JPH1117073A - Optical coupler and sealing resin composition - Google Patents
Optical coupler and sealing resin compositionInfo
- Publication number
- JPH1117073A JPH1117073A JP18068997A JP18068997A JPH1117073A JP H1117073 A JPH1117073 A JP H1117073A JP 18068997 A JP18068997 A JP 18068997A JP 18068997 A JP18068997 A JP 18068997A JP H1117073 A JPH1117073 A JP H1117073A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- powder
- light
- inorganic filler
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/8592—Applying permanent coating, e.g. protective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光結合半導体装置
およびその封止用樹脂組成物に係り、特に光電変換効率
と誤動作を防止するための光線遮蔽能に優れた光結合半
導体装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optically coupled semiconductor device and a resin composition for sealing the same, and more particularly to an optically coupled semiconductor device excellent in photoelectric conversion efficiency and light shielding ability for preventing malfunction. is there.
【0002】[0002]
【従来の技術】光結合半導体装置は、一般に発光素子と
受光素子とを組み合わせて発光素子に電気信号を入力
し、それから放射される光エネルギーを受光素子で受け
て電気信号に変換し、入出力間は完全に電気的に分離さ
れた状態にて出力側に入力信号を伝達させるものであっ
て、フォトカプラまたはオプトアイソレータの名称にて
一般に供され、論理回路結合、アナログリレー、モータ
コントロールなどに幅広く用いられている。2. Description of the Related Art In general, an optically coupled semiconductor device combines a light emitting element and a light receiving element, inputs an electric signal to the light emitting element, receives light energy radiated from the light receiving element, converts the light energy into an electric signal, and inputs / outputs the signal. Between them, the input signal is transmitted to the output side in a completely electrically separated state, and is generally provided by the name of an optocoupler or an opto-isolator, and is used for logic circuit coupling, analog relay, motor control, etc. Widely used.
【0003】図1に典型的な光結合半導体装置の回路構
成を、図2にその縦断面図を、図3に破断斜視図を示
す。図1〜3において、1は入力側の発光素子で、Ga
As素子、GaAsP素子、GaP素子などが用いられ
る。一方、2は出力側の受光素子で、フォトトランジス
タ、フォトサイリスタ、フォトダイオードなどが用いら
れる。3は発光素子と受光素子間で光を受け渡すための
埋込み体で、埋込み樹脂にはシリコーン樹脂などの透明
樹脂が多く用いられる。5、6は金属フレームから構成
されるリード電極で、42アロイなどのFe−Ni合
金、Cu合金などの薄板が用いられる。そして4が、外
部環境から内部素子を保護するための樹脂封止体であ
る。FIG. 1 shows a circuit configuration of a typical optical coupling semiconductor device, FIG. 2 shows a longitudinal sectional view thereof, and FIG. 3 shows a cutaway perspective view. 1 to 3, reference numeral 1 denotes a light emitting element on the input side,
As element, GaAsP element, GaP element and the like are used. On the other hand, 2 is a light receiving element on the output side, for which a phototransistor, a photothyristor, a photodiode or the like is used. Reference numeral 3 denotes an embedding body for transferring light between the light emitting element and the light receiving element, and a transparent resin such as a silicone resin is often used as the embedding resin. Reference numerals 5 and 6 denote lead electrodes composed of a metal frame, which are made of a thin plate made of a Fe-Ni alloy such as a 42 alloy or a Cu alloy. Reference numeral 4 denotes a resin sealing body for protecting the internal element from the external environment.
【0004】一般に封止樹脂には、黒色樹脂もしくは光
結合半導体素子用に調製された白色樹脂が用いられる。
旧来は黒色樹脂が用いられてきたが、黒色樹脂の場合に
は、発光素子から出た光のうち、埋込み透明樹脂−封止
黒色樹脂界面に入射した光の多くが黒色樹脂に含まれる
炭素粒子に吸収される。そのため、光結合半導体装置の
重要性能である光電変換効率(CTR)が低くなる。こ
の対策が検討され、現在では透明樹脂と封止樹脂との界
面で光を反射させるために白色の封止樹脂が広く使用さ
れるようになっている(特公昭57-6711 号公報など)。Generally, a black resin or a white resin prepared for an optical coupling semiconductor element is used as a sealing resin.
Black resin has been used in the past, but in the case of black resin, most of the light emitted from the light-emitting element and incident on the embedded transparent resin-sealing black resin interface is carbon particles contained in the black resin. Is absorbed by Therefore, the photoelectric conversion efficiency (CTR), which is an important performance of the optical coupling semiconductor device, is reduced. This measure has been studied, and at present, a white sealing resin is widely used to reflect light at the interface between the transparent resin and the sealing resin (Japanese Patent Publication No. 57-6711).
【0005】[0005]
【発明が解決しようとする課題】上述したように、フォ
トカプラなどの樹脂封止体には光線反射能に優れた白色
樹脂が多く用いられている。しかし、最近のパッケージ
の形態の変化によって白色樹脂には新しい性能が要求さ
れるようになってきた。即ち、パッケージは従来のスル
ーホール実装用の厚型パッケージ(図1)から表面実装
用の薄型パッケージ(図4)に急速に変化してきてい
る。例えば、図1のスルーホール実装用のDIP(ヂュ
アルインラインパッケージ)の厚さは約4 mmである
が、図2の表面実装タイプのSOP(スモールアウトラ
インパッケージ)の厚さは約2 mmであり、さらに、T
SOP(シンナースモールアウトラインパッケージ)で
は、その厚さは約1 mmである。このように薄型化した
場合、パッケージ表面から受光素子までの光遮蔽壁の厚
さが薄くなり、従来の白色封止樹脂では外乱光による誤
動作が起こりやすいという問題がある。As described above, a white resin excellent in light reflectivity is often used for a resin sealing body such as a photocoupler. However, new performance has been required for white resin due to recent changes in package form. That is, the package is rapidly changing from a conventional thick package for through-hole mounting (FIG. 1) to a thin package for surface mounting (FIG. 4). For example, the thickness of the through-hole mounting DIP (dual inline package) of FIG. 1 is about 4 mm, while the thickness of the surface mount type SOP (small outline package) of FIG. 2 is about 2 mm. Furthermore, T
For SOP (Thinner Small Outline Package), its thickness is about 1 mm. When the thickness is reduced in this manner, the thickness of the light shielding wall from the package surface to the light receiving element becomes thin, and there is a problem that the conventional white sealing resin is likely to malfunction due to disturbance light.
【0006】従来の白色封止樹脂は、有機酸無水物もし
くはノボラック型フェノール樹脂を硬化剤とするエポキ
シ樹脂20〜30重量%、溶融シリカ粉末50〜75重量%、二
酸化チタン粉末5 〜20重量%、その他から構成されてい
る。この構成の白色封止樹脂では、樹脂に必要とされる
光線反射能および光線遮蔽能は二酸化チタン粉末の添加
によって実現されている。しからば、薄型化して外乱光
の影響が大きくなっているとすれば、シリカ粉末を加え
ず、二酸化チタン粉末のみを加える、もしくは二酸化チ
タン粉末の割合をさらに増加させることが容易に構想さ
れる。The conventional white encapsulating resin is composed of 20 to 30% by weight of an epoxy resin using an organic acid anhydride or a novolak type phenol resin as a curing agent, 50 to 75% by weight of a fused silica powder, and 5 to 20% by weight of a titanium dioxide powder. , And others. In the white sealing resin having this configuration, the light reflecting ability and light shielding ability required for the resin are realized by adding titanium dioxide powder. Therefore, if the thickness is reduced and the influence of disturbance light is increased, it is easily envisioned that silica powder is not added and titanium dioxide powder alone is added or the ratio of titanium dioxide powder is further increased. .
【0007】しかし、白色封止樹脂中で二酸化チタンの
配合比を増加させると、以下の不都合が生じる。すなわ
ち、吸水率が増加し、半導体デバイスに必須とされるプ
レッシャークッカーテスト(PCT)で評価される耐湿
信頼性が低下する。また、熱膨張係数が増加し、ヒート
サイクルテスト(TCT)で評価される冷熱信頼性が低
下する。さらに、逆バイアス負荷高温放置試験(HTR
B)で評価される耐熱性が低下する。However, increasing the mixing ratio of titanium dioxide in the white sealing resin has the following disadvantages. That is, the water absorption increases, and the moisture resistance reliability evaluated by the pressure cooker test (PCT), which is indispensable for semiconductor devices, decreases. In addition, the coefficient of thermal expansion increases, and the thermal reliability evaluated by the heat cycle test (TCT) decreases. Further, a reverse bias load high-temperature storage test (HTR
The heat resistance evaluated in B) decreases.
【0008】要するに、本発明は、上記課題を解決する
ためのものであって、光変換効率が高く、高感度化が
可能であり、外乱光に対してデバイスの信頼性を確保
できる光結合半導体装置と封止用樹脂組成物の提供を目
的とする。In short, the present invention is intended to solve the above-mentioned problems, and is an optical coupling semiconductor which has high light conversion efficiency, can achieve high sensitivity, and can secure the reliability of a device against disturbance light. An object is to provide an apparatus and a sealing resin composition.
【0009】[0009]
【課題を解決するための手段】本発明者は、光結合半導
体装置用の封止樹脂として、有用な白色複合樹脂に関し
て鋭意研究を行った結果、通常の半導体デバイス、例え
ば記憶素子(メモリ)、ASIC(特定用途向け集積回
路)等の封止樹脂に配合される高純度無機質充填材粉末
の表面を二酸化チタン層で被覆することにより、低吸湿
性、低熱膨張性に加えて高温安定性に優れた白色封止樹
脂を提供でき、該白色封止樹脂を用いて光結合半導体装
置の外囲器を形成することにより、上記課題が解決でき
ることを見いだし、本発明を完成させるに至った。The inventor of the present invention has conducted intensive studies on a useful white composite resin as an encapsulating resin for an optically coupled semiconductor device, and as a result, has found that ordinary semiconductor devices such as a storage element (memory), By coating the surface of the high-purity inorganic filler powder mixed with the sealing resin such as ASIC (Application Specific Integrated Circuit) with a titanium dioxide layer, it has excellent high temperature stability in addition to low moisture absorption and low thermal expansion. The present inventors have found that the above problems can be solved by providing a white sealing resin, and forming an envelope of an optical coupling semiconductor device using the white sealing resin, and have completed the present invention.
【0010】本発明の封止用樹脂組成物に係る一態様
は、まず、高純度溶融シリカ粉末にバインダとしての硬
化性シリコーン化合物をまずコーティングして、微細な
二酸化チタン粉末を高速混合機でせん断力を加えながら
混合し、溶融シリカ粉末表面に二酸化チタン粉末を付着
させた後に、高温で硬化性シリコーン化合物を固化させ
ることによって、図7の模式断面図に示すように、無機
質充填材7の表面に二酸化チタン層8が被覆された、二
酸化チタン被覆溶融シリカ粉末が得られる。次に、この
二酸化チタン被覆溶融シリカ粉末を混合槽に投入し、さ
らにエポキシ樹脂粉末、硬化剤としての有機酸無水物、
硬化促進剤としての触媒、離型剤としての滑剤を添加し
混合の後、二軸加熱ロール等で溶融混練し、冷却後粉砕
して白色封止樹脂の粉末を得る。この白色封止樹脂は、
二酸化チタン被覆溶融シリカ粉末を充填剤としているた
め、二酸化チタン粉末を添加する高光反射率、高光遮蔽
性白色封止樹脂と比べて低吸水性、低熱膨張性、光熱安
定性のもので、かつ高光線反射能、高光線遮蔽能の白色
封止樹脂が得られる。この樹脂は、低圧トランスファー
成形機で成形できるようにタブレット(大型の縦長錠
剤)に打錠される。In one embodiment of the encapsulating resin composition of the present invention, a high-purity fused silica powder is first coated with a curable silicone compound as a binder, and fine titanium dioxide powder is sheared by a high-speed mixer. After mixing while applying force, the titanium dioxide powder is adhered to the surface of the fused silica powder, and then the curable silicone compound is solidified at a high temperature, as shown in the schematic sectional view of FIG. To obtain a titanium dioxide-coated fused silica powder coated with a titanium dioxide layer 8. Next, this titanium dioxide-coated fused silica powder was put into a mixing tank, and further an epoxy resin powder, an organic acid anhydride as a curing agent,
After adding and mixing a catalyst as a curing accelerator and a lubricant as a release agent, the mixture is melt-kneaded with a twin-screw heating roll or the like, cooled, and pulverized to obtain a white sealing resin powder. This white sealing resin is
Since the filler is made of fused silica powder coated with titanium dioxide, it has low water absorption, low thermal expansion and photothermal stability compared to high light reflectance and high light shielding white sealing resin to which titanium dioxide powder is added. A white encapsulating resin having light reflecting ability and high light shielding ability can be obtained. This resin is compressed into tablets (large vertical tablets) so that they can be molded by a low-pressure transfer molding machine.
【0011】次に、本発明の光結合半導体装置に係る一
態様は、リードフレームの素子搭載部に発光素子と受光
素子を接続し、硬化によりゴム状又はゲル状のシリコー
ン樹脂となる液状もしくは水アメ状の未硬化シリコーン
樹脂で発光素子と受光素子間に光透過通路を形成し、成
形機内で損傷を受けないように封止成形前にゲル化もし
くは硬化させる。次にこの光結合半導体素子を搭載した
リードフレームを低圧トランスファー成形機の加熱され
た下金型上に配置し、上金型を下降させて金型を閉じ、
成形機のタブレット投入口にプレヒータ等で予熱した上
記白色封止樹脂タブレットを投入の後、プランジャーを
下降もしくは上昇させて加熱溶融した白色封止樹脂をラ
ンナ(溝状樹脂注入路)、ゲート(湯口)を経てキャビ
ティに注入する。樹脂は、ほぼ1 〜3 分で硬化する。硬
化したリードフレームで連結した光結合半導体装置を金
型から取り出し、リードフレームを適当な形に打出し
(パンチアウト)し、外部への接続端子である外部リー
ドを適当な形に整えて光結合半導体装置は完成する。な
お、より良い信頼性を付与するために光結合半導体装置
は追加加熱(アフタキュア)されることが多い。その条
件は、150 ℃〜180 ℃で4 〜8 時間である。このように
して製造された光結合半導体装置は、二酸化チタンで被
覆された溶融シリカ粉末を用いた吸水性、低熱膨張性、
光熱安定性の、かつ高光反射率、高光遮蔽性の白色封止
樹脂を外囲器として用いているため、半導体デバイスに
必須の性能である耐湿信頼性、冷熱信頼性、耐熱性に優
れ、かつ光変換効率が高く、高感度化が可能な光結合半
導体装置を製造できる。Next, in one embodiment according to the optical coupling semiconductor device of the present invention, a light emitting element and a light receiving element are connected to an element mounting portion of a lead frame, and a liquid or water which becomes a rubber or gel silicone resin upon curing. A light transmitting passage is formed between the light emitting element and the light receiving element with a candy-like uncured silicone resin, and gelled or cured before sealing molding so as not to be damaged in the molding machine. Next, the lead frame equipped with the optical coupling semiconductor element is placed on the heated lower mold of the low-pressure transfer molding machine, the upper mold is lowered, and the mold is closed,
After the white sealing resin tablet preheated by a preheater or the like is charged into the tablet input port of the molding machine, the plunger is lowered or raised to lower the heated and melted white sealing resin into a runner (grooved resin injection path), a gate ( Pouring) into the cavity. The resin cures in approximately 1-3 minutes. The optical coupling semiconductor device connected with the cured lead frame is removed from the mold, the lead frame is punched out (punched out) into an appropriate shape, and the external leads, which are connection terminals to the outside, are arranged in an appropriate shape and optically coupled. The semiconductor device is completed. The optical coupling semiconductor device is often additionally heated (aftercure) in order to provide better reliability. The conditions are 150 ° C. to 180 ° C. for 4 to 8 hours. The optical coupling semiconductor device manufactured in this manner has a water absorption, a low thermal expansion property using a fused silica powder coated with titanium dioxide,
Since the white encapsulation resin, which is photothermally stable, has high light reflectance and high light shielding properties, is used as the envelope, it has excellent moisture resistance, cold heat reliability, and heat resistance, which are indispensable for semiconductor devices. An optical coupling semiconductor device with high light conversion efficiency and high sensitivity can be manufactured.
【0012】以下、本発明について更に詳細に説明す
る。Hereinafter, the present invention will be described in more detail.
【0013】まず、本発明の酸化チタニウム被覆無機質
充填材を構成する無機質充填材と酸化チタニウム粉末、
さらに被覆方法について説明する。First, an inorganic filler and titanium oxide powder constituting the titanium oxide-coated inorganic filler of the present invention,
Further, a coating method will be described.
【0014】本発明に供される無機質充填材としては、
すべての種類が対象たり得るが、半導体素子の封止に供
する制限から、水分と高温が加わったときに素子に悪影
響を与えるイオン性不純物を解離しない高純度の無機粉
末が適当である。さらに、素子面へ応力が加わることに
よる信頼性の低下を防ぐために低膨張性の無機粉末が適
当である。この目的から、溶融シリカ粉末、溶融シリカ
球、結晶性シリカ粉末、酸化アルミナ粉末、窒化ケイ素
粉末、窒化アルミニウム粉末、Eガラス等の高純度ガラ
ス粉末、またはガラス球、ガラス繊維、さらに難燃性を
付与する際に必要な三酸化アンチモン、四酸化アンチモ
ン、五酸化アンチモン等の酸化アンチモン粉末も使用で
きる。なお、これらの無機粉末からのイオン性不純物の
溶出を防止するために酸洗浄等の洗浄、もしくはハード
コート被覆等の被覆が行われていてもよい。これらの無
機粉末の中では溶融シリカ粉末が最も好ましい。The inorganic filler used in the present invention includes:
Although all types can be used, high-purity inorganic powders that do not dissociate ionic impurities that adversely affect the device when moisture and high temperature are applied are suitable due to the restrictions imposed on the sealing of the semiconductor device. Further, in order to prevent a decrease in reliability due to stress applied to the element surface, a low expansion inorganic powder is suitable. For this purpose, high-purity glass powder such as fused silica powder, fused silica spheres, crystalline silica powder, alumina oxide powder, silicon nitride powder, aluminum nitride powder, E glass, or glass spheres, glass fibers, and even flame retardant Antimony oxide powder such as antimony trioxide, antimony tetroxide, and antimony pentoxide required for application can also be used. Cleaning such as acid cleaning or coating such as hard coating may be performed to prevent elution of ionic impurities from these inorganic powders. Among these inorganic powders, fused silica powder is most preferred.
【0015】本発明に供される酸化チタニウムとして
は、すべての種類が対象たり得るが、上記無機質充填材
を被覆する目的から5 μm以下の平均粒径をもつことが
好ましい。より好ましくは1 μm以下である。酸化チタ
ニウムとしては、ルチル型の二酸化チタン、アナタース
型の二酸化チタンが使用できる。As the titanium oxide used in the present invention, all kinds can be used. However, it is preferable that the titanium oxide has an average particle size of 5 μm or less for the purpose of coating the above-mentioned inorganic filler. More preferably, it is 1 μm or less. As the titanium oxide, rutile-type titanium dioxide and anatase-type titanium dioxide can be used.
【0016】本発明のための無機質充填材の被覆方法と
しては、いかなる方法でもよいが、無機質充填材に強固
に付着して均一に無機質充填材を覆っている必要があ
る。以下に被覆方法を例示する。The method for coating the inorganic filler for the present invention may be any method, but it is necessary that the inorganic filler is firmly adhered to the inorganic filler to uniformly cover the inorganic filler. The coating method is exemplified below.
【0017】まず、被覆バインダとしてシリコーン樹脂
を用いる方法がある。これは、2 液からなる液状シリコ
ーン樹脂が使用できる。液状シリコーン樹脂の第1液
は、SiH基を有するシリコーンオイルであり、第2液
は、炭素二重結合を有するシリコーンオイルである。こ
の2 液を混合して、溶融シリカ粉末(平均粒径12μm)
表面に付着(コート)させ、その後、造粒混合装置で溶
融シリカ粉末表面に二酸化チタン粉末(平均粒径1 μ
m)を付着させた後に、加熱硬化させて二酸化チタン被
覆溶融シリカ粉末を得ることができる。First, there is a method using a silicone resin as a coating binder. This can be a two-part liquid silicone resin. The first liquid of the liquid silicone resin is a silicone oil having a SiH group, and the second liquid is a silicone oil having a carbon double bond. These two liquids are mixed and fused silica powder (average particle size 12 μm)
Attached (coated) to the surface, and then a titanium dioxide powder (average particle size 1 μm)
After adhering m), it can be cured by heating to obtain a titanium dioxide-coated fused silica powder.
【0018】また、被覆バインダとしてエポキシ樹脂等
の熱硬化性樹脂を用いる方法がある。溶融シリカ粉末
を、加熱された造粒混合装置で攪拌しながら、粉末もし
くは液状のエポキシ樹脂を加え、さらにフェノール樹
脂、酸無水物などの硬化剤とリン系触媒等を加えた後
に、表面に未硬化の粘着性エポキシ層をもつ溶融シリカ
粉末表面に二酸化チタン粉末を付着させた後に、加熱硬
化させて二酸化チタン被覆溶融シリカ粉末を得ることが
できる。Further, there is a method in which a thermosetting resin such as an epoxy resin is used as a coating binder. The powder or liquid epoxy resin is added to the fused silica powder while stirring with a heated granulation and mixing apparatus, and a curing agent such as a phenol resin or an acid anhydride and a phosphorus-based catalyst are added. After the titanium dioxide powder is adhered to the surface of the fused silica powder having the cured adhesive epoxy layer, it is cured by heating to obtain a titanium dioxide-coated fused silica powder.
【0019】さらに、被覆バインダとしてエンジニアリ
ングプラスチックス等の熱可塑性樹脂を用いる方法があ
る。溶融シリカ粉末を造粒混合装置で攪拌しながら溶剤
に溶解させた低分子量ノルボルネン樹脂を加え、その後
に二酸化チタン粉末を加えて付着させた後に、減圧脱気
して二酸化チタン被覆溶融シリカ粉末を得ることができ
る。また、別法として、溶剤に溶解させた低分子量ノル
ボルネン樹脂を加えた後、減圧加熱して溶剤を留去させ
た後に300 ℃以上の高温に加熱して、ノルボルネン樹脂
に付着性を持たせた後に二酸化チタン粉末を付着させ冷
却して二酸化チタン被覆溶融シリカ粉末を得ることもで
きる。Further, there is a method using a thermoplastic resin such as engineering plastics as the coating binder. A low molecular weight norbornene resin dissolved in a solvent is added while stirring the fused silica powder with a granulating and mixing apparatus, and then titanium dioxide powder is added and adhered, followed by degassing under reduced pressure to obtain a titanium dioxide-coated fused silica powder. be able to. Alternatively, after adding a low molecular weight norbornene resin dissolved in a solvent, the solvent was distilled off by heating under reduced pressure, and then heated to a high temperature of 300 ° C. or more to give the norbornene resin an adhesive property. Titanium dioxide powder may be applied later and cooled to obtain a titanium dioxide-coated fused silica powder.
【0020】さらに他の例としては、化学反応槽にエタ
ノールを投入し、チタンのアルコール溶液を加え、更に
ジエタノールアミンを加え、その溶液に溶融シリカ粉末
を浸漬して溶融シリカ粉末表面に薄膜を形成する。その
後、乾燥し高温に加熱して、二酸化チタン被覆溶融シリ
カ粉末を得る方法もある。As still another example, ethanol is charged into a chemical reaction tank, an alcohol solution of titanium is added, diethanolamine is further added, and the fused silica powder is immersed in the solution to form a thin film on the surface of the fused silica powder. . Thereafter, there is also a method of drying and heating to a high temperature to obtain a titanium dioxide-coated fused silica powder.
【0021】さらには、被覆バインダーとしてハードコ
ート層と呼ばれる硬度の高いシリコーン化合物を使用す
る方法、無機皮膜前駆体を用いることもできる。さらに
また、高温炉で二酸化チタンと溶融シリカ粉末を浮遊さ
せながら被覆することもできる。Furthermore, a method using a silicone compound having a high hardness called a hard coat layer as a coating binder, or an inorganic film precursor can also be used. Furthermore, it is also possible to coat while suspending titanium dioxide and fused silica powder in a high-temperature furnace.
【0022】上記各方法で作製された二酸化チタン被覆
溶融シリカ粉末は、表面の性質が異なるため、白色封止
樹脂のバインダ樹脂の種類によって使い分けることが好
ましい。白色封止樹脂を硬化させた後に、強固に二酸化
チタン被覆溶融シリカ粉末とバインダ樹脂が接着してい
る組合せがよい。Since the surface properties of the titanium dioxide-coated fused silica powder produced by each of the above methods are different, it is preferable to use differently depending on the type of the binder resin of the white sealing resin. A combination in which the titanium dioxide-coated fused silica powder and the binder resin are firmly adhered after the white sealing resin is cured is preferable.
【0023】本発明の封止用樹脂組成物の原料としての
合成樹脂には、まず、光の反射率を高めるために、光線
透過性の高いプラスチックまたはエンジニアリングプラ
スチックが使用できる。プラスチックまたはエンジニア
リングプラスチックとしては、例えば、ポリスチレン、
スチレン−アクリル系共重合体、ABS樹脂、アクリル
樹脂、ポリフェニレンオキシド、ポリカーボネート樹
脂、ノルボルネン樹脂などが使用できる。中でも、耐熱
性に優れたポリカーボネート樹脂とノルボルネン樹脂が
好適である。As the synthetic resin as a raw material of the encapsulating resin composition of the present invention, first, a plastic or engineering plastic having high light transmittance can be used in order to increase the light reflectance. As plastic or engineering plastic, for example, polystyrene,
Styrene-acrylic copolymer, ABS resin, acrylic resin, polyphenylene oxide, polycarbonate resin, norbornene resin, and the like can be used. Among them, a polycarbonate resin and a norbornene resin having excellent heat resistance are preferable.
【0024】これらプラスチックをマトリックスとする
場合には、プラスチック原料、二酸化チタン被覆溶融シ
リカ粉末および滑剤を均一に混合後、二軸加熱押出し機
に投入し、加熱下にせん断力により溶融混合押出しを行
うことによって調製できる。押し出された封止樹脂は、
造粒機(ペレタイザー)により造粒、冷却しペレット化
して素子封止用金型を装備した射出(インジェクショ
ン)成形機で、前記トランスファー成形機の手順に準じ
て光結合半導体装置を製造する。When these plastics are used as a matrix, the plastic raw materials, the titanium dioxide-coated fused silica powder and the lubricant are uniformly mixed, and then charged into a twin-screw extruder, and melt-mixed and extruded by heating under shearing force. Can be prepared. The extruded sealing resin is
An optical coupling semiconductor device is manufactured by an injection (injection) molding machine equipped with a device-sealing mold by granulating, cooling, and pelletizing by a granulator (pelletizer) according to the procedure of the transfer molding machine.
【0025】また、本発明の封止用樹脂組成物の原料と
しての合成樹脂には、メラミン樹脂、キシレン樹脂、不
飽和ポリエステル樹脂、アルキッド樹脂、ジアリールフ
タレート樹脂、トリアリールシアヌレート樹脂、セルロ
ーズ樹脂、エポキシ樹脂等が挙げられる。中でも接着性
の良好なエポキシ樹脂を用いることが好ましい。エポキ
シ樹脂の内では、加熱したときに変色の少ない有機酸無
水物もしくはノボラック型のフェノール樹脂を使用する
ことが好ましく、一般の半導体デバイスの封止用に調製
されたカーボン添加型の黒色封止樹脂からカーボンを除
いた組成を基本にすることが望ましい。The synthetic resin as a raw material of the encapsulating resin composition of the present invention includes melamine resin, xylene resin, unsaturated polyester resin, alkyd resin, diaryl phthalate resin, triaryl cyanurate resin, cellulose resin, Epoxy resins and the like can be mentioned. Among them, it is preferable to use an epoxy resin having good adhesiveness. Among the epoxy resins, it is preferable to use an organic acid anhydride or a novolak-type phenol resin that hardly discolors when heated, and a carbon-added black encapsulating resin prepared for encapsulating general semiconductor devices. It is desirable to use a composition excluding carbon from the base.
【0026】本発明で用いる発光素子としては、GaA
s素子、GaAsP素子、GaP素子などが用いられ
る。一方、受光素子としては、フォトトランジスタ、フ
ォトサイリスタ、フォトダイオードなどが用いられる。
その配置は多様であるが、大きく分類すれば、反射型配
置(図5)と対向型配置(図6)がある。The light emitting device used in the present invention is GaAs.
An s element, a GaAsP element, a GaP element, or the like is used. On the other hand, as the light receiving element, a phototransistor, a photothyristor, a photodiode, or the like is used.
Although the arrangements are various, they can be broadly classified into a reflection arrangement (FIG. 5) and an opposed arrangement (FIG. 6).
【0027】即ち、反射型配置の場合には、図5に示さ
れるように、両素子1,2を平面的に配置されたベッド
と呼ばれる部分にそれぞれ搭載(マウント)し外部回路
とつなぐための内部リード5,6と接続用細線を用いて
接続した後、透明の液状シリコーン樹脂3で両素子1,
2を包囲してレンズ状に埋め込み、その後、発光素子1
から放射した光Lを樹脂封止体4とレンズ状シリコーン
樹脂3の界面で反射させて受光素子2に効率的に送り届
けるために、本発明の封止用樹脂組成物でシリコーン樹
脂3を囲み白色の樹脂封止体4を成形(モールド)す
る。この反射型配置構造の場合に白色樹脂の反射率が直
接、光電変換効率に影響する。That is, in the case of the reflection type arrangement, as shown in FIG. 5, both the elements 1 and 2 are mounted (mounted) on a portion called a bed arranged in a plane and connected to an external circuit. After connecting to the internal leads 5 and 6 using the connecting thin wires, the two elements 1 and 2 are transparently liquid silicone resin 3.
2 and is embedded in a lens shape.
In order to reflect the light L emitted from the resin at the interface between the resin sealing body 4 and the lens-shaped silicone resin 3 and efficiently send the light L to the light receiving element 2, the sealing resin composition of the present invention surrounds the silicone resin 3 Is molded (molded). In the case of this reflective arrangement, the reflectance of the white resin directly affects the photoelectric conversion efficiency.
【0028】一方の対向型配置の場合には、図6に示さ
れるように、ベッドを上下に作り、受光素子2と発光素
子1を下上もしくは上下に対向させて搭載し、外部回路
とつなぐための内部リード5,6と接続用細線(図示さ
れず)を用いて接続した後、透明の液状シリコーン樹脂
3を両素子1,2をつなぐ形に埋め込み、その後発光素
子1から放射した光Lの内、シリコーン樹脂3の側面な
どから逃げる光を受光素子に効率的に送り届けるため
に、本発明の封止用樹脂組成物でシリコーン樹脂3を囲
み白色の樹脂封止体4を成形(モールド)する。この対
向型配置構造の場合も白色樹脂の反射率が光電変換効率
に影響する。On the other hand, in the case of the opposed type arrangement, as shown in FIG. 6, a bed is formed up and down, and the light receiving element 2 and the light emitting element 1 are mounted facing up or down and connected to an external circuit. After connecting with the internal leads 5 and 6 for connection using thin connecting wires (not shown), a transparent liquid silicone resin 3 is embedded in a shape connecting both the elements 1 and 2, and then the light L emitted from the light emitting element 1 Among them, in order to efficiently send the light escaping from the side surface of the silicone resin 3 to the light receiving element, the white resin sealing body 4 is formed by surrounding the silicone resin 3 with the sealing resin composition of the present invention (mold). I do. Also in the case of the opposed arrangement structure, the reflectance of the white resin affects the photoelectric conversion efficiency.
【0029】上述したとおり、本発明の光結合半導体装
置は、発光素子と受光素子とを電極リードもしくは電極
リード群の一部に接続し、かつ光線透過性の樹脂に発光
素子と受光素子とが埋め込まれており、上記埋込み体も
しくは上記埋込み体を含む各素子の外囲器を構成する樹
脂封止体を備えた光結合半導体装置において、樹脂封止
体が合成樹脂と無機質充填材からなるとともに、上記無
機質充填材が酸化チタニウムで被覆した無機質充填材を
含むことを特徴とするものであり、その光結合半導体装
置において、樹脂封止体の合成樹脂がエポキシ樹脂であ
り、無機質充填材および酸化チタニウム被覆無機質充填
材用基材がシリカ、アルミナ、窒化ケイ素、窒化アルミ
ニウムから選ばれた粉体である光結合半導体装置であ
り、また、樹脂封止体の合成樹脂が光線透過性をもつプ
ラスチックもしくはエンジニアリングプラスチックであ
り、無機質充填材および酸化チタニウム被覆無機質充填
材用基材がシリカ、アルミナ、窒化ケイ素、窒化アルミ
ニウムから選ばれた粉体である光結合半導体装置であ
る。As described above, in the optical coupling semiconductor device of the present invention, the light emitting element and the light receiving element are connected to the electrode lead or a part of the electrode lead group, and the light emitting element and the light receiving element are made of a light transmitting resin. In the optical coupling semiconductor device which is embedded and has a resin sealing body constituting an envelope of each element including the embedding body or the embedding body, the resin sealing body is made of a synthetic resin and an inorganic filler. Wherein the inorganic filler includes an inorganic filler coated with titanium oxide, and in the optical coupling semiconductor device, the synthetic resin of the resin sealing body is an epoxy resin; An optical coupling semiconductor device in which the base material for the titanium-coated inorganic filler is a powder selected from silica, alumina, silicon nitride, and aluminum nitride, and is resin-encapsulated. Is a plastic or engineering plastic having a light transmitting property, and the base material for the inorganic filler and the titanium oxide-coated inorganic filler is a powder selected from silica, alumina, silicon nitride, and aluminum nitride. Device.
【0030】一方、本発明の光線反射能と光線遮蔽能を
有する封止用樹脂組成物は、合成樹脂と無機質充填材か
らなるとともに、上記無機質充填材が酸化チタニウムで
被覆した無機質充填材を含むことを特徴とするものであ
り、その封止用樹脂組成物において、合成樹脂が有機酸
無水物硬化型もしくはフェノール樹脂硬化型のエポキシ
樹脂であり、酸化チタニウム被覆シリカ粉末が組成物全
体に対して20重量%から85重量%の範囲で含まれる封止
用樹脂組成物であり、また、合成樹脂がポリカーボネー
ト樹脂もしくはノルボルネン樹脂であり、酸化チタニウ
ム被覆シリカ粉末が組成物全体に対して20重量%から85
重量%の範囲で含まれる封止用樹脂組成物である。On the other hand, the encapsulating resin composition of the present invention having a light reflecting ability and a light shielding ability comprises a synthetic resin and an inorganic filler, and the inorganic filler comprises an inorganic filler coated with titanium oxide. In the sealing resin composition, the synthetic resin is an organic acid anhydride-curable or phenolic resin-curable epoxy resin, and the titanium oxide-coated silica powder is based on the entire composition. The encapsulating resin composition is contained in the range of 20% by weight to 85% by weight, and the synthetic resin is a polycarbonate resin or a norbornene resin, and the titanium oxide-coated silica powder is contained in an amount of 20% by weight to the entire composition. 85
It is a sealing resin composition contained in the range of% by weight.
【0031】[0031]
【作用】以上のように、本発明によれば、無機質充填材
粉末の表面を二酸化チタン層で被覆することにより低吸
湿性、低熱膨張性に加えて高温安定性に優れた白色封止
樹脂を提供でき、該白色封止樹脂で外囲器を構成する
と、光結合半導体装置に優れたデバイス信頼性を付与で
きるのである。As described above, according to the present invention, by coating the surface of the inorganic filler powder with a titanium dioxide layer, a white encapsulating resin having excellent high-temperature stability in addition to low hygroscopicity and low thermal expansion can be obtained. When the envelope is made of the white sealing resin, excellent device reliability can be provided to the optical coupling semiconductor device.
【0032】本発明の核となる思想は、半導体封止用樹
脂の充填材として機械的特性ほかの面で好適であるけれ
ども光線反射能と光線遮断能で劣るシリカ等無機質粉末
と、高光反射率および高光遮蔽性の酸化チタニウム粉末
のそれぞれの機能を最大限に発揮させる見地から、無機
質粉末の表面に酸化チタニウム粉末を固定もしくは表面
に酸化チタニウム層を形成することにより、必要な機械
的特性ほかを維持しながら、シリカ粉末等の中を透過し
て受光素子に至る外乱光経路を遮断し、その結果、光結
合半導体装置の光変換効率を向上できるとともに外乱光
による誤動作をなくすことができ、また光結合半導体装
置の各種信頼性を向上させることができるのである。The core idea of the present invention is that an inorganic powder such as silica, which is suitable as a filler for a semiconductor encapsulating resin in terms of mechanical properties and other properties but is inferior in light reflecting ability and light blocking ability, and a high light reflectance From the standpoint of maximizing the respective functions of titanium oxide powder with high light-shielding properties, by fixing titanium oxide powder on the surface of inorganic powder or forming titanium oxide layer on the surface, necessary mechanical properties etc. While maintaining, the disturbance light path that passes through silica powder or the like and reaches the light receiving element is blocked, so that the light conversion efficiency of the optical coupling semiconductor device can be improved and malfunction due to disturbance light can be eliminated, and Various reliability of the optical coupling semiconductor device can be improved.
【0033】[0033]
【発明の実施の形態】以下に本発明の実施例を説明す
る。なお、従来技術との比較のため比較例を併せて記載
する。まず、酸化チタニウム被覆無機質充填材として使
用する被覆充填材(A)〜(D)を説明する。Embodiments of the present invention will be described below. In addition, a comparative example is also described for comparison with the prior art. First, the coating fillers (A) to (D) used as the titanium oxide-coated inorganic filler will be described.
【0034】被覆充填材(A) 半導体封止樹脂用の高純度溶融シリカ粉末(重量平均粒
子径14μm、破砕状)5 kg、二酸化チタン粉末(アナ
タース型:重量平均粒子径 1μm)1 kg、および自己
接着性加熱硬化型の液状シリコーンゴム(付加形2 成分
形)の混合液50gを準備する。Coating filler (A) 5 kg of high-purity fused silica powder for semiconductor encapsulating resin (weight average particle diameter 14 μm, crushed), 1 kg of titanium dioxide powder (anatase type: weight average particle diameter 1 μm), and 50 g of a liquid mixture of a self-adhesive heat-curable liquid silicone rubber (additional two-component type) is prepared.
【0035】水平回転翼と側面に垂直攪拌翼を具備し、
かつ加熱および冷却機構、減圧排気機構をも具備する造
粒攪拌装置に、上記溶融シリカ粉末を投入し、室温で攪
拌する。1 分後に上記液状シリコーンゴムをスプレー方
式で噴霧投入し、攪拌を続ける。液状シリコーンゴムの
投入2 分後に、昇温を開始しながら、上記二酸化チタン
粉末を投入口から細流の形で2 分かけて添加する。二酸
化チタン粉末投入後、1 分を経過したら、攪拌速度を落
とし、減圧排気を微作動させながら造粒攪拌装置を150
℃まで昇温させる。昇温後、3 分経過したら冷却を開始
し、室温に冷却して取り出し、被覆充填材(A)を調製
した。A horizontal stirring blade and a vertical stirring blade on the side surface;
In addition, the above-mentioned fused silica powder is charged into a granulating and stirring device also provided with a heating and cooling mechanism and a reduced-pressure exhaust mechanism, and stirred at room temperature. After one minute, the above liquid silicone rubber is sprayed in by a spray method, and stirring is continued. Two minutes after the introduction of the liquid silicone rubber, the above-mentioned titanium dioxide powder is added from the introduction port in the form of a fine stream over a period of two minutes while the temperature is raised. One minute after the introduction of the titanium dioxide powder, reduce the stirring speed and turn on the granulation stirring device for 150 minutes while slightly operating the vacuum exhaust.
Heat up to ° C. After elapse of 3 minutes after the temperature was raised, cooling was started, cooled to room temperature and taken out to prepare a coated filler (A).
【0036】被覆充填材(B) 高純度溶融シリカ粉末(重量平均粒子径10μm、球状)
5 kg、二酸化チタン粉末(ルチル型:重量平均粒子径
0.8 μm)1 kg、液状のビスフェノールA型エポキシ
樹脂(エポキシ当量180 、粘度5000csp/52℃)35
g、硬化材であるメチル化ヘキサヒドロ無水フタル酸
(液体)14g、および触媒としてジアザビシクロウンデ
セン(液体)1 gを準備する。Coating filler (B) High purity fused silica powder (weight average particle diameter 10 μm, spherical)
5 kg, titanium dioxide powder (rutile type: weight average particle size
0.8 μm) 1 kg, liquid bisphenol A type epoxy resin (epoxy equivalent 180, viscosity 5000 csp / 52 ° C) 35
g, 14 g of methylated hexahydrophthalic anhydride (liquid) as a curing agent, and 1 g of diazabicycloundecene (liquid) as a catalyst are prepared.
【0037】被覆充填材(A)におけると同様の造粒攪
拌装置に、上記溶融シリカ粉末を投入し、室温で攪拌す
る。1 分後に、上記ジアザビシクロウンデセンをスプレ
ー方式で噴霧投入し、30秒間攪拌を続ける。次に、上記
メチル化ヘキサヒドロ無水フタル酸を同じく噴霧投入
し、直ちに液状の上記ビスフェノールA型エポキシ樹脂
をシリンジで投入する。次に、上記二酸化チタン粉末を
投入口から細流の形で2分かけて添加する。二酸化チタ
ン粉末投入後、1 分を経過したら、攪拌速度を落とし、
減圧排気を微作動させながら造粒攪拌装置の温度を1550
℃まで上げる。昇温後、1 分経過したら冷却を開始し、
室温に冷却して取り出し、被覆充填材(B)を調製し
た。The above fused silica powder is charged into the same granulating and stirring apparatus as in the case of the coating filler (A), and the mixture is stirred at room temperature. One minute later, the above diazabicycloundecene is sprayed in by a spray method, and stirring is continued for 30 seconds. Next, the above-mentioned methylated hexahydrophthalic anhydride is sprayed in the same manner, and the liquid bisphenol A-type epoxy resin is immediately injected with a syringe. Next, the titanium dioxide powder is added from the charging port in the form of a fine stream over 2 minutes. After one minute has passed since the introduction of the titanium dioxide powder, reduce the stirring speed,
The temperature of the granulation stirrer was raised to 1550 while slightly operating the vacuum evacuation.
Increase to ° C. 1 minute after the temperature rise, start cooling,
It was cooled to room temperature and taken out to prepare a coating filler (B).
【0038】被覆充填材(C) 高純度溶融シリカ粉末(重量平均粒子径14μm、破砕
状)5 kg、二酸化チタン粉末(ルチル型:重量平均粒
子径0.8 μm)1 kg、およびノルボルネン樹脂30gを
100 gのキシレン溶剤に溶解させたノルボルネン樹脂溶
液を準備する。Coating filler (C) 5 kg of high-purity fused silica powder (weight average particle diameter: 14 μm, crushed), 1 kg of titanium dioxide powder (rutile type: weight average particle diameter: 0.8 μm), and 30 g of norbornene resin
Prepare a norbornene resin solution dissolved in 100 g of xylene solvent.
【0039】被覆充填材(A)の製法と同様の造粒攪拌
装置に上記溶融シリカ粉末5 kgを投入し、室温で攪拌
する。1 分後に、上記ノルボルネン樹脂溶液をスプレー
方式で噴霧投入し、1 分間攪拌を続ける。次に、上記二
酸化チタン粉末を投入口から細流の形で2 分かけて添加
する。二酸化チタン粉末投入後、1 分を経過したら、攪
拌速度を落とし、減圧排気装置を作動させながら造粒攪
拌装置の温度を100 ℃まで上げる。昇温後、1 分経過し
たら冷却を開始し、室温に冷却して取り出し、被覆充填
材(C)を調製した。5 kg of the above fused silica powder is charged into a granulating and stirring apparatus similar to the method for producing the coated filler (A), followed by stirring at room temperature. One minute later, the norbornene resin solution is sprayed in by a spray method, and stirring is continued for one minute. Next, the above-mentioned titanium dioxide powder is added from the inlet in the form of a fine stream over 2 minutes. One minute after the introduction of the titanium dioxide powder, reduce the stirring speed, and raise the temperature of the granulation stirring device to 100 ° C. while operating the vacuum evacuation device. After elapse of one minute from the temperature rise, cooling was started, cooled to room temperature and taken out to prepare a coating filler (C).
【0040】被覆充填材(D) 高純度溶融シリカ粉末に換えて、窒化ケイ素粉末(重量
平均粒子径12μm、破砕状)7.5 kgを用いて被覆充填
材(A)の製法に従って被覆充填材(D)を調製した。Coating Filler (D) Instead of the high-purity fused silica powder, 7.5 kg of silicon nitride powder (weight average particle diameter 12 μm, crushed) was used in accordance with the method for preparing the coating filler (A). ) Was prepared.
【0041】実施例1 まず、使用原料として、クレゾールノボラック型エポキ
シ樹脂粉末(エポキシ当量220 、軟化点84℃)170 g、
ノボラック型フェノール樹脂粉末(水酸基当量104 、軟
化点75℃)77g、トリフェニルフォスフィン粉末4 g、
被覆充填材(A)粉末740 g、カルナバワックス粉末6
g、およびエポキシシランカップリング剤液体3 gを秤
量準備する。Example 1 First, 170 g of cresol novolak type epoxy resin powder (epoxy equivalent: 220, softening point: 84 ° C.) was used as raw materials.
77 g of novolak type phenol resin powder (hydroxyl equivalent: 104, softening point: 75 ° C.), 4 g of triphenylphosphine powder,
Coating filler (A) powder 740 g, carnauba wax powder 6
g and 3 g of an epoxysilane coupling agent liquid are weighed and prepared.
【0042】高速混合攪拌装置(ヘンシェルミキサー)
に被覆充填材(A)を投入し、1 分間混合の後、エポキ
シシランカップリング剤をスプレー噴射して加える。そ
の後、クレゾールノボラック型エポキシ樹脂、ノボラッ
ク型フェノール樹脂、トリフェニルフォスフィン粉末、
カルナバワックス粉末を順次に加えて充填材と樹脂の均
一混合体を調製する。次に二軸ロール(前ロール75℃、
後ロール105 ℃)に投入し、2 分混練の後に、ロールか
らシート状の白色樹脂を取り出し、冷却の後、粉砕して
白色エポキシ樹脂粉末を調製する。この粉末を打錠機で
タブレット化して光結合半導体装置の低圧トランスファ
ー成形装置での封止に使用する。High-speed mixing and stirring device (Henschel mixer)
The coating filler (A) is added to the mixture, and after mixing for 1 minute, the epoxysilane coupling agent is added by spraying. After that, cresol novolak type epoxy resin, novolak type phenol resin, triphenylphosphine powder,
Carnauba wax powder is added sequentially to prepare a homogeneous mixture of filler and resin. Next, a biaxial roll (front roll 75 ° C,
Thereafter, the mixture is put into a roll (105 ° C.), and after kneading for 2 minutes, the sheet-like white resin is taken out from the roll, cooled, and pulverized to prepare a white epoxy resin powder. This powder is formed into tablets with a tableting machine and used for sealing the optically coupled semiconductor device with a low-pressure transfer molding device.
【0043】光結合半導体装置の性能評価のため、2 タ
イプのTEG(テスト素子)を用意した。発光素子と受
光素子が対向配置され厚形(4 mm)のパッケージに封
止されたTEG−A(図6のタイプ)と、発光素子と受
光素子が同一平面上に配置された薄形(2 mm)のパッ
ケージに封止されたTEG−B(図5のタイプ)であ
る。TEG−Aは、光電変換効率の測定に使用し、TE
G−Bは、外乱光の影響評価に使用した。リードフレー
ム上に配置されたTEG−AとTEG−Bを各3個、低
圧トランスファー成形機を用いて封止した。封止の条件
は、175 ℃で3 分間で硬化成形した。封止成形後、リー
ドを切り離して外部リードの形状を整え、170 ℃で4 時
間、アフターキュアーして製作された白色樹脂封止光結
合半導体装置を、光変換効率、外乱光の影響等の評価に
使用した。To evaluate the performance of the optically coupled semiconductor device, two types of TEGs (test elements) were prepared. A TEG-A (type shown in FIG. 6) in which a light emitting element and a light receiving element are opposed to each other and sealed in a thick (4 mm) package, and a thin type (2) in which the light emitting element and the light receiving element are arranged on the same plane. mm) is a TEG-B (type in FIG. 5) sealed in a package. TEG-A is used for measuring the photoelectric conversion efficiency.
GB was used for evaluating the influence of disturbance light. Three each of TEG-A and TEG-B arranged on the lead frame were sealed using a low-pressure transfer molding machine. The sealing was performed at 175 ° C. for 3 minutes. After encapsulation molding, the lead is cut off, the external lead shape is adjusted, and the white resin encapsulated optical coupling semiconductor device manufactured by after-curing at 170 ° C for 4 hours is evaluated for light conversion efficiency, influence of disturbance light, etc. Used for
【0044】実施例2 被覆充填材(A)粉末に代えて、被覆充填材(B)粉末
を用い、実施例1の方法に従って白色エポキシ樹脂粉末
を調製するとともに、該白色エポキシ樹脂粉末のタブレ
ットを用いて白色樹脂封止光結合半導体装置を製作し
た。Example 2 A white epoxy resin powder was prepared according to the method of Example 1 by using the coating filler (B) powder in place of the coating filler (A) powder, and tablets of the white epoxy resin powder were prepared. A white resin-sealed optically coupled semiconductor device was fabricated using the method.
【0045】実施例3 被覆充填材(A)粉末に代えて、被覆充填材(C)粉末
を用い、実施例1の方法に従って白色エポキシ樹脂粉末
を調製するとともに、該白色エポキシ樹脂粉末のタブレ
ットを用いて白色樹脂封止光結合半導体装置を製作し
た。Example 3 A white epoxy resin powder was prepared according to the method of Example 1 by using the coating filler (C) powder instead of the coating filler (A) powder, and tablets of the white epoxy resin powder were prepared. A white resin-sealed optically coupled semiconductor device was fabricated using the method.
【0046】実施例4 被覆充填材(A)粉末740 gに代えて、高純度溶融シリ
カ粉末(重量平均粒子径14μm、破砕状) 140gと、被
覆充填材(A)粉末600 gを用い、実施例1の方法に従
って白色エポキシ樹脂粉末を調製するとともに、該白色
エポキシ樹脂粉末のタブレットを用いて白色樹脂封止光
結合半導体装置を製作した。Example 4 In place of 740 g of the coated filler (A) powder, 140 g of high-purity fused silica powder (14 μm in weight average particle size, crushed) and 600 g of the coated filler (A) powder were used. A white epoxy resin powder was prepared according to the method of Example 1, and a white resin sealed optically coupled semiconductor device was manufactured using the tablet of the white epoxy resin powder.
【0047】実施例5 被覆充填材(A)粉末740 gに代えて、高純度溶融シリ
カ粉末(重量平均粒子径14μm、破砕状) 240gと、被
覆充填材(A)粉末500 gを用い、実施例1の方法に従
って白色エポキシ樹脂粉末を調製するとともに、該白色
エポキシ樹脂粉末のタブレットを用いて白色樹脂封止光
結合半導体装置を製作した。Example 5 In place of 740 g of the coated filler (A) powder, 240 g of high-purity fused silica powder (weight average particle diameter 14 μm, crushed) and 500 g of the coated filler (A) powder were used. A white epoxy resin powder was prepared according to the method of Example 1, and a white resin sealed optically coupled semiconductor device was manufactured using the tablet of the white epoxy resin powder.
【0048】実施例6 被覆充填材(A)粉末740 gに代えて、高純度溶融シリ
カ粉末(重量平均粒子径14μm、破砕状) 340gと、被
覆充填材(A)粉末400 gを用い、実施例1の方法に従
って白色エポキシ樹脂粉末を調製するとともに、該白色
エポキシ樹脂粉末のタブレットを用いて白色樹脂封止光
結合半導体装置を製作した。Example 6 In place of 740 g of the coated filler (A) powder, 340 g of high-purity fused silica powder (14 μm in weight average particle size, crushed) and 400 g of the coated filler (A) powder were used. A white epoxy resin powder was prepared according to the method of Example 1, and a white resin sealed optically coupled semiconductor device was manufactured using the tablet of the white epoxy resin powder.
【0049】実施例7 被覆充填材(A)粉末740 gに代えて、高純度溶融シリ
カ粉末(重量平均粒子径14μm、破砕状) 440gと、被
覆充填材(A)粉末300 gを用い、実施例1の方法に従
って白色エポキシ樹脂粉末を調製するとともに、該白色
エポキシ樹脂粉末のタブレットを用いて白色樹脂封止光
結合半導体装置を製作した。Example 7 In place of 740 g of the coated filler (A) powder, 440 g of a high-purity fused silica powder (weight average particle diameter 14 μm, crushed) and 300 g of the coated filler (A) powder were used. A white epoxy resin powder was prepared according to the method of Example 1, and a white resin sealed optically coupled semiconductor device was manufactured using the tablet of the white epoxy resin powder.
【0050】実施例8 被覆充填材(A)粉末740 gに代えて、高純度溶融シリ
カ粉末(重量平均粒子径14μm、破砕状) 540gと、被
覆充填材(A)粉末200 gを用い、実施例1の方法に従
って白色エポキシ樹脂粉末を調製するとともに、該白色
エポキシ樹脂粉末のタブレットを用いて白色樹脂封止光
結合半導体装置を製作した。Example 8 Instead of 740 g of the coated filler (A) powder, 540 g of high-purity fused silica powder (14 μm in weight average particle size, crushed) and 200 g of the coated filler (A) powder were used. A white epoxy resin powder was prepared according to the method of Example 1, and a white resin sealed optically coupled semiconductor device was manufactured using the tablet of the white epoxy resin powder.
【0051】実施例9 クレゾールノボラック型エポキシ樹脂、ノボラック型フ
ェノール樹脂、トリフェニルフォスフィン、に代えて、
三官能エポキシ樹脂(トリグリシジルイソシアヌレー
ト、固形)粉末180 g、有機酸無水物(ヘキサヒドロ無
水フタル酸、固形)粉末68g、ジアザビシクロウンデセ
ン(液状)3 g、を用いて実施例1の方法に従って白色
エポキシ樹脂粉末を調製するとともに、該白色エポキシ
樹脂粉末のタブレットを用いて白色樹脂封止光結合半導
体装置を製作した。Example 9 In place of cresol novolak type epoxy resin, novolak type phenol resin and triphenylphosphine,
Method of Example 1 using 180 g of trifunctional epoxy resin (triglycidyl isocyanurate, solid) powder, 68 g of organic acid anhydride (hexahydrophthalic anhydride, solid) powder, and 3 g of diazabicycloundecene (liquid) And a white resin sealed optically coupled semiconductor device was manufactured using the white epoxy resin powder tablet.
【0052】実施例10 被覆充填材(A)粉末740 gに代えて、高純度溶融シリ
カ粉末(重量平均粒子径14μm、破砕状) 340gと、被
覆充填材(D)粉末400 gを用い、実施例1の方法に従
って白色エポキシ樹脂粉末を調製するとともに、該白色
エポキシ樹脂粉末のタブレットを用いて白色樹脂封止光
結合半導体装置を製作した。Example 10 In place of 740 g of the coated filler (A) powder, 340 g of high-purity fused silica powder (weight average particle diameter 14 μm, crushed) and 400 g of the coated filler (D) powder were used. A white epoxy resin powder was prepared according to the method of Example 1, and a white resin sealed optically coupled semiconductor device was manufactured using the tablet of the white epoxy resin powder.
【0053】実施例11 ノルボルネン樹脂粉末5 kg、高純度溶融シリカ粉末
(重量平均粒子径14μm、破砕状)9.74kg、E−ガラ
ス短繊維(ミルドファイバー、平均長0.2 mm)0.5 k
g、被覆充填材(C)粉末4.5 kg、カルナバワックス
粉末80g、ポリエチレンワックス粉末120 g、およびビ
ニルシランカップリング材液体60gを準備する。Example 11 5 kg of norbornene resin powder, 9.74 kg of high-purity fused silica powder (weight average particle diameter: 14 μm, crushed), 0.5 k of E-glass short fiber (milled fiber, average length: 0.2 mm) 0.5 k
g, 4.5 kg of the coating filler (C) powder, 80 g of carnauba wax powder, 120 g of polyethylene wax powder, and 60 g of vinylsilane coupling agent liquid.
【0054】高速混合攪拌装置(ヘンシェルミキサー)
に高純度溶融シリカ粉末、E−ガラス短繊維、被覆充填
材(C)粉末を投入して1 分間混合の後、ビニルシラン
カップリング剤をスプレー噴射して加える。その後、ノ
ルボルネン樹脂粉末、カルナバワックス粉末、ポリエチ
レンワックス粉末を加えて混合する。次に、二軸押出し
機(エクストルーザ)にホッパーより投入し、加熱混練
の後、ペレタイザーでペレット化する。この白色ペレッ
トを光結合半導体装置のインジェクション装置での封止
に使用した。TEG(テスト素子)の作製は、実施例1
に準じて行った。ただし、ノルボルネン樹脂封止のTE
Gの場合には、アフターキュアーは行わなかった。High-speed mixing and stirring device (Henschel mixer)
Then, high-purity fused silica powder, E-glass short fiber, and coating filler (C) powder are charged and mixed for 1 minute, and then a vinylsilane coupling agent is added by spraying. Thereafter, norbornene resin powder, carnauba wax powder, and polyethylene wax powder are added and mixed. Next, the mixture is put into a twin-screw extruder (extruder) from a hopper, heated and kneaded, and then pelletized by a pelletizer. This white pellet was used for sealing an optical coupling semiconductor device with an injection device. Production of TEG (test element) is described in Example 1.
It went according to. However, norbornene resin-sealed TE
In the case of G, after-cure was not performed.
【0055】実施例12 被覆充填材(A)粉末740 gに代えて、高純度溶融シリ
カ粉末(重量平均粒子径12μm、球状) 440gと、被覆
充填材(A)粉末300 gを用い、実施例1の方法に従っ
て白色エポキシ樹脂粉末を調製するとともに、該白色エ
ポキシ樹脂粉末のタブレットを用いて白色樹脂封止光結
合半導体装置を製作した。Example 12 Instead of 740 g of the coated filler (A) powder, 440 g of high-purity fused silica powder (weight average particle diameter 12 μm, spherical) and 300 g of the coated filler (A) powder were used. A white epoxy resin powder was prepared according to the method of Example 1, and a white resin sealed optically coupled semiconductor device was manufactured using the tablet of the white epoxy resin powder.
【0056】比較例1 実施例1の組成のうち、被覆充填材(A)粉末740 gに
代えて、高純度溶融シリカ粉末(重量平均粒子径14μ
m、破砕状) 615gと、二酸化チタン粉末(アナタース
型:重量平均粒子径1 μm)125 gを用い、実施例1の
方法に従って白色エポキシ樹脂粉末を調製するととも
に、該白色エポキシ樹脂粉末のタブレットを用いて白色
樹脂封止光結合半導体装置を製作した。Comparative Example 1 In the composition of Example 1, high-purity fused silica powder (weight average particle size: 14 μm) was used instead of 740 g of the coating filler (A) powder.
m, crushed) Using 615 g of titanium dioxide powder (125 g of anatase type: weight average particle diameter 1 μm) and 125 g of titanium dioxide powder, a white epoxy resin powder was prepared according to the method of Example 1, and a tablet of the white epoxy resin powder was prepared. A white resin-sealed optically coupled semiconductor device was fabricated using the method.
【0057】比較例2 実施例1の組成のうち、被覆充填材(A)粉末740 gに
代えて、高純度溶融シリカ粉末(重量平均粒子径14μ
m、破砕状) 490gと、二酸化チタン粉末(アナタース
型:重量平均粒子径1 μm)250 gを用い、実施例1の
方法に従って白色エポキシ樹脂粉末を調製するととも
に、該白色エポキシ樹脂粉末のタブレットを用いて白色
樹脂封止光結合半導体装置を製作した。Comparative Example 2 In the composition of Example 1, high-purity fused silica powder (weight average particle diameter 14 μm) was used in place of 740 g of the coating filler (A) powder.
m, pulverized) Using 490 g of titanium dioxide powder and 250 g of titanium dioxide powder (anatase type, weight average particle size: 1 μm), a white epoxy resin powder was prepared according to the method of Example 1, and a tablet of the white epoxy resin powder was prepared. A white resin-sealed optically coupled semiconductor device was fabricated using the method.
【0058】比較例3 実施例1の組成のうち、被覆充填材(A)粉末740 gに
代えて、高純度溶融シリカ粉末(重量平均粒子径14μ
m、破砕状) 240gと、二酸化チタン粉末(アナタース
型:重量平均粒子径1 μm)500 gを用い、実施例1の
方法に従って白色エポキシ樹脂粉末を調製するととも
に、該白色エポキシ樹脂粉末のタブレットを用いて白色
樹脂封止光結合半導体装置を製作した。Comparative Example 3 In the composition of Example 1, high-purity fused silica powder (weight average particle diameter: 14 μm) was used instead of 740 g of the coating filler (A) powder.
A white epoxy resin powder was prepared according to the method of Example 1 using 240 g of titanium dioxide powder (anatase type: weight average particle diameter 1 μm) and 240 g of titanium dioxide powder. A white resin-sealed optically coupled semiconductor device was fabricated using the method.
【0059】比較例4 実施例1の組成のうち、被覆充填材(A)粉末740 gに
代えて、高純度溶融シリカ粉末(重量平均粒子径14μ
m、破砕状) 240gと、二酸化チタン粉末(ルチル型:
重量平均粒子径0.8 μm)500 gを用い、実施例1の方
法に従って白色エポキシ樹脂粉末を調製するとともに、
該白色エポキシ樹脂粉末のタブレットを用いて白色樹脂
封止光結合半導体装置を製作した。Comparative Example 4 High-purity fused silica powder (weight average particle diameter: 14 μm) was used in place of 740 g of the coating filler (A) powder in the composition of Example 1.
m, crushed) 240 g, titanium dioxide powder (rutile type:
Using 500 g of a weight average particle diameter (0.8 μm), a white epoxy resin powder was prepared according to the method of Example 1, and
A white resin-sealed optically coupled semiconductor device was manufactured using the white epoxy resin powder tablet.
【0060】比較例5 実施例1の組成のうち、被覆充填材(A)粉末740 gに
代えて、高純度溶融シリカ粉末(重量平均粒子径14μ
m、破砕状) 740gを用い、実施例1の方法に従ってエ
ポキシ樹脂粉末を調製するとともに、該エポキシ樹脂粉
末のタブレットを用いて白色樹脂封止光結合半導体装置
を製作した。Comparative Example 5 In the composition of Example 1, high-purity fused silica powder (weight average particle diameter: 14 μm) was used instead of 740 g of the coating filler (A) powder.
m, crushed) Using 740 g, an epoxy resin powder was prepared according to the method of Example 1, and a white resin-sealed optically coupled semiconductor device was manufactured using a tablet of the epoxy resin powder.
【0061】白色エポキシ樹脂粉末およびエポキシ樹脂
粉末の加圧吸水率、膨張係数、高温体積抵抗率を評価し
て、表1に示した。その評価方法は、以下の通りであ
る。The white epoxy resin powder and the epoxy resin powder were evaluated for water absorption under pressure, expansion coefficient and volume resistivity at high temperature, and the results are shown in Table 1. The evaluation method is as follows.
【0062】加圧吸水率:径が5 cm,厚さ3 mmの円
板を作製し、150 ℃で2 時間、乾燥させた後、重量を測
定し、圧力釜(127 ℃の飽和水蒸気雰囲気)中で15時間
加湿した後、重量を秤量し、吸水量(重量%)をその差
から測定した。Pressurized water absorption: A disk having a diameter of 5 cm and a thickness of 3 mm was prepared, dried at 150 ° C. for 2 hours, weighed, and measured in a pressure cooker (127 ° C. saturated steam atmosphere). After humidification in water for 15 hours, the weight was weighed, and the water absorption (% by weight) was measured from the difference.
【0063】膨張係数:TMA(熱機械特性測定装置)
中で5 ℃/minで昇温させながらサンプル(4 mm×
4 mm×17mm)の膨張量を測定し、サンプル長と単位
温度当りの膨張量から熱膨張係数(率)を求めた。Expansion coefficient: TMA (thermomechanical property measuring device)
The sample (4 mm ×
The expansion amount (4 mm × 17 mm) was measured, and the thermal expansion coefficient (rate) was determined from the sample length and the expansion amount per unit temperature.
【0064】高温体積抵抗率:径が10cm、厚さ3 mm
の円板を作製し、150 ℃の乾燥機中で円板の上下に配置
した円形電極間に500 Vの電圧を印荷し、1 分後のリー
ク電流を測定し、その値と電極の大きさ、円板の厚みか
ら150 ℃での体積抵抗率を求めた。High temperature volume resistivity: diameter 10 cm, thickness 3 mm
A disk with a voltage of 500 V was impressed between circular electrodes placed above and below the disk in a dryer at 150 ° C, the leakage current after 1 minute was measured, and the value and the size of the electrode were measured. The volume resistivity at 150 ° C. was determined from the thickness of the disk.
【0065】白色樹脂封止光結合半導体装置を製作して
PCTテスト、HTRBテストを行い、その結果を表2
に示した。白色樹脂封止光結合半導体装置および樹脂封
止光結合半導体装置の評価方法は、以下のとおりであ
る。A white resin-sealed optically coupled semiconductor device was manufactured and subjected to a PCT test and an HTRB test.
It was shown to. The evaluation method of the white resin-sealed optically coupled semiconductor device and the resin-sealed optically coupled semiconductor device is as follows.
【0066】PCTテスト:TEG−Aを圧力釜(127
℃の飽和水蒸気雰囲気)中に投入し、一定時間毎に断
線、リーク等の不良を検査した。表2には、1000時間経
過時の不良発生数を記載した。PCT test: TEG-A was placed in a pressure cooker (127
(Saturated steam atmosphere at ℃) and inspected for defects such as disconnection and leak at regular intervals. Table 2 shows the number of defects occurring after 1000 hours.
【0067】TCTテスト:TEG−Aを熱サイクル試
験槽(−155 ℃×30minと+150℃×30minで1 サ
イクル)中に投入し、一定サイクル毎に断線、リーク等
の不良を検査した。表2には、500 サイクル経過時の不
良発生数を記載した。TCT test: TEG-A was placed in a thermal cycle test tank (one cycle at -155 ° C. × 30 min and + 150 ° C. × 30 min), and defects such as disconnection and leak were inspected at regular intervals. Table 2 shows the number of failures occurring after 500 cycles.
【0068】高温逆バイアス放置テスト:TEG−Aを
125 ℃の恒温槽に投入し、逆バイアス電圧を印荷して、
一定時間毎に断線、リーク等の不良を検査した。表2に
は、500 時間経過時の不良発生数を記載した。High temperature reverse bias storage test: TEG-A
Put into a 125 ° C constant temperature bath, apply reverse bias voltage,
Defects such as disconnection and leak were inspected at regular intervals. Table 2 shows the number of failures after 500 hours.
【0069】また、白色樹脂封止光結合半導体装置およ
び樹脂封止光結合半導体装置のCTRテスト、外乱光テ
ストの結果を表3に示した。評価方法は、以下のとおり
である。Table 3 shows the results of the CTR test and the disturbance light test of the white resin-sealed optically coupled semiconductor device and the resin-encapsulated optically coupled semiconductor device. The evaluation method is as follows.
【0070】光電変換効率評価テスト:TEG−AのC
TR(入出力の変換効率:CurrentTransfer Ratio)を
測定した。結果は、比較例5の酸化チタンを含まないエ
ポキシ樹脂粉末から製作した樹脂封止光結合半導体装置
の値を100 として、その値から計算した 。Photoelectric conversion efficiency evaluation test: C of TEG-A
TR (input / output conversion efficiency: Current Transfer Ratio) was measured. The result was calculated from the value of the resin-encapsulated optically-coupled semiconductor device manufactured from the epoxy resin powder containing no titanium oxide of Comparative Example 5 as 100.
【0071】外乱光の影響評価テスト:TEG−BとT
EG−Aのパッケージの上1 mmまで蛍光灯を近づけ、
受光素子の起電力を測定し、一定値を超えたときに不良
とした。Evaluation test of influence of disturbance light: TEG-B and T
Bring the fluorescent lamp up to 1 mm above the EG-A package,
The electromotive force of the light receiving element was measured.
【0072】[0072]
【表1】 [Table 1]
【0073】[0073]
【表2】 [Table 2]
【0074】[0074]
【表3】 [Table 3]
【0075】[0075]
【発明の効果】以上のように、本発明によれば、無機質
充填材粉末の表面を二酸化チタン層で被覆することによ
り、低吸湿性、低熱膨張性に加えて高温安定性に優れた
白色封止樹脂を提供でき、該白色封止樹脂で外囲器を構
成すると光結合半導体装置に優れたデバイス信頼性を付
与できる。この特性を活かして、本発明の白色封止光結
合半導体装置は論理回路結合、アナログリレー、モータ
コントロール等の電子部品の性能を向上させることがで
きる。さらには、本発明を適用した電子部品は、小型
化、薄型化ができ、携帯機器等への適用にも好適であ
る。すなわち、半導体関連製品の小型化に対応すること
ができ、その産業上の価値は極めて高い。As described above, according to the present invention, by coating the surface of the inorganic filler powder with the titanium dioxide layer, it is possible to obtain a white sealing material having excellent high-temperature stability in addition to low moisture absorption and low thermal expansion. A sealing resin can be provided, and when the envelope is made of the white sealing resin, excellent device reliability can be imparted to the optical coupling semiconductor device. Taking advantage of this characteristic, the white sealed optically coupled semiconductor device of the present invention can improve the performance of electronic components such as logical circuit coupling, analog relays, and motor control. Further, the electronic component to which the present invention is applied can be reduced in size and thickness, and is suitable for application to portable devices and the like. That is, it is possible to cope with miniaturization of semiconductor-related products, and its industrial value is extremely high.
【図1】光結合半導体装置の回路図である。FIG. 1 is a circuit diagram of an optical coupling semiconductor device.
【図2】光結合半導体装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the optical coupling semiconductor device.
【図3】光結合半導体装置の一部破断斜視図である。FIG. 3 is a partially cutaway perspective view of the optical coupling semiconductor device.
【図4】薄型の光結合半導体装置の縦断面図である。FIG. 4 is a longitudinal sectional view of a thin optical coupling semiconductor device.
【図5】反射型配置の光結合半導体装置の縦断面図であ
る。FIG. 5 is a longitudinal sectional view of an optical coupling semiconductor device of a reflection type arrangement.
【図6】対向型配置の光結合半導体装置の縦断面図であ
る。FIG. 6 is a vertical cross-sectional view of the optical coupling semiconductor device in the opposed arrangement.
【図7】酸化チタニウム被覆無機質充填材の摸式断面図
であるるFIG. 7 is a schematic cross-sectional view of a titanium oxide-coated inorganic filler.
1 発光素子 2 受光素子 3 埋込み体(光透過性樹脂) 4 樹脂封止体(封止樹脂) 5 入力用電極リード(発光側) 6 出力用電極リード(受光側) 7 無機質充填材 8 酸化チタニウム層 Reference Signs List 1 light emitting element 2 light receiving element 3 embedded body (light transmitting resin) 4 resin sealing body (sealing resin) 5 input electrode lead (light emitting side) 6 output electrode lead (light receiving side) 7 inorganic filler 8 titanium oxide layer
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 9/02 C08L 45/00 C08L 45/00 63/00 C 63/00 B 69/00 69/00 101/00 101/00 C09C 3/06 C09C 3/06 H01L 21/56 J H01L 21/56 31/12 A 31/12 23/30 R ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 9/02 C08L 45/00 C08L 45/00 63/00 C 63/00 B 69/00 69/00 101/00 101/00 C09C 3/06 C09C 3/06 H01L 21/56 J H01L 21/56 31/12 A 31/12 23/30 R
Claims (6)
くは電極リード群の一部に接続し、かつ光線透過性の樹
脂に発光素子と受光素子とが埋め込まれており、上記埋
込み体もしくは上記埋込み体を含む各素子の外囲器を構
成する樹脂封止体を備えた光結合半導体装置において、
樹脂封止体が合成樹脂と無機質充填材からなるととも
に、上記無機質充填材が酸化チタニウムで被覆した無機
質充填材を含むことを特徴とする光結合半導体装置。1. A light-emitting element and a light-receiving element are connected to an electrode lead or a part of an electrode lead group, and the light-emitting element and the light-receiving element are embedded in a light-transmitting resin. In an optical coupling semiconductor device provided with a resin sealing body constituting an envelope of each element including a body,
An optically coupled semiconductor device, wherein the resin sealing body is made of a synthetic resin and an inorganic filler, and the inorganic filler contains an inorganic filler coated with titanium oxide.
あり、無機質充填材および酸化チタニウム被覆無機質充
填材用基材がシリカ、アルミナ、窒化ケイ素、窒化アル
ミニウムから選ばれた粉体である請求項1記載の光結合
半導体装置。2. The synthetic resin of the resin sealing body is an epoxy resin, and the inorganic filler and the base material for the titanium oxide-coated inorganic filler are powders selected from silica, alumina, silicon nitride, and aluminum nitride. Item 2. The optical coupling semiconductor device according to Item 1.
つプラスチックもしくはエンジニアリングプラスチック
であり、無機質充填材および酸化チタニウム被覆無機質
充填材用基材がシリカ、アルミナ、窒化ケイ素、窒化ア
ルミニウムから選ばれた粉体である請求項1記載の光結
合半導体装置。3. The synthetic resin of the resin sealing body is a plastic or an engineering plastic having a light transmitting property, and the inorganic filler and the base material for the titanium oxide-coated inorganic filler are selected from silica, alumina, silicon nitride, and aluminum nitride. The optically coupled semiconductor device according to claim 1, wherein the optically coupled semiconductor device is a powder.
に、上記無機質充填材が酸化チタニウムで被覆した無機
質充填材を含むことを特徴とする光線反射能と光線遮蔽
能を有する封止用樹脂組成物。4. A sealing resin composition having a light reflecting ability and a light shielding ability, comprising a synthetic resin and an inorganic filler, wherein the inorganic filler comprises an inorganic filler coated with titanium oxide. .
フェノール樹脂硬化型のエポキシ樹脂であり、酸化チタ
ニウム被覆シリカ粉末が組成物全体に対して20重量%か
ら85重量%の範囲で含まれる請求項4記載の光線反射能
と光線遮蔽能を有する封止用樹脂組成物。5. The synthetic resin is an organic acid anhydride-curable or phenol resin-curable epoxy resin, and the titanium oxide-coated silica powder is contained in an amount of 20 to 85% by weight based on the whole composition. Item 6. A sealing resin composition having a light reflecting ability and a light shielding ability according to Item 4.
はノルボルネン樹脂であり、酸化チタニウム被覆シリカ
粉末が組成物全体に対して20重量%から85重量%の範囲
で含まれる請求項4記載の光線反射能と光線遮蔽能を有
する封止用樹脂組成物。6. The light-reflecting ability and light beam according to claim 4, wherein the synthetic resin is a polycarbonate resin or a norbornene resin, and the titanium oxide-coated silica powder is contained in the range of 20% by weight to 85% by weight based on the whole composition. A sealing resin composition having a shielding ability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18068997A JPH1117073A (en) | 1997-06-20 | 1997-06-20 | Optical coupler and sealing resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18068997A JPH1117073A (en) | 1997-06-20 | 1997-06-20 | Optical coupler and sealing resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1117073A true JPH1117073A (en) | 1999-01-22 |
Family
ID=16087595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18068997A Pending JPH1117073A (en) | 1997-06-20 | 1997-06-20 | Optical coupler and sealing resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1117073A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003515939A (en) * | 1999-11-26 | 2003-05-07 | センター ナショナル デ ラ レシェルシェ サイエンティフィック(シーエヌアールエス) | High voltage hybrid circuit |
JP2011057917A (en) * | 2009-09-14 | 2011-03-24 | Sony Chemical & Information Device Corp | Light-reflective, anisotropic, electroconductive adhesive, and light-emitting device |
JP2012227541A (en) * | 2012-07-03 | 2012-11-15 | Hitachi Chem Co Ltd | Thermosetting resin composition for light reflection, optical semiconductor mounting board using the same, manufacturing method of the same and optical semiconductor device |
JP2013012763A (en) * | 2012-08-24 | 2013-01-17 | Hitachi Chem Co Ltd | Thermosetting resin composition for light reflection, optical semiconductor mounting substrate manufactured using the same, method for manufacturing the substrate, and optical semiconductor device |
JP2014027302A (en) * | 2005-08-04 | 2014-02-06 | Nichia Chem Ind Ltd | Light-emitting device, manufacturing method thereof, molded body and sealing member |
JP2014132693A (en) * | 2014-04-03 | 2014-07-17 | Hitachi Chemical Co Ltd | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2014140070A (en) * | 2014-04-14 | 2014-07-31 | Hitachi Chemical Co Ltd | Thermosetting resin composition for light reflection, optical semiconductor mounting board using the same, manufacturing method of the same and optical semiconductor device |
JP2016219855A (en) * | 2016-10-06 | 2016-12-22 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2016225666A (en) * | 2016-10-06 | 2016-12-28 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2016225665A (en) * | 2016-10-06 | 2016-12-28 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2017011309A (en) * | 2016-10-06 | 2017-01-12 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2017028310A (en) * | 2016-10-06 | 2017-02-02 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2018053264A (en) * | 2017-12-27 | 2018-04-05 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2019178303A (en) * | 2018-03-30 | 2019-10-17 | 太陽インキ製造株式会社 | Curable resin composition, dry film, cured product and electronic component |
JP2020115588A (en) * | 2020-04-27 | 2020-07-30 | 日亜化学工業株式会社 | Resin mold and surface-mounting type light-emitting device, and manufacturing methods thereof |
US11631790B2 (en) | 2006-05-18 | 2023-04-18 | Nichia Corporation | Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same |
-
1997
- 1997-06-20 JP JP18068997A patent/JPH1117073A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003515939A (en) * | 1999-11-26 | 2003-05-07 | センター ナショナル デ ラ レシェルシェ サイエンティフィック(シーエヌアールエス) | High voltage hybrid circuit |
JP2014027302A (en) * | 2005-08-04 | 2014-02-06 | Nichia Chem Ind Ltd | Light-emitting device, manufacturing method thereof, molded body and sealing member |
JP2017108173A (en) * | 2005-08-04 | 2017-06-15 | 日亜化学工業株式会社 | Light-emitting device, manufacturing method thereof, and molded article |
US9034671B2 (en) | 2005-08-04 | 2015-05-19 | Nichia Corporation | Light-emitting device and method for manufacturing same |
JP2015156519A (en) * | 2005-08-04 | 2015-08-27 | 日亜化学工業株式会社 | Light-emitting device and method for manufacturing the same, and mold |
EP1914811B2 (en) † | 2005-08-04 | 2016-01-13 | Nichia Corporation | Light-emitting device, method for manufacturing same, molded body and sealing member |
US11631790B2 (en) | 2006-05-18 | 2023-04-18 | Nichia Corporation | Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same |
JP2011057917A (en) * | 2009-09-14 | 2011-03-24 | Sony Chemical & Information Device Corp | Light-reflective, anisotropic, electroconductive adhesive, and light-emitting device |
US9548141B2 (en) | 2009-09-14 | 2017-01-17 | Dexerials Corporation | Light-reflective anisotropic conductive adhesive and light-emitting device |
JP2012227541A (en) * | 2012-07-03 | 2012-11-15 | Hitachi Chem Co Ltd | Thermosetting resin composition for light reflection, optical semiconductor mounting board using the same, manufacturing method of the same and optical semiconductor device |
JP2013012763A (en) * | 2012-08-24 | 2013-01-17 | Hitachi Chem Co Ltd | Thermosetting resin composition for light reflection, optical semiconductor mounting substrate manufactured using the same, method for manufacturing the substrate, and optical semiconductor device |
JP2014132693A (en) * | 2014-04-03 | 2014-07-17 | Hitachi Chemical Co Ltd | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2014140070A (en) * | 2014-04-14 | 2014-07-31 | Hitachi Chemical Co Ltd | Thermosetting resin composition for light reflection, optical semiconductor mounting board using the same, manufacturing method of the same and optical semiconductor device |
JP2016219855A (en) * | 2016-10-06 | 2016-12-22 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2017011309A (en) * | 2016-10-06 | 2017-01-12 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2017028310A (en) * | 2016-10-06 | 2017-02-02 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2016225665A (en) * | 2016-10-06 | 2016-12-28 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2016225666A (en) * | 2016-10-06 | 2016-12-28 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2018053264A (en) * | 2017-12-27 | 2018-04-05 | 日立化成株式会社 | Optical semiconductor element mounting substrate and optical semiconductor device |
JP2019178303A (en) * | 2018-03-30 | 2019-10-17 | 太陽インキ製造株式会社 | Curable resin composition, dry film, cured product and electronic component |
JP2020115588A (en) * | 2020-04-27 | 2020-07-30 | 日亜化学工業株式会社 | Resin mold and surface-mounting type light-emitting device, and manufacturing methods thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6246123B1 (en) | Transparent compound and applications for its use | |
JPH1117073A (en) | Optical coupler and sealing resin composition | |
JP4922189B2 (en) | Optical element, method for manufacturing element that emits radiation, optical element, and element that emits radiation | |
CN101268559B (en) | Light-emitting device, method for manufacturing same, molded body and sealing member | |
CN110283561B (en) | Packaging resin composition for LED display screen patch type discrete device and application thereof | |
US20130328091A1 (en) | Light reflecting member for optical semiconductor, and substrate for mounting optical semiconductor and optical semiconductor device using the light reflecting member | |
KR102125023B1 (en) | Epoxy resin composition for photosemiconductor element molding and method for preparation of the same | |
KR102313269B1 (en) | Light sensor | |
WO2014199728A1 (en) | Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device | |
JPH04142070A (en) | Semiconductor device | |
JP4936173B2 (en) | Resin composition for optical semiconductor encapsulation and optical semiconductor device | |
JP2874524B2 (en) | Epoxy molding compound for sealing | |
KR100712876B1 (en) | Light emitting diode capable of improving color uniformity and a manufacturing method thereof | |
JP2656350B2 (en) | Optical semiconductor device, method for producing the same, and resin composition for encapsulating optical semiconductor used therein | |
JP2523512B2 (en) | Optical semiconductor device | |
JPH03201470A (en) | Optical semiconductor device | |
JPH04222855A (en) | Epoxy resin sealing material for photosemiconductor | |
JPS5921076A (en) | Photo receiving semiconductor device | |
JPH11158356A (en) | Epoxy resin composition for sealing photosemiconductor | |
JPH05218241A (en) | Forming material of liquid epoxy resin | |
JP2000063635A (en) | Epoxy resin composition for photo-semiconductor and photo-semiconductor device | |
JPH04196570A (en) | Transparent resin-sealed light transmission type semiconductor device | |
JPH09211223A (en) | Optical module | |
JPS62250659A (en) | Resin sealed semiconductor device | |
KR940014610A (en) | Epoxy Resin Composition for Optical Semiconductor Encapsulation |