JPH0485365A - Transparent resin composition and photosemiconductor made by using it - Google Patents

Transparent resin composition and photosemiconductor made by using it

Info

Publication number
JPH0485365A
JPH0485365A JP19761890A JP19761890A JPH0485365A JP H0485365 A JPH0485365 A JP H0485365A JP 19761890 A JP19761890 A JP 19761890A JP 19761890 A JP19761890 A JP 19761890A JP H0485365 A JPH0485365 A JP H0485365A
Authority
JP
Japan
Prior art keywords
resin
refractive index
inorganic powder
resin composition
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19761890A
Other languages
Japanese (ja)
Other versions
JPH07110909B2 (en
Inventor
Tatsuro Hirano
平野 達郎
Masayuki Asahina
政行 朝比奈
Hisao Hatta
八田 比佐雄
Takao Yoshioka
吉岡 孝夫
Tatsumasa Nakamura
達政 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TATSUMORI KK
Ohara Inc
Shin Etsu Quartz Products Co Ltd
Original Assignee
TATSUMORI KK
Ohara Inc
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TATSUMORI KK, Ohara Inc, Shin Etsu Quartz Products Co Ltd filed Critical TATSUMORI KK
Priority to JP2197618A priority Critical patent/JPH07110909B2/en
Publication of JPH0485365A publication Critical patent/JPH0485365A/en
Publication of JPH07110909B2 publication Critical patent/JPH07110909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a transparent resin composition having excellent transparency and electrical characteristics by filling a resin with a transparent inorganic powder coated with a coupling agent and having a specified refractive index. CONSTITUTION:A resin composition made by filling a resin with a specified amount of a transparent inorganic powder having a refractive index close to that of cured resin in a specified wavelength region, wherein the inorganic powder is coated with a coupling agent so that the refractive index thereof after coating lies between that of the inorganic powder and that of the resin. This composition has greatly improved electrical characteristics and light transmittance and can be used as a low-cost material for the plastic package of photosemiconductor element. Further, because of the incorporation of the inorganic powder containing little ionic impurities, this composition has such remarkable effects that it gives improved electrical and mechanical characteristics and high reliability and that it can also prolong the life of the element.

Description

【発明の詳細な説明】 「産業上の利用分野J 本発明は、優れた透明性および電気的特性が要求される
樹脂組成物、該組成物を利用して光半導体素子を封止し
た光半導体装置に関する。
Detailed Description of the Invention "Industrial Application Field J The present invention relates to a resin composition that requires excellent transparency and electrical properties, and an optical semiconductor device in which an optical semiconductor element is encapsulated using the resin composition. Regarding equipment.

「従来の技術」 光半導体素子を構成するシリコンその他のセラミック材
は熱膨張率が極めて小さいために、該半導体素子を封入
する封止材料もこれに合せて低熱膨張性が要求されるが
、従来封止材料として使用されているエポキシ樹脂はセ
ラミックに比して熱膨張率が大きく、例えば大型発光素
子等を埋め込んだ時に両者の境界部等よりクラック等が
発生する恐れがある。
"Prior Art" Silicon and other ceramic materials that make up optical semiconductor devices have an extremely low coefficient of thermal expansion, so the encapsulating material that encapsulates the semiconductor device must also have low thermal expansion. The epoxy resin used as the sealing material has a higher coefficient of thermal expansion than ceramics, so when a large light emitting element or the like is embedded, for example, cracks may occur at the boundary between the two.

この為従来より前記硬化前の液状状態にある樹脂中に高
純度Sin、の微粉末を所定割合で混入させ、熱膨張率
を低下させる技術が開発されている。
For this reason, a technique has been developed in which a predetermined proportion of fine powder of high-purity Sin is mixed into the resin in a liquid state before curing to reduce the coefficient of thermal expansion.

(特開昭61−1068号他) しかしながら5in2はエポキシ樹脂に比較して屈折率
が低く、この為該樹脂組成物中に光が侵入しても前記5
in2とエポキシ樹脂の境界面で乱反射し、好ましい光
透過性を得る事が出来ない。
(Unexamined Japanese Patent Publication No. 61-1068, etc.) However, 5in2 has a lower refractive index than epoxy resin, so even if light enters the resin composition, the 5in2
Diffuse reflection occurs at the interface between in2 and the epoxy resin, making it impossible to obtain desirable light transmittance.

かかる欠点を解消するために、屈折率がエポキシ樹脂に
近似するガラス材を用いて充填用の無機粉末を用いた技
術も開示されている。
In order to eliminate such drawbacks, a technique has also been disclosed in which a glass material having a refractive index close to that of an epoxy resin is used and an inorganic powder is used for filling.

例えば特開昭49−23847号においてエポキシ樹脂
と透明無機粉末とよりなり、透明無機粉末と樹脂との間
の屈折率の差を±0.01以内に抑えた技術が開示され
ている。
For example, Japanese Patent Laid-Open No. 49-23847 discloses a technique that is made of an epoxy resin and a transparent inorganic powder and suppresses the difference in refractive index between the transparent inorganic powder and the resin to within ±0.01.

しかしながら例え前記透明無機粉末と樹脂との間の屈折
率の差を合致させても、樹脂と透明無機粉末とを混練す
るときに気泡等が入ると光が気泡により散乱してしまい
透過率が著しく悪くなる。
However, even if the difference in refractive index between the transparent inorganic powder and resin is matched, if air bubbles are introduced when the resin and transparent inorganic powder are kneaded, light will be scattered by the air bubbles and the transmittance will be significantly reduced. Deteriorate.

また、樹脂と透明無機粉末の各波長における屈折率の変
化が異なるため、両者を完全にマツチングするのが困難
になる。
Furthermore, since the refractive index of the resin and the transparent inorganic powder change differently at each wavelength, it is difficult to perfectly match the two.

「発明が解決しようとする課題」 本発明はかかる従来技術の欠点に鑑み、封止部材自体の
光透過性と電気的特性をを大幅に向上し得る光半導体装
置、及び該装置の封止材として好適な樹脂組成物を提供
する事を目的とする。
``Problems to be Solved by the Invention'' In view of the drawbacks of the prior art, the present invention provides an optical semiconductor device that can significantly improve the optical transparency and electrical characteristics of the sealing member itself, and a sealing material for the device. The purpose is to provide a resin composition suitable for

[問題を解決するための手段」 そこで本発明は前記技術的課題を達成するために、前記
透明無機粉末に、表面にカップリング剤をコーティング
してなる無機粉末を用い、該カップリング剤のコーティ
ング後の屈折率を、前記無機粉末の屈折率と前記樹脂屈
折率の間に位置するように設定した技術を提案する。
[Means for solving the problem] Therefore, in order to achieve the above-mentioned technical problem, the present invention uses an inorganic powder obtained by coating the surface of the transparent inorganic powder with a coupling agent, and coats the transparent inorganic powder with a coupling agent. We propose a technique in which the latter refractive index is set to be between the refractive index of the inorganic powder and the refractive index of the resin.

この場合前記カップリング剤は単独のカップリング剤を
用いてもよく、又屈折率の異なる複数のカップリング剤
を所定割合で配合して前記屈折率の調整を行ってもよい
In this case, a single coupling agent may be used as the coupling agent, or a plurality of coupling agents having different refractive indexes may be blended at a predetermined ratio to adjust the refractive index.

尚、前記粉末粒子と樹脂とのなじみ性を高めるためにカ
ップリング剤を無機粉末表面にコーティングする技術は
既に特開昭56−148538号に開示されているが、
かかる技術は単に前記カップリング剤をなじみ性を高め
るために使用されるもので1、カップリング剤の屈折率
を微妙に調整し、前記無機粉末の屈折率と前記樹脂屈折
率の間に位置するように設定した技術は何等開示されて
いない。
Incidentally, a technique for coating the surface of an inorganic powder with a coupling agent in order to improve the compatibility between the powder particles and the resin has already been disclosed in JP-A-56-148538.
This technique is simply used to improve the compatibility of the coupling agent.1 The refractive index of the coupling agent is finely adjusted to be located between the refractive index of the inorganic powder and the refractive index of the resin. The technology used to do this is not disclosed.

即ち透明無機粉末と樹脂は夫々異なる種類の物質で形成
されているために、両者間の屈折率を完全に合致するの
は不可能であり、ある程度の屈折率の差が出来てしまい
その分光透過性が低下するが、前記のカップリング剤を
利用して両物質間の屈折率の段差を極力少なくするよう
に構成する事によりその境界部における光の散乱を解消
し、光透過性を大幅に向上させる事が可能となり、かか
る点は前記技術には何等開示されておらず、新規で且つ
進歩性を有する部分である。
In other words, since the transparent inorganic powder and resin are each made of different types of materials, it is impossible to perfectly match the refractive indexes of the two, and a certain degree of difference in refractive index occurs, resulting in a decrease in spectral transmission. However, by using the coupling agent mentioned above to minimize the difference in refractive index between the two materials, scattering of light at the boundary can be eliminated and the light transmittance can be greatly improved. This point is not disclosed in the above technology and is a novel and inventive part.

尚、本発明においては前記透明無機粉末の屈折率と樹脂
屈折率との差を±0.01以内の範囲に設定するのが好
ましいが、前記屈折率を樹脂屈折率に近似させるために
、アルカリその他のイオン性物質を使用すると、その分
給縁性が低下し封止した半導体素子側への悪影響が出て
、仮に透明になったとしても実用には適さない。
In the present invention, it is preferable to set the difference between the refractive index of the transparent inorganic powder and the resin refractive index within a range of ±0.01, but in order to approximate the refractive index to the resin refractive index, an alkali If other ionic substances are used, their distribution properties will be reduced and the sealed semiconductor elements will be adversely affected, and even if they become transparent, they are not suitable for practical use.

又無機粉末にガラスを用いる限り前記イオン性物質を完
全にOにする事は不可能である。
Furthermore, as long as glass is used as the inorganic powder, it is impossible to completely convert the ionic substance to O.

そこで請求項2に記載した発明において前記無機粉末の
、溶出液電気伝導度(EC)の値を100μs以下に抑
える事によりアルミ配線の腐食その他の電気的不良をO
にする事が可能となった。
Therefore, in the invention described in claim 2, corrosion of aluminum wiring and other electrical defects are reduced by suppressing the eluate electrical conductivity (EC) value of the inorganic powder to 100 μs or less.
It became possible to do so.

そしてかかる点は本発明者は実験により始めて知見した
事実であり新規である。
This fact is new to the present inventors as it was first discovered through experiments.

又請求項3においては本発明の好ましい実施例として平
均粒径が30μm以下である透明無機粉末を樹脂中に含
有させると共に、前記透明無機粉末の屈折率と樹脂屈折
率との差を±0.01以内の範囲に設定した技術を提案
する。
In a preferred embodiment of the present invention, a transparent inorganic powder having an average particle size of 30 μm or less is contained in the resin, and the difference between the refractive index of the transparent inorganic powder and the resin refractive index is ±0. We propose a technology that sets the range within 0.01.

ただし、平均粒径を30μ以下にした理由は、30部以
上では樹脂硬化時に粉末が沈殿してしまい均一な樹脂組
成物ができなくなり、その結果透過率を阻害したり電気
的特性、機械的特性に影響し、成型性や表面状態も悪く
なる。
However, the reason why the average particle size is set to 30μ or less is that if it exceeds 30 parts, the powder will precipitate during resin curing, making it impossible to form a uniform resin composition. This will affect the moldability and surface condition.

「実施例」 重量%で、5in255.0%、Al2O,20,0χ
、B2O35%、Ba0 5%、ZnO5%、 CaO
4,7%、MgO5,0%As2030.3% からなるガラスサンプル名■を、通常の溶融装置および
光学ガラス原料を用いて、約1450℃の温度で溶融し
、撹拌均質化した後、ブロック形状に成形し徐冷した。
"Example" In weight%, 5in255.0%, Al2O, 20,0χ
, B2O 35%, Ba0 5%, ZnO 5%, CaO
4.7%, MgO5.0%As2030.3% is melted at a temperature of about 1450℃ using a normal melting device and optical glass raw material, stirred and homogenized, and then shaped into a block. It was molded and slowly cooled.

徐冷後の上記ガラスの屈折率(ヘリウムランプのd線の
波長での屈折率、以下Ndで示す)は、1.5335で
あった。
The refractive index (refractive index at the wavelength of the d-line of a helium lamp, hereinafter referred to as Nd) of the glass after slow cooling was 1.5335.

次に該ガラスを7v7.のアルミナ製ボットミルにサイ
ズを30〜7〇−程度に切断したものを2kg入れ5〜
lO時間程度粉砕し、平均粒径が10μm程度になるよ
うに調整する。ステンレスフルイでふるい、樹脂充填用
透明無機粉末を得た。
Next, the glass was 7v7. Put 2kg of cut pieces into alumina bot mill into sizes of 30 to 70 and place 5~
The particles are ground for about 10 hours and adjusted to have an average particle size of about 10 μm. A transparent inorganic powder for resin filling was obtained by sieving with a stainless steel sieve.

次に比較例として透明溶融石英ガラス5in2.市販の
アルカリガラスサンプル名■、及び屈折率無調整の無ア
ルカリガラスサンプル名mを前記と同様な製造方法で平
均粒径10μm程度の樹脂充填用透明無機粉末を得た。
Next, as a comparative example, transparent fused silica glass 5in2. Transparent inorganic powder for resin filling with an average particle size of about 10 μm was obtained using a commercially available alkali glass sample (name ①) and a non-alkali glass sample (name) whose refractive index was not adjusted using the same manufacturing method as described above.

(屈折率は夫々表−1に示す、)次にこれらの粉末試料
を純水中に授精して、オートクレーブ中で160℃、2
0時間処理した後、室温まで冷却してガラス中の成分溶
出液の電気伝導度(EC)を測定し、その値を下記表−
1に示す。
(The refractive index is shown in Table 1.) Next, these powder samples were fertilized in pure water and incubated at 160°C in an autoclave for 20 minutes.
After treatment for 0 hours, it was cooled to room temperature and the electrical conductivity (EC) of the component eluate in the glass was measured, and the values were summarized in the table below.
Shown in 1.

次に、前記ポットミル粉砕後の無機粉末を、ファインボ
リマーズ■のエポキシ樹脂、主剤 Ep 1fine 
6600.硬化111Epifine H−204をそ
れぞれ50部で配合して得た2液温合エポキシ[1(N
d=1゜5330)中に所定割合で充填し、混合均一化
させた後、その混合物を所定の型に鋳込み、硬化させる
ことにより、表−1に示す各樹脂組成物試料1〜7を得
た。
Next, the inorganic powder after pulverization in the pot mill was mixed with an epoxy resin of Fine Bolimers ■ and a base material Ep 1fine.
6600. Cured 2-component hot epoxy [1 (N
d=1°5330) at a predetermined ratio, mixed uniformly, and then cast the mixture into a predetermined mold and hardened to obtain each resin composition sample 1 to 7 shown in Table 1. Ta.

木表の試料1より理解される通り、電気伝導度(EC)
の値が100μs以下の好結果を得たが耐湿性不良率が
20%であり、そのうえ光透過率は屈折率差が小になる
ほど向上するが、尚樹脂のみで製造した試料4に比較し
て低減している。
As understood from sample 1 on the wooden surface, electrical conductivity (EC)
Good results were obtained with a value of 100 μs or less, but the moisture resistance failure rate was 20%.Furthermore, the light transmittance improved as the refractive index difference became smaller, but compared to sample 4 made only of resin. It is decreasing.

そこでカップリング剤として信越化学工業■朋M−40
3(γ−グリシドキシプロビルトリメトキシシラン(屈
折率nd25 1.427) )を試料1の無機粉末に
対して0.5重量%添加したもの、及び前記KBM−4
03(屈折率nd25 1.427)と信越化学工業■
KBM−202シフイニルジメトキシシラン(屈折率n
d25 1.5445)とを適当な配合で混ぜ、屈折率
が無機粉末と樹脂の硬化後の屈折率の中間(1,533
2)になるように調整したものを試料1の無機粉末に対
して、0.5重量%添加したものを使用して前記と同様
な方法で樹脂組成物試料2および3を製造した所、試料
2では透過率が若干悪化したが後者のカップリング剤を
使用した試料3 (本発明の実施例)において透過率が
大幅に向上することが確認できた。
Therefore, Shin-Etsu Chemical Co., Ltd. ■Ho M-40 was used as a coupling agent.
3 (γ-glycidoxypropyltrimethoxysilane (refractive index nd25 1.427)) added at 0.5% by weight to the inorganic powder of Sample 1, and the above KBM-4
03 (refractive index nd25 1.427) and Shin-Etsu Chemical ■
KBM-202 Sifinyldimethoxysilane (refractive index n
d25 1.5445) in an appropriate composition, and the refractive index is between the refractive index after curing of the inorganic powder and the resin (1,533
Resin composition samples 2 and 3 were produced in the same manner as above using 0.5% by weight of the inorganic powder of sample 1 which was adjusted to have the following properties. Although the transmittance of Sample 2 deteriorated slightly, it was confirmed that the transmittance of Sample 3 (Example of the present invention) using the latter coupling agent was significantly improved.

次に前記試料3に基づく樹脂組成物を利用して第1図に
示す光半導体装置を製造し、高温高温(温度85℃、湿
度85%)雰囲気下で一週間曝し、腐食、電気特性の劣
化、及び光透過性の劣化等を確認したところ何れも問題
がない事が確認された。
Next, an optical semiconductor device shown in FIG. 1 was manufactured using the resin composition based on Sample 3, and exposed for one week in a high temperature (temperature 85°C, humidity 85%) atmosphere to cause corrosion and deterioration of electrical properties. , and deterioration of light transmittance, etc., and it was confirmed that there were no problems in either case.

尚、図中1は外部からの光によって制御され、或いは信
号の授受を行う光半導体素子、2はリードフレーム、3
は該リードと光半導体素子を接続する布線、4はこれら
を封止する前記樹脂組成物からなる封止体である。
In the figure, 1 is an optical semiconductor element that is controlled by external light or transmits and receives signals, 2 is a lead frame, and 3 is an optical semiconductor element that is controlled by external light or transmits and receives signals.
Reference numeral 4 indicates a wiring connecting the leads and the optical semiconductor element, and 4 indicates a sealing body made of the resin composition for sealing these.

試料6の透過率は、気泡の影響でM(’jつ−(いΦ。The transmittance of sample 6 is M('jtsu-(Φ)) due to the influence of air bubbles.

「発明の効果」 以上記載した如く本発明によれば電気特性及び光透過性
の何れもが大幅に向上し、安価な光半導体素子のプラス
チイックパッケージ用材料として使用できるとともに、
しかもイオン性不純物の少ない無機粉末が入った樹脂組
成物なため、その電気的特性、機械的特性が良くなり、
高信頼性であり、かつ素子の寿命も延びる等の種々の著
効を有す。
"Effects of the Invention" As described above, according to the present invention, both electrical properties and light transmittance are significantly improved, and it can be used as a material for inexpensive plastic packaging of optical semiconductor devices.
Moreover, since the resin composition contains inorganic powder with low ionic impurities, its electrical and mechanical properties are improved.
It has various remarkable effects such as being highly reliable and extending the life of the element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る光半導体装置を示す断面
図である。
FIG. 1 is a sectional view showing an optical semiconductor device according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1)硬化後の樹脂の特定波長域での屈折率(以下樹脂屈
折率という)と近似する屈折率を有する透明無機粉末を
前記樹脂中に所定量充填させた樹脂組成物において、 前記透明無機粉末に、表面にカップリング剤をコーティ
ングしてなる無機粉末を用い、該カップリング剤のコー
ティング後の屈折率を、前記無機粉末の屈折率と前記樹
脂屈折率の間に位置するように設定した事を特徴とする
樹脂組成物。 2)前記無機粉末の溶出液電気伝導度(EC)の値を1
00μs以下に設定した事を特徴とする請求項1)記載
の樹脂組成物。 3)平均粒径が30μm以下である透明無機粉末を樹脂
中に含有させると共に、前記透明無機粉末の屈折率と樹
脂屈折率との差を±0.01以内の範囲に設定した事を
特徴とする請求項1)記載の樹脂組成物4)光半導体素
子を封止する封止部材の少なくとも一部に、透明樹脂組
成物を用いた光半導体装置において、 表面にカップリング剤をコーティングしてなる無機粉末
を樹脂中に含有させて前記樹脂組成物を形成すると共に
、該カップリング剤のコーティング後の屈折率を、前記
無機粉末の屈折率と前記樹脂屈折率の間に位置するよう
に設定した事を特徴とする光半導体装置。
[Scope of Claims] 1) A resin composition in which a predetermined amount of transparent inorganic powder having a refractive index in a specific wavelength range of the resin after curing (hereinafter referred to as resin refractive index) is filled into the resin. In this step, an inorganic powder whose surface is coated with a coupling agent is used, and the refractive index after coating with the coupling agent is positioned between the refractive index of the inorganic powder and the refractive index of the resin. A resin composition characterized by being set to. 2) The value of the electric conductivity (EC) of the eluate of the inorganic powder is 1
The resin composition according to claim 1), characterized in that the time is set to 00 μs or less. 3) A transparent inorganic powder having an average particle size of 30 μm or less is contained in the resin, and the difference between the refractive index of the transparent inorganic powder and the refractive index of the resin is set within ±0.01. The resin composition according to claim 1) 4) An optical semiconductor device using a transparent resin composition for at least a part of a sealing member for sealing an optical semiconductor element, the surface of which is coated with a coupling agent. The resin composition was formed by incorporating an inorganic powder into the resin, and the refractive index of the coupling agent after coating was set to be between the refractive index of the inorganic powder and the refractive index of the resin. An optical semiconductor device characterized by:
JP2197618A 1990-07-27 1990-07-27 Transparent resin composition and optical semiconductor device using the resin composition Expired - Lifetime JPH07110909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2197618A JPH07110909B2 (en) 1990-07-27 1990-07-27 Transparent resin composition and optical semiconductor device using the resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2197618A JPH07110909B2 (en) 1990-07-27 1990-07-27 Transparent resin composition and optical semiconductor device using the resin composition

Publications (2)

Publication Number Publication Date
JPH0485365A true JPH0485365A (en) 1992-03-18
JPH07110909B2 JPH07110909B2 (en) 1995-11-29

Family

ID=16377475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2197618A Expired - Lifetime JPH07110909B2 (en) 1990-07-27 1990-07-27 Transparent resin composition and optical semiconductor device using the resin composition

Country Status (1)

Country Link
JP (1) JPH07110909B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129299A (en) * 1977-04-18 1978-11-11 Mitsubishi Electric Corp Semitransparent epoxy resin composition
JPS5644589A (en) * 1979-09-18 1981-04-23 Furukawa Electric Co Ltd:The Manufacture of heat pipe
JPS611068A (en) * 1984-06-12 1986-01-07 Mitsubishi Electric Corp Photosemiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129299A (en) * 1977-04-18 1978-11-11 Mitsubishi Electric Corp Semitransparent epoxy resin composition
JPS5644589A (en) * 1979-09-18 1981-04-23 Furukawa Electric Co Ltd:The Manufacture of heat pipe
JPS611068A (en) * 1984-06-12 1986-01-07 Mitsubishi Electric Corp Photosemiconductor device

Also Published As

Publication number Publication date
JPH07110909B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US20050082691A1 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
CN110283561B (en) Packaging resin composition for LED display screen patch type discrete device and application thereof
US5609660A (en) Method of reducing water sensitivity of phosphate glass particles
JP2001261933A (en) Epoxy resin for sealing optical semiconductor element and optical semiconductor device
US7311972B2 (en) Filled epoxy resin compositions
JPH1117073A (en) Optical coupler and sealing resin composition
JP2001323135A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2003003043A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JPH02267137A (en) Sealing material
US7381359B2 (en) Method for making filled epoxy resin compositions
JPH0485365A (en) Transparent resin composition and photosemiconductor made by using it
JPH0554865B2 (en)
JPH0665473A (en) Filler for optically functional element sealing resin and resin composition using the same
JPH0375240A (en) Sealing material
JPS59164649A (en) Glass composition for sealing
JPH02261856A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP4762841B2 (en) Glass material composition for protecting optical semiconductor element and optical semiconductor device using the same
JP2003213079A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor apparatus
JP2633856B2 (en) Resin-sealed semiconductor device
JP2003277586A (en) Optical semiconductor device sealing epoxy resin composition and optical semiconductor device
JPH0665474A (en) Filler for optically functional element sealing resin and resin composition using the same
JPH03259948A (en) Light-transmitting resin composition and photosemiconductor device
JPH04222855A (en) Epoxy resin sealing material for photosemiconductor
JPH05183074A (en) Optical semiconductor device
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 15