹脂外囲部7に対し、光半導
体素子の要求性能を満たすため例えば可視光のうちの所
定波長域の光のみをほぼ100%透過するいわゆるフィ
ルタ機能を付与する場合に有効であり、また逆に例えば
紫外線、赤外線等、特定波長域の光を吸収するいわゆる
窓の作用を行な今わせる場合にも効果が認められる。こ
の場合には勿論透明粒体として特定波長域の光の透過を
吸収する材料の粒体を用いるようにすればよい。
The transparent granules 71 are used to provide the resin envelope 7 with a so-called filter function that transmits almost 100% of visible light only in a predetermined wavelength range, for example, in order to satisfy the required performance of an optical semiconductor element. It is effective, and conversely, it is also effective when it acts as a so-called window that absorbs light in a specific wavelength range, such as ultraviolet rays and infrared rays. In this case, of course, particles of a material that absorbs transmission of light in a specific wavelength range may be used as the transparent particles.

以上のような本実施例の装置では、光半導体素子を樹脂
封止するようにしたので、従来のような高価なパッケー
ジが不要となり、低コスト化を達成でき、又生産性を向
上できる。また樹脂外囲部が組立工程等において発塵源
になるということはなく、装置の信頼性を向上できる。
In the device of this embodiment as described above, since the optical semiconductor element is sealed with resin, there is no need for an expensive package as in the prior art, and it is possible to achieve cost reduction and improve productivity. Furthermore, the resin envelope does not become a source of dust during the assembly process, and the reliability of the device can be improved.

また本装置では、封止樹脂中に透明粒体を添加して光の
透過量を確保しているので、光半導体素子の動作を保証
できる。また透明粒体の数を透明樹脂の分子数とほぼ同
数にしているので、透明樹脂をち密に成形でき、樹脂外
囲部の耐久性を保証できる。
Furthermore, in this device, since transparent particles are added to the sealing resin to ensure the amount of light transmitted, the operation of the optical semiconductor element can be guaranteed. Furthermore, since the number of transparent particles is approximately the same as the number of molecules of the transparent resin, the transparent resin can be molded tightly and the durability of the resin surrounding portion can be guaranteed.

なお、上記実施例では紫外線に対して動作する光半導体
装置について述べたが、本発明は適当な微小粒体を選択
することによって赤外線、可視光線あるいは紫外線から
赤外線までの波長域の光に対して動作する光半導体装置
にも適用できる。
In the above embodiments, an optical semiconductor device that operates against ultraviolet rays was described, but by selecting appropriate microparticles, the present invention can operate against infrared rays, visible light, or light in the wavelength range from ultraviolet to infrared rays. It can also be applied to operating optical semiconductor devices.

さらに上記実施例では外部からの光によって制御されあ
るいは信号の授受を行なう光半導体素子について説明し
たが、この半導体素子は発光素子等信の光半導体素子で
あってもよく、同様の効果が得られる。
Furthermore, in the above embodiments, an optical semiconductor element that is controlled by external light or that sends and receives signals has been described, but this semiconductor element may be a light emitting element or other type of optical semiconductor element, and similar effects can be obtained. .

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、光半導体素子を透明粒
体が添加されたモールド樹脂によって外囲封止するよう
にしたので、生産性及び信頼性を向上でき、しかも低コ
スト化を達成できる効果がある。
As described above, according to the present invention, since the optical semiconductor element is encapsulated with a mold resin to which transparent particles are added, productivity and reliability can be improved, and cost reduction can be achieved. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光半導体装置の構成図、第2図は本発明
の一実施例による光半導体装置の構成図、第3図は上記
装置を説明するための微小粒体添加量に対する紫外線透
過率及び強度の関係を示す図である。 1・・・光半導体素子、7・・・樹脂、71・・・透明
粒体。 なお図中同一符号は同−又は相当部分を示す。
Fig. 1 is a block diagram of a conventional optical semiconductor device, Fig. 2 is a block diagram of an optical semiconductor device according to an embodiment of the present invention, and Fig. 3 is a diagram of ultraviolet light transmission with respect to the amount of microparticles added to explain the above device. FIG. 3 is a diagram showing the relationship between rate and intensity. DESCRIPTION OF SYMBOLS 1... Optical semiconductor element, 7... Resin, 71... Transparent particles. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (5)

【特許請求の範囲】[Claims] (1)光半導体素子を透明樹脂でもって樹脂封止してな
る光半導体装置であって、上記光半導体素子を構成する
基材と熱膨張係数がほぼ等しく所定の波長領域の光を透
過あるいは吸収する透明粒体を、上記封止樹脂中に該樹
脂の10〜90容量%添加したことを特徴とする光半導
体装置。
(1) An optical semiconductor device formed by resin-sealing an optical semiconductor element with a transparent resin, which transmits or absorbs light in a predetermined wavelength range whose thermal expansion coefficient is approximately equal to that of the base material constituting the optical semiconductor element. An optical semiconductor device characterized in that transparent granules are added to the sealing resin in an amount of 10 to 90% by volume of the resin.
(2)上記光半導体素子は、外部からの光によって制御
されあるいは信号の授受を行なうものであることを特徴
とする特許請求の範囲第1項記載の光半導体装置。
(2) The optical semiconductor device according to claim 1, wherein the optical semiconductor element is controlled by external light or sends and receives signals.
(3)上記透明粒体は、その粒径が10μm〜0.01
μmであることを特徴とする特許請求の範囲第1項記載
の光半導体装置。
(3) The transparent particles have a particle size of 10 μm to 0.01 μm.
The optical semiconductor device according to claim 1, characterized in that the diameter is μm.
(4)上記透明粒体は、紫外線から赤外線までの波長領
域の光をほぼ100%透過するものであることを特徴と
する特許請求の範囲第1項又は第2項記載の光半導体装
置。
(4) The optical semiconductor device according to claim 1 or 2, wherein the transparent particles transmit almost 100% of light in a wavelength range from ultraviolet to infrared.
(5)上記透明粒体は、紫外線又は赤外線の波長領域の
光をほぼ100%透過するものであることを特徴とする
特許請求の範囲第1項又は第2項記載の光半導体装置。
(5) The optical semiconductor device according to claim 1 or 2, wherein the transparent particles transmit almost 100% of light in the ultraviolet or infrared wavelength range.
JP59122493A 1984-06-12 1984-06-12 Photosemiconductor device Pending JPS611068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122493A JPS611068A (en) 1984-06-12 1984-06-12 Photosemiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122493A JPS611068A (en) 1984-06-12 1984-06-12 Photosemiconductor device

Publications (1)

Publication Number Publication Date
JPS611068A true JPS611068A (en) 1986-01-07

Family

ID=14837207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122493A Pending JPS611068A (en) 1984-06-12 1984-06-12 Photosemiconductor device

Country Status (1)

Country Link
JP (1) JPS611068A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118959U (en) * 1989-03-10 1990-09-25
JPH0485365A (en) * 1990-07-27 1992-03-18 Tatsumori:Kk Transparent resin composition and photosemiconductor made by using it
US5107327A (en) * 1990-07-16 1992-04-21 Nitto Denko Corporation Photosemiconductor device and epoxy resin composition for use in molding photosemiconductor
JPH05312948A (en) * 1992-05-06 1993-11-26 Sharp Corp Range finder sensor
WO2004059750A1 (en) * 2002-12-25 2004-07-15 Japan Science And Technology Agency Light emitting element device, light receiving element device, optical apparatus, fluoride crystal, process for producing fluoride crystal and crucible
JP2007149905A (en) * 2005-11-28 2007-06-14 Sony Corp Photoelectric conversion element package and manufacturing method thereof
JP2013168510A (en) * 2012-02-15 2013-08-29 Seiko Instruments Inc Photodetection device and manufacturing method therefor
JP2016181683A (en) * 2015-03-23 2016-10-13 エスアイアイ・セミコンダクタ株式会社 Optical sensor device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326119A (en) * 1976-08-24 1978-03-10 Victor Co Of Japan Ltd Ribbon type electro-acoustic transducer
JPS57186376A (en) * 1981-05-04 1982-11-16 Licentia Gmbh Light emitting semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326119A (en) * 1976-08-24 1978-03-10 Victor Co Of Japan Ltd Ribbon type electro-acoustic transducer
JPS57186376A (en) * 1981-05-04 1982-11-16 Licentia Gmbh Light emitting semiconductor element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118959U (en) * 1989-03-10 1990-09-25
US5107327A (en) * 1990-07-16 1992-04-21 Nitto Denko Corporation Photosemiconductor device and epoxy resin composition for use in molding photosemiconductor
EP0734074A1 (en) * 1990-07-16 1996-09-25 Nitto Denko Corporation Photosemiconductor device
JPH0485365A (en) * 1990-07-27 1992-03-18 Tatsumori:Kk Transparent resin composition and photosemiconductor made by using it
JPH05312948A (en) * 1992-05-06 1993-11-26 Sharp Corp Range finder sensor
WO2004059750A1 (en) * 2002-12-25 2004-07-15 Japan Science And Technology Agency Light emitting element device, light receiving element device, optical apparatus, fluoride crystal, process for producing fluoride crystal and crucible
US7696690B2 (en) 2002-12-25 2010-04-13 Japan Science And Technolgoy Agency Short-wavelength light-emitting element arranged in a container with a window having a window board formed of a calcium fluoride crystals
JP2007149905A (en) * 2005-11-28 2007-06-14 Sony Corp Photoelectric conversion element package and manufacturing method thereof
JP2013168510A (en) * 2012-02-15 2013-08-29 Seiko Instruments Inc Photodetection device and manufacturing method therefor
JP2016181683A (en) * 2015-03-23 2016-10-13 エスアイアイ・セミコンダクタ株式会社 Optical sensor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3435925B2 (en) Semiconductor device
US4703339A (en) Package having a heat sink suitable for a ceramic substrate
EP0562550A1 (en) Chip carrier for optical device
JPS611068A (en) Photosemiconductor device
JP2000173947A (en) Plastic package
US7002257B2 (en) Optical component package and packaging including an optical component horizontally attached to a substrate
JP6721361B2 (en) Optical sensor device and method of manufacturing optical sensor device
US9716190B2 (en) Optical sensor device and method of manufacturing optical sensor device
US3624462A (en) Face-bonded photoarray package
KR102313269B1 (en) Light sensor
JP4730135B2 (en) Image sensor package
JPH06132425A (en) Semiconductor device
US3871016A (en) Reflective coated contact for semiconductor light conversion elements
JPS584836B2 (en) Optical semiconductor device package
JPS62131555A (en) Semiconductor integrated circuit device
JPS63133653A (en) Optically erasable semiconductor storage device
JPH07170024A (en) Semiconductor device
JPS5936824B2 (en) semiconductor equipment
JP2536397B2 (en) EPROM semiconductor device
JP2792638B2 (en) Package for storing semiconductor elements
JPH046214Y2 (en)
JPS60154643A (en) Semiconductor device
JPH11340480A (en) Plastic package
JPS5937448B2 (en) Room temperature infrared detector
JPS60110148A (en) Resin-sealed type semiconductor device