JPH09211223A - Optical module - Google Patents

Optical module

Info

Publication number
JPH09211223A
JPH09211223A JP8020899A JP2089996A JPH09211223A JP H09211223 A JPH09211223 A JP H09211223A JP 8020899 A JP8020899 A JP 8020899A JP 2089996 A JP2089996 A JP 2089996A JP H09211223 A JPH09211223 A JP H09211223A
Authority
JP
Japan
Prior art keywords
resin
optical
optical module
embedded image
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020899A
Other languages
Japanese (ja)
Inventor
Takumi Ueno
巧 上野
Toshiaki Ishii
利昭 石井
Kuniyuki Eguchi
州志 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8020899A priority Critical patent/JPH09211223A/en
Publication of JPH09211223A publication Critical patent/JPH09211223A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce the damage of the optical element and optical fiber in the optical module by precoating an optical path with a light transmitting resin and then sealing the resin at a specified temp. SOLUTION: A light emitting element, a light receiving element, an optical waveguide and an optical fiber are optically connected in the optical module, an optical path is precoated with a light transmitting resin, and the resin is sealed at 100-130 deg.C. An epoxy resin shown in formula I, a curing agent shown in formula II and a curing accelerator shown in formula II are used as the essential components, the resin further contains 50-95wt.% silica filler, and the resin is sealed at 100-130 deg.C. In formula III, X1 , X2 and X3 are the atom or atomic group selected from >=1C org. group, hydrogen atom, hydroxyl and halogen atom and can be the same or different.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は新規な光モジュール
封止樹脂組成物及びそれを用いた光モジュールに関す
る。
TECHNICAL FIELD The present invention relates to a novel optical module encapsulating resin composition and an optical module using the same.

【0002】[0002]

【従来の技術】近年の光通信技術の進展に伴い、家庭ま
での光ファイバ網の構築が進められようとしている。こ
のためには低価格光モジュールが必須であり、金属封止
やセラミック封止に代わる低価格の封止技術が望まれ
る。半導体の封止工程では約170℃に加熱された金型に
樹脂を投入して素子を封止する低圧トランスファモール
ド方式の樹脂封止が用いられる(特開平5−54865号公
報)。しかし、この封止技術を光モジュールに適用する
と加熱による光ファイバ被覆の劣化,光学素子固定の歪
などの問題が起こる。このため、なるべく低い温度で封
止することが望ましい。
2. Description of the Related Art With the progress of optical communication technology in recent years, construction of an optical fiber network up to home is being promoted. For this purpose, a low-priced optical module is indispensable, and a low-priced encapsulation technology that replaces metal encapsulation and ceramic encapsulation is desired. In the semiconductor encapsulation process, low-voltage transfer mold type resin encapsulation is used in which a resin is put into a mold heated to about 170 ° C. to encapsulate the element (Japanese Patent Laid-Open No. 5-54865). However, if this sealing technique is applied to an optical module, problems such as deterioration of the optical fiber coating due to heating and distortion of fixing the optical element occur. Therefore, it is desirable to seal at a temperature as low as possible.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は130
℃以下100℃以上の温度で封止でき、かつ熱収縮率の
小さい封止樹脂からなる光モジュールを提供することに
ある。
DISCLOSURE OF THE INVENTION The object of the present invention is 130
An object of the present invention is to provide an optical module made of a sealing resin which can be sealed at a temperature of 100 ° C. or lower and 100 ° C. or higher and has a small heat shrinkage rate.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の目的を
達成するために、下記の技術的手段が用いられている。
すなわち、その第1の手段は、発光素子,受光素子,光
導波路,光ファイバとが光学的に結合されるように配置
された光モジュールで、光路を光透過性樹脂でプリコー
トした後、樹脂封止成形が130℃以下100℃以上の
温度により行われることを特徴とする光モジュール。
In order to achieve the above object, the present invention uses the following technical means.
That is, the first means is an optical module in which a light emitting element, a light receiving element, an optical waveguide, and an optical fiber are arranged so as to be optically coupled, and the optical path is pre-coated with a light-transmissive resin and then sealed with a resin. An optical module, wherein the stop molding is performed at a temperature of 130 ° C. or lower and 100 ° C. or higher.

【0005】第2の手段は、化7で示されるエポキシ樹
脂,化8で示される硬化剤と一般式化9で示される硬化
促進剤を必須成分とし、かつシリカ充填材を50〜95
重量%含んでおり、樹脂封止成形が130℃以下100
℃以上の温度により行われることを特徴とする光モジュ
ール。
The second means is to use an epoxy resin represented by Chemical formula 7, a curing agent represented by Chemical formula 8 and a curing accelerator represented by the general formula 9 as essential components, and a silica filler in an amount of 50 to 95.
Contains 100% by weight, and resin encapsulation molding is below 130 ° C 100
An optical module which is performed at a temperature of ℃ or more.

【0006】[0006]

【化7】 Embedded image

【0007】[0007]

【化8】 Embedded image

【0008】[0008]

【化9】 Embedded image

【0009】第3の手段は化10で示されるエポキシ樹
脂,化11で示される硬化剤と一般式化12で示される
硬化促進剤を必須成分とし、かつシリカ充填材を50〜
95重量%含んでおり、樹脂封止成形が130℃以下1
00℃以上の温度により行われることを特徴とする光モ
ジュール。
A third means is to use an epoxy resin represented by Chemical formula 10, a curing agent represented by Chemical formula 11 and a curing accelerator represented by the general formula 12 as essential components, and a silica filler in an amount of 50 to 50%.
Contains 95% by weight, and resin encapsulation molding is 130 ° C or less 1
An optical module which is performed at a temperature of 00 ° C. or higher.

【0010】[0010]

【化10】 Embedded image

【0011】[0011]

【化11】 Embedded image

【0012】[0012]

【化12】 Embedded image

【0013】本発明における硬化温度は、130℃以上
の温度では光ファイバの被覆の劣化が起こり、100℃
以下では硬化反応が不十分である。
The curing temperature in the present invention is 100 ° C. when the temperature of 130 ° C. or higher causes deterioration of the coating of the optical fiber.
Below, the curing reaction is insufficient.

【0014】本発明における光路をプリコートする光透
過性樹脂は用いる光通信に用いる波長により異なるが、
その波長で透過性があり、130℃以上の耐熱性のある
材料ならばいかなるものでもよい。ポリイミド,フッ素
化ポリイミド,ポリメチルメタクリレート,ポリウレタ
ン,エポキシ樹脂、などがある。また、光硬化する樹脂
を用いてもよい。
The light-transmitting resin for precoating the optical path in the present invention varies depending on the wavelength used for optical communication,
Any material can be used as long as it is transparent at that wavelength and has a heat resistance of 130 ° C. or higher. Polyimide, fluorinated polyimide, polymethylmethacrylate, polyurethane, epoxy resin, etc. are available. Alternatively, a photocurable resin may be used.

【0015】本発明で、化13で示すナフタレン型多官
能エポキシ樹脂や化14に示すトリスヒドロキシフェニ
ルメタン型多官能エポキシ樹脂,化3に示すトリスヒド
ロキシフェニルメタン型多官能フェノール硬化剤,トリ
フェニルフォスフィンおよびその誘導体硬化促進剤を封
止樹脂組成物のベース樹脂として用いることにより、1
00〜130℃での低温での成形が可能である。また、
これらの樹脂成形では通常の成形温度で成形した場合ガ
ラス転移温度が高くなるため熱収縮量が減少し、歪量を
大幅に低下させることができる。
In the present invention, the naphthalene type polyfunctional epoxy resin represented by Chemical formula 13, the trishydroxyphenylmethane type polyfunctional epoxy resin represented by Chemical formula 14, the trishydroxyphenylmethane type polyfunctional phenol curing agent represented by Chemical formula 3, and triphenylphosphine are used. By using the fin and its derivative curing accelerator as the base resin of the encapsulating resin composition, 1
Molding at low temperatures of 00 to 130 ° C is possible. Also,
In these resin moldings, when molded at a normal molding temperature, the glass transition temperature becomes high, so the amount of heat shrinkage decreases, and the amount of strain can be significantly reduced.

【0016】[0016]

【化13】 Embedded image

【0017】[0017]

【化14】 Embedded image

【0018】その他本発明の封止樹脂組成物で用いられ
るエポキシ樹脂は、ガラス転移温度を成形温度以上に高
めることができて、かつ一分子中にエポキシ基を複数有
しているものであればいかなるものでもよい。このよう
なエポキシ樹脂としては、ビスフェノールA,Fまたは
S型エポキシ樹脂,フェノールノボラック型エポキシ樹
脂,クレゾールノボラック型エポキシ樹脂、または分子
中にビフェニル骨格やナフタレン骨格,ジシクロペンタ
ジエン骨格を有する二官能以上のエポキシ樹脂,脂環式
エポキシ樹脂、また以上のエポキシ樹脂を臭素化したエ
ポキシ樹脂などがあげられる。本発明では単独あるいは
数種類混合して使用される。
Others The epoxy resin used in the encapsulating resin composition of the present invention can be any one that can raise the glass transition temperature to the molding temperature or higher and has a plurality of epoxy groups in one molecule. It can be anything. Examples of such an epoxy resin include bisphenol A, F or S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, or a bifunctional or higher functional group having a biphenyl skeleton, a naphthalene skeleton, or a dicyclopentadiene skeleton in the molecule. Examples thereof include epoxy resins, alicyclic epoxy resins, and epoxy resins obtained by brominated the above epoxy resins. In the present invention, they are used alone or as a mixture of several kinds.

【0019】本発明で、フェノール性水酸基を有する硬
化剤は、一分子中にフェノール性水酸基を複数有するも
のであればいかなるものであってもよい。このような硬
化剤としてビスフェノールA,FまたはS,フェノール
ノボラック,クレゾールノボラック、または分子中にビ
フェニル骨格をもつビフェノール,ナフタレン骨格を有
するもの、ジシクロペンタジエン骨格を有するもの、ま
た以上の樹脂の重合体、または数種類の混合物が使用さ
れる。これらは樹脂の反応性,流動性などの成形性と硬
化物の吸湿率,力学物性等の諸物性に応じて使用され
る。
In the present invention, the curing agent having a phenolic hydroxyl group may be any one as long as it has a plurality of phenolic hydroxyl groups in one molecule. As such a curing agent, bisphenol A, F or S, phenol novolac, cresol novolac, or biphenol having a biphenyl skeleton in the molecule, those having a naphthalene skeleton, those having a dicyclopentadiene skeleton, and polymers of the above resins , Or a mixture of several types is used. These are used depending on various properties such as resin moldability such as reactivity and fluidity, and moisture absorption rate of cured product and mechanical properties.

【0020】本発明に用いられる封止樹脂組成物におけ
る130℃以下100℃以上で硬化反応を促進させるた
めの硬化促進剤として化15で示されるトリフェニルフ
ォスフィンおよびその誘導体が添加される必要がある。
In the encapsulating resin composition used in the present invention, triphenylphosphine represented by Chemical formula 15 and its derivative must be added as a curing accelerator for promoting the curing reaction at 130 ° C. or lower and 100 ° C. or higher. is there.

【0021】[0021]

【化15】 Embedded image

【0022】そのような硬化促進剤としてはトリフェニ
ルフォスフィン,トリス(4−メチルフェニル)フォス
フィン,トリス(4−メトキシフェニル)フォスフィ
ン,トリス(3−メチルフェニル)フォスフィンがあ
る。このほかに、エポキシ樹脂と硬化剤の硬化反応を促
進するものを添加することを特に限定されるものではな
い。たとえば、エポキシ樹脂組成物の保存安定性や成形
性,硬化後の電気特性などが良好な、トリエチレンジア
ミン,ジアミノジフェニルメタン,1,8−ジアザビシ
クロ(5,4,0)−ウンデセン,イミダゾールおよび
その誘導体などのアミン形のもの、トリフロオロボロン
−アミン錯体,スルホニウム塩があり、一種類、あるい
は二種類以上をエポキシ樹脂に添加され用いられてもよ
い。添加量はエポキシ樹脂組成物の成形性や硬化物の物
性に合わせて任意に決めることができる。ガラス転移温
度を高める目的ではアミン系、特にイミダゾール系の硬
化促進剤が好適である。
Examples of such curing accelerators include triphenylphosphine, tris (4-methylphenyl) phosphine, tris (4-methoxyphenyl) phosphine and tris (3-methylphenyl) phosphine. In addition, addition of an agent that accelerates the curing reaction between the epoxy resin and the curing agent is not particularly limited. For example, triethylenediamine, diaminodiphenylmethane, 1,8-diazabicyclo (5,4,0) -undecene, imidazole and derivatives thereof, which have good storage stability and moldability of the epoxy resin composition, and electrical characteristics after curing, etc. There are amine type, trifluoroborolone-amine complex, and sulfonium salt, and one kind or two or more kinds may be added to the epoxy resin and used. The addition amount can be arbitrarily determined according to the moldability of the epoxy resin composition and the physical properties of the cured product. For the purpose of increasing the glass transition temperature, amine-based, particularly imidazole-based curing accelerators are suitable.

【0023】本発明に用いられる封止樹脂組成物には上
記の素材の他必要に応じ、充填剤,離型剤,着色剤,カ
ップリング剤,可撓化剤,難燃剤等を添加している。充
填剤はエポキシ成形材料の熱膨張係数を小さくする目的
で、また、強度を高めるために用いられ、タルク,クレ
ー,シリカ,炭酸カルシウム,水酸化アルミニウム,水
酸化マグネシウム,ガラス繊維,セラミック繊維等の無
機充填剤全般を用いることができる。
In addition to the above materials, the encapsulating resin composition used in the present invention may contain a filler, a release agent, a coloring agent, a coupling agent, a flexibilizing agent, a flame retardant, etc., if necessary. There is. The filler is used for the purpose of reducing the thermal expansion coefficient of the epoxy molding material and for increasing the strength, and includes talc, clay, silica, calcium carbonate, aluminum hydroxide, magnesium hydroxide, glass fiber, ceramic fiber and the like. All inorganic fillers can be used.

【0024】充填剤の配合量は50重量%〜95重量%
が適当で、50重量%未満では熱膨張係数の低減,強度
の向上に対して十分な効果が得られない。また、95重
量%を超えて配合すると、充填剤の最密充填密度がエポ
キシ樹脂マトリックスの配合量を下回るため成形材料の
調製が困難となり、また調製後の粘度が非常に高くな
り、成形性が低下する。熱収縮率を調製するためには7
0〜90重量%が適当である。
The amount of the filler compounded is 50% by weight to 95% by weight.
However, if it is less than 50% by weight, a sufficient effect cannot be obtained for reducing the thermal expansion coefficient and improving the strength. On the other hand, if the content is more than 95% by weight, the closest packing density of the filler will be less than the content of the epoxy resin matrix, making it difficult to prepare a molding material, and the viscosity after preparation will be extremely high, resulting in moldability. descend. 7 to adjust the heat shrinkage
0 to 90% by weight is suitable.

【0025】離型剤は成形金型からの離型を容易にする
もので、カルナバワックス,モンタン系ワックス,ポリ
オレフィン系ワックスを単独で用いるか、これらを併用
して用いる。添加量は、全量の0.01〜5重量%が好
ましい。すなわち、0.01%未満では離型性に効果が
なく、また、5%を超えると発光素子,受光素子,光導
波路との接着性が低下するからである。着色剤はカーボ
ンブラックを用いることが望ましい。硬化物の強靭化,
低弾性率化のため配合される、可撓化剤はエポキシ樹脂
と非相溶のアミノ基またはエポキシ基,カルボキシル基
末端のブタジエン・アクリロニトリル系共重合体、ま
た、末端または側鎖アミノ基,水酸基,エポキシ基、カ
ルボキシル基変性シリコーン樹脂系可撓化剤などが用い
られる。
The mold release agent facilitates mold release from the molding die, and carnauba wax, montan wax, and polyolefin wax are used alone or in combination. The addition amount is preferably 0.01 to 5% by weight of the total amount. That is, if it is less than 0.01%, the releasability is not effective, and if it exceeds 5%, the adhesiveness to the light emitting element, the light receiving element and the optical waveguide is deteriorated. It is desirable to use carbon black as the colorant. Toughened cured products,
The flexibilizer, which is blended to reduce the elastic modulus, is an amino group or epoxy group that is incompatible with the epoxy resin, a butadiene / acrylonitrile copolymer having a carboxyl group terminal, or an amino group or hydroxyl group at the terminal or side chain. , Epoxy group- and carboxyl group-modified silicone resin-based flexibilizers are used.

【0026】上記材料を配合,混合,混練,粉砕しさら
に必要に応じ造粒しエポキシ樹脂成形材料を得る。混練
は一般的には、熱ロールや押し出し機などによって行
う。本発明の光モジュールは、このように得られたエポ
キシ樹脂組成物を用いてキャリア基板上の光素子および
半導体チップを封止することにより得られる。その製造
方法は、低圧トランスファ成形が、通常用いられるが、
場合によっては、圧縮成形,注型等の方法によっても可
能である。
The above materials are blended, mixed, kneaded, pulverized and further granulated as required to obtain an epoxy resin molding material. The kneading is generally performed with a hot roll or an extruder. The optical module of the present invention can be obtained by encapsulating an optical element and a semiconductor chip on a carrier substrate with the epoxy resin composition thus obtained. Low pressure transfer molding is usually used as the manufacturing method,
In some cases, a method such as compression molding or casting can be used.

【0027】硬化促進剤としてトリフェニルフォスフィ
ンおよびその誘導体を用いることにより、硬化温度を1
30℃以下に低減することができる。
By using triphenylphosphine and its derivative as a curing accelerator, the curing temperature is set to 1
It can be reduced to 30 ° C. or less.

【0028】[0028]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)エポキシ当量163g/eqの化16に示
すエポキシ樹脂を10重量部ならびに化17に示すフェ
ノール樹脂硬化剤を10重量部、および硬化促進剤とし
てトリフェニルフォスフィンを0.15重量部 ,難燃助
剤として三酸化アンチモンを0.4重量部,カップリン
グ剤としてエポキシラン0.15重量部,離型剤として
モンタン酸エステルを0.1重量部,着色剤としてカー
ボンブラックを0.1重量部,充填剤として平均粒径2
8mmの溶融シリカをそれぞれ3/7の割合で混合したも
のを85重量部を混合し、エポキシ樹脂組成材料を作製
した。素材の混練は二軸の熱ロール(65〜85℃)を
用い、10分間行った。
(Example 1) 10 parts by weight of an epoxy resin represented by Chemical formula 16 having an epoxy equivalent of 163 g / eq, 10 parts by weight of a phenol resin curing agent represented by Chemical formula 17, and 0.15 parts by weight of triphenylphosphine as a curing accelerator. , 0.4 parts by weight of antimony trioxide as a flame retardant aid, 0.15 parts by weight of epoxylane as a coupling agent, 0.1 parts by weight of montanic acid ester as a release agent, and 0.1 parts by weight of carbon black as a colorant. 1 part by weight, average particle size 2 as filler
Epoxy resin composition material was prepared by mixing 85 parts by weight of 8 mm of fused silica mixed at a ratio of 3/7. The kneading of the material was performed for 10 minutes using a biaxial hot roll (65 to 85 ° C.).

【0029】[0029]

【化16】 Embedded image

【0030】[0030]

【化17】 Embedded image

【0031】図1に示すように、半導体素子を固定した
基板上の平面型光導波路基板上に半導体レーザ,フォト
ダイオード,光導波路,光ファイバが光学的損失が最小
になるように固定し、光路に2,2−ビス(3,4−ジ
カルボキシフェニル)ヘキサフルオロプロパン二無水物
と2,2−ビス(トリフルオロメチル)−4,4′−ジ
アミノジフェニルから得られるポリイミド溶液をポッテ
ィング法により塗布した。この光導波路基板を上記姿勢
の封止樹脂を用い、成形温度120℃,成形圧力7MP
aの条件でトランスファ成形を行った。その結果、各素
子,光ファイバやその被覆に損傷を与えることなく、バ
コール強度60の樹脂封止光モジュールを得た。
As shown in FIG. 1, a semiconductor laser, a photodiode, an optical waveguide, and an optical fiber are fixed on a flat optical waveguide substrate on which a semiconductor element is fixed so that the optical loss is minimized. Is coated with a polyimide solution obtained from 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 2,2-bis (trifluoromethyl) -4,4'-diaminodiphenyl by the potting method. did. This optical waveguide substrate is molded with a sealing resin in the above-mentioned posture, molding temperature 120 ° C., molding pressure 7MP
Transfer molding was performed under the condition of a. As a result, a resin-sealed optical module having a Bacol strength of 60 was obtained without damaging each element, the optical fiber, or the coating thereof.

【0032】(実施例2)トリフェニルフォスフィンの
代わりにトリス(4−メチルフェニル)フォスフィンを
用い実施例1と同様の検討を行った。その結果、各素
子,光ファイバやその被覆に損傷を与えることなく、バ
コール強度60の樹脂封止光モジュールを得た。
Example 2 Tris (4-methylphenyl) phosphine was used instead of triphenylphosphine, and the same examination as in Example 1 was conducted. As a result, a resin-sealed optical module having a Bacol strength of 60 was obtained without damaging each element, the optical fiber, or the coating thereof.

【0033】(実施例3)トリフェニルフォスフィンの
代わりにトリス(4−メトキシフェニル)フォスフィン
を用い実施例1と同様の検討を行った。その結果、各素
子,光ファイバやその被覆に損傷を与えることなく、バ
コール強度60の樹脂封止光モジュールを得た。
Example 3 Tris (4-methoxyphenyl) phosphine was used instead of triphenylphosphine, and the same examination as in Example 1 was conducted. As a result, a resin-sealed optical module having a Bacol strength of 60 was obtained without damaging each element, the optical fiber, or the coating thereof.

【0034】(実施例4)トリフェニルフォスフィンの
代わりにトリス(3−メチルフェニル)フォスフィンを
用い実施例1と同様の検討を行った。その結果、各素
子、光ファイバやその被覆に損傷を与えることなく、バ
コール強度60の樹脂封止光モジュールを得た。
Example 4 The same study as in Example 1 was conducted using tris (3-methylphenyl) phosphine instead of triphenylphosphine. As a result, a resin-sealed optical module having a Bacol strength of 60 was obtained without damaging each element, the optical fiber or the coating thereof.

【0035】(実施例5)トリフェニルフォスフィンの
代わりにトリス(2,6−ジメトキシフェニル)フォス
フィンを用い実施例1と同様の検討を行った。その結
果、実施例1と同様各素子,光ファイバやその被覆に損
傷を与えることなく、バコール強度65の樹脂封止光モ
ジュールを得た。
Example 5 Tris (2,6-dimethoxyphenyl) phosphine was used instead of triphenylphosphine, and the same examination as in Example 1 was conducted. As a result, a resin-sealed optical module having a Bacol strength of 65 was obtained without damaging each element, the optical fiber or the coating thereof, as in Example 1.

【0036】(実施例6)実施例1の化18に示すエポ
キシ樹脂の代わりにエポキシ当量176g/eqの化1
9に示すエポキシ樹脂を用い実施例1と同様の検討を行
った。その結果、各素子,光ファイバやその被覆に損傷
を与えることなく、バコール強度60の樹脂封止光モジ
ュールを得た。
Example 6 Instead of the epoxy resin shown in Chemical formula 18 of Example 1, an epoxy equivalent of 176 g / eq of Chemical formula 1 was used.
The same examination as in Example 1 was conducted using the epoxy resin shown in FIG. As a result, a resin-sealed optical module having a Bacol strength of 60 was obtained without damaging each element, the optical fiber, or the coating thereof.

【0037】[0037]

【化18】 Embedded image

【0038】[0038]

【化19】 Embedded image

【0039】(実施例7)実施例1の化20に示すエポ
キシ樹脂の代わりにエポキシ当量176g/eqの化2
1に示すエポキシ樹脂を、トリフェニルフォスフィンの
代わりにトリス(2,6−ジメトキシフェニル)フォス
フィンを用い実施例1と同様の検討を行った。その結
果、各素子,光ファイバやその被覆に損傷を与えること
なく、バコール強度65の樹脂封止光モジュールを得
た。
(Example 7) Instead of the epoxy resin shown in Chemical formula 20 in Example 1, epoxy equivalent 176 g / eq.
For the epoxy resin shown in Example 1, tris (2,6-dimethoxyphenyl) phosphine was used instead of triphenylphosphine, and the same examination as in Example 1 was conducted. As a result, a resin-sealed optical module having a Bacol strength of 65 was obtained without damaging each element, the optical fiber, or the coating thereof.

【0040】[0040]

【化20】 Embedded image

【0041】[0041]

【化21】 [Chemical 21]

【0042】(比較例1)実施例1の化22に示すエポ
キシ樹脂の代わりにエポキシ当量195g/eqの化2
3に示すエポキシ樹脂を、化24に示すフェノール樹脂
硬化剤の代わりに化25に示すフェノール樹脂を用い、
またトリフェニルフォスフィンは添加せずに実施例1と
同様の検討を行った。その結果、硬化が不十分でバコー
ル強度は0であった。
(Comparative Example 1) Instead of the epoxy resin shown in Chemical formula 22 in Example 1, an epoxy equivalent of 195 g / eq.
The epoxy resin shown in Chemical formula 3 is used instead of the phenol resin curing agent shown in Chemical formula 24,
Further, the same examination as in Example 1 was conducted without adding triphenylphosphine. As a result, the curing was insufficient and the Bacol strength was 0.

【0043】[0043]

【化22】 Embedded image

【0044】[0044]

【化23】 Embedded image

【0045】[0045]

【化24】 Embedded image

【0046】[0046]

【化25】 Embedded image

【0047】[0047]

【発明の効果】本発明のエポキシ樹脂組成物を用いるこ
とにより、130〜100℃で封止することができ、光
モジュール内の光素子,光ファイバの損傷を大幅に低減
でき、その工業的価値は大きい。
By using the epoxy resin composition of the present invention, it is possible to seal at 130 to 100 ° C., and it is possible to greatly reduce the damage of the optical element and the optical fiber in the optical module, and its industrial value. Is big.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における光モジュールの断面図。FIG. 1 is a sectional view of an optical module according to the present invention.

【符号の説明】[Explanation of symbols]

1…光ファイバ、2…ファイバブロック、3…封止材
料、4…透明性プレコート材、5…レーザダイオード、
6…導波路基板、7…ベース基板。
1 ... Optical fiber, 2 ... Fiber block, 3 ... Sealing material, 4 ... Transparent precoat material, 5 ... Laser diode,
6 ... Waveguide substrate, 7 ... Base substrate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】発光素子,受光素子,光導波路,光ファイ
バとが光学的に結合されるように配置された光モジュー
ルにおいて、光路を光透過性樹脂でプリコートした後、
樹脂封止成形が130℃以下100℃以上の温度により
行われることを特徴とする光モジュール。
1. An optical module in which a light emitting element, a light receiving element, an optical waveguide, and an optical fiber are arranged so as to be optically coupled to each other, after precoating the optical path with a light transmitting resin,
An optical module, wherein resin encapsulation molding is performed at a temperature of 130 ° C. or lower and 100 ° C. or higher.
【請求項2】化1で示されるエポキシ樹脂,化2で示さ
れる硬化剤と化3(式中X1 ,X2,X3 は炭素数1以
上の有機基,水素原子,水酸基,ハロゲン原子の中から
選ばれる原子または原子団を表わし、X1 ,X2 ,X3
は同一であってもよく、異なってもよい)で示される硬
化促進剤を必須成分とし、かつシリカ充填材を50〜9
5重量%含んでおり、樹脂封止成形が130℃以下10
0℃以上の温度により行われる請求項1に記載の光モジ
ュール。 【化1】 【化2】 【化3】
2. An epoxy resin represented by Chemical Formula 1 , a curing agent represented by Chemical Formula 2 and a chemical formula 3 (wherein X 1 , X 2 , and X 3 are organic groups having 1 or more carbon atoms, hydrogen atoms, hydroxyl groups, halogen atoms). Represents an atom or an atomic group selected from among X 1 , X 2 , X 3
May be the same as or different from each other) and the silica filler may be added in an amount of 50 to 9 as an essential component.
Contains 5% by weight, and resin encapsulation molding is below 130 ° C 10
The optical module according to claim 1, which is performed at a temperature of 0 ° C. or higher. Embedded image Embedded image Embedded image
【請求項3】化4で示されるエポキシ樹脂,化5で示さ
れる硬化剤と一般式化6で示される硬化促進剤を必須成
分とし、シリカ充填材を50〜95重量%含んでおり、
樹脂封止成形が130℃以下100℃以上の温度により
行われる請求項1に記載の光モジュール。 【化4】 【化5】 【化6】
3. An epoxy resin represented by the chemical formula 4, a curing agent represented by the chemical formula 5 and a curing accelerator represented by the general formula 6 as essential components, containing 50 to 95% by weight of a silica filler,
The optical module according to claim 1, wherein the resin sealing molding is performed at a temperature of 130 ° C. or lower and 100 ° C. or higher. Embedded image Embedded image [Chemical 6]
JP8020899A 1996-02-07 1996-02-07 Optical module Pending JPH09211223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8020899A JPH09211223A (en) 1996-02-07 1996-02-07 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020899A JPH09211223A (en) 1996-02-07 1996-02-07 Optical module

Publications (1)

Publication Number Publication Date
JPH09211223A true JPH09211223A (en) 1997-08-15

Family

ID=12040086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020899A Pending JPH09211223A (en) 1996-02-07 1996-02-07 Optical module

Country Status (1)

Country Link
JP (1) JPH09211223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023273A (en) * 2005-06-17 2007-02-01 Hitachi Chem Co Ltd Epoxy resin molding compound for sealing use and electronic component device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023273A (en) * 2005-06-17 2007-02-01 Hitachi Chem Co Ltd Epoxy resin molding compound for sealing use and electronic component device

Similar Documents

Publication Publication Date Title
JPH04328121A (en) Epoxy resin composition for sealing semiconductor
CN108017879A (en) A kind of preparation of high-power LED encapsulation white epoxy moulding compound
JP6307352B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JPH09211223A (en) Optical module
JP2004307545A (en) Epoxy resin composition and sealed semiconductor device
JPS6112724A (en) Epoxy resin composition
JPH09243870A (en) Production of optical module
JPH08288539A (en) Primary sealing resin composition for photocoupler
JP3396363B2 (en) Resin composition for ball grid array
JP3353847B2 (en) Resin sealing resin composition and resin sealing type semiconductor device
JPH02238053A (en) Maleimide resin composition and resin sealing type semiconductor device
JP2005112965A (en) Resin composition for sealing and electronic part apparatus
JPH0420558A (en) Epoxy resin composition for sealing semiconductor
JP2003176336A (en) Resin composition for ball-grid-array
JPH08176269A (en) Epoxy resin composition for sealing
JPH04328117A (en) Epoxy resin composition for sealing semiconductor
JP2951089B2 (en) Epoxy resin composition
JP2000191884A (en) Resin composition and semiconductor device
JP3331965B2 (en) Epoxy resin composition for optical semiconductor and optical semiconductor device
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JP2593518B2 (en) Epoxy resin molding compound for semiconductor encapsulation
JPH04216818A (en) Resin composition for semiconductor sealing
JPH0697324A (en) Resin-sealed semiconductor device
TW202223056A (en) Resin molding for optical semiconductor sealing capable of providing an optical semiconductor sealing material with superior temperature cycle resistance
JPH0768329B2 (en) Semiconductor encapsulant composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Effective date: 20060807

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Effective date: 20061201

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees