JPS61106722A - Production of high tensile steel for large heat input welding - Google Patents

Production of high tensile steel for large heat input welding

Info

Publication number
JPS61106722A
JPS61106722A JP22678984A JP22678984A JPS61106722A JP S61106722 A JPS61106722 A JP S61106722A JP 22678984 A JP22678984 A JP 22678984A JP 22678984 A JP22678984 A JP 22678984A JP S61106722 A JPS61106722 A JP S61106722A
Authority
JP
Japan
Prior art keywords
steel
molten steel
cooling rate
heat input
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22678984A
Other languages
Japanese (ja)
Inventor
Munetaka Oda
小田 宗隆
Kenichi Amano
虔一 天野
Yoshifumi Nakano
中野 善文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22678984A priority Critical patent/JPS61106722A/en
Publication of JPS61106722A publication Critical patent/JPS61106722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high-tensile steel having excellent low-temp. toughness for large heat input welding by subjecting a molten steel to cooling and reheating under specific conditions then to hot rolling in the stage of casting continuously the molten steel contg. a specific ratio each of C, Ti and N. CONSTITUTION:The molten steel which contains 0.01-0.15wt% C, 0.005-0.015wt% Ti and <=0.006wt% N and in which the ratio Ti/N of Ti and N is >=1.0 and <=3.5 is prepd. Such molten steel is cooled at >=10 deg.C/min average cooling rate in the final solidifying part from the molten steel temp. in the stage of pouring up to 800 deg.C to produce a billet or steel ingot. The billet or ingot is reheated to >=900 deg.C and <=1,000 deg.C and is then subjected to hot rolling. The steel having the excellent low-temp. toughness at the joint formed by large heat input welding is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野〕 極地や深海などの過酷な環境で使用される大入熱溶接用
高張力鋼の製造方法についてこの明細書で述べる技術内
容は、とくに低温じん注に優れた鋼材を鋳造または造塊
過程における冷却速度の制御によシ得ることにある。
[Detailed Description of the Invention] (Industrial Application Field) The technical content described in this specification regarding the manufacturing method of high-strength steel for high heat input welding used in harsh environments such as polar regions and deep seas is particularly applicable to low-temperature dust welding. The objective is to obtain superior steel materials by controlling the cooling rate during the casting or ingot making process.

石油危機を契機とし九石油、天然ガスの高騰は、極地や
深海などの過酷な環境におけるエネルギー資源の開発に
拍車をかけている。そしてこのエネルギー開発に利用さ
れる各種の構造物および船舶には、溶接部を含み厳しい
低温じん注が要求されている。
The soaring prices of oil and natural gas triggered by the oil crisis are spurring the development of energy resources in harsh environments such as the polar regions and the deep sea. Various structures and ships used for this energy development, including welded parts, are required to undergo severe low-temperature dust injection.

(従来の技術〕 じん注、とくに溶接部のしん注を改善する従来の技術と
しては、特公昭51−44088号公報に開示されたも
のがある。この技術は、連続鋳造またはこれに類する凝
固、冷却条件で、T1添加鋼を溶鋼の注入温度から11
00℃までの平均冷却速度を鋼塊または鋳片中心で5℃
/min以上で冷却し、1100℃以上でTiN粒子を
微細に分散させるものである。しかしながら、添加Ti
がo、ozwt%以上、Hの含有が0.008 wt%
以上の条件下でのことであり、これ以下のTitNN量
の場合には当てはまらない。またTl量が0.02wt
多以上、N量がo、oos wt%以上では、大入熱溶
接部の固溶Nが多くなり、例えば−60°Cのような低
温下では十分なしん注を得られない。
(Prior Art) A conventional technique for improving pouring, especially pouring of welded parts, is disclosed in Japanese Patent Publication No. 51-44088.This technique is based on continuous casting or similar solidification, Under cooling conditions, T1-added steel is heated to 11% from the injection temperature of molten steel.
The average cooling rate to 00℃ is 5℃ at the center of the steel ingot or slab.
The TiN particles are cooled at a temperature of 1100° C. or more and finely dispersed at a temperature of 1100° C. or more. However, added Ti
is o, ozwt% or more, H content is 0.008 wt%
This applies under the above conditions, and does not apply to cases where the amount of TitNN is less than this. Also, the amount of Tl is 0.02wt
If the amount of N is more than o, oos wt%, the amount of solid solute N in the high heat input weld will increase, and sufficient injection cannot be obtained at a low temperature such as -60°C, for example.

(発明が解決しようとする問題点り 連続鋳造または造塊過程での冷却速度の制御および極低
温加熱により、とくに溶接部の継手での低温じん注が優
れた鋼を製造する方法の提供を、この発明の目的とする
(Problems to be Solved by the Invention) To provide a method for manufacturing steel with excellent low-temperature dust injection, especially at welded joints, by controlling the cooling rate during continuous casting or ingot-making process and by cryogenic heating. This is the object of this invention.

(問題点を解決するための手段) 発明者らは、0.015 wt%(以下単に俤と示す)
以下の微i Ti 、0.006 %以下の低N系の鋼
を用い、溶鋼の凝固、冷却条件とTiN粒子の析出量と
の関係を調べた結果、TiN粒子の析出量には冷却速匹
との依存性があることがわかった。例えばo、oosチ
のTiを含有する溶鋼を、注入時の温度から1100℃
までの平均冷却速度を最終凝固部で](、:・  5.
。7゜、。、、−Lア。。1□□□□ゎた場合、0.0
03%のTiが鋼中に固溶していた。
(Means for solving the problem) The inventors have determined that 0.015 wt% (hereinafter simply referred to as 俤)
As a result of investigating the relationship between the solidification and cooling conditions of molten steel and the amount of precipitated TiN particles using the following low N steel with a low i Ti of 0.006% or less, it was found that the amount of precipitated TiN particles depends on the cooling rate. It was found that there is a dependence on For example, molten steel containing o, oos Ti is heated to 1100°C from the temperature at the time of injection.
The average cooling rate up to ](,:・5.
. 7°. ,,-L a. . If 1□□□□ゎゎ, 0.0
0.3% of Ti was dissolved in the steel.

同様に速度10“C/Dinで冷却した場合は、0.0
05チのT1が鋼中に固溶していた0 このようにs ’Q/min以上で冷却した場合、止揚
の特公昭51−4.4088号公報に記載の発明のよう
に1100’0までの冷却途中にTiN粒子が全量析出
するのでにないことが新たに判った。
Similarly, when cooling at a rate of 10"C/Din, 0.0
In this way, when cooling at a rate of s'Q/min or more, T1 of 05chi was dissolved in the steel. It has been newly discovered that this is not the case because the TiN particles are all precipitated during the cooling process.

また注入時の溶鋼温度から1100°Cまでの平均冷却
速度を最終凝固部で5℃/minとし、1100℃から
急冷した鋳片または鋼塊の固溶Tiを測定した結果、o
、oos%の添加T1のうち0 、006%が同浴して
いた。同様に速度10℃/minで冷却した場合B、0
.007チが固溶していた。したがって微量Ti1微菫
N系の鋼の場合、TiN粒子の析出する温度は1 i 
o O−0以上でなく800℃から1100゛Cである
ことになる。
In addition, the average cooling rate from the molten steel temperature at the time of injection to 1100°C was set at 5°C/min in the final solidification zone, and the solid solution Ti of the slab or steel ingot rapidly cooled from 1100°C was measured.
,006% of the added T1 of 0.000% was in the same bath. Similarly, when cooling at a rate of 10°C/min, B, 0
.. 007 was dissolved in solid solution. Therefore, in the case of a steel with a trace amount of Ti1 and a trace amount of violet N, the temperature at which TiN particles precipitate is 1 i
o It is not above O-0, but from 800°C to 1100°C.

さらに発明者らは、鋳片または鋼塊の800’C!’1
での冷却速度を可能な限り速くして凝固後の冷却途中に
析出させな−かったTiを、900℃以上1000  
:C以下に再刀口熱することによって極めて微細に析出
させ得ることを見出した。そしてこの鋼板を用いて溶接
継手を炸裂して、じん注を調べた結果、低温で優れてい
ることが判明した。
Furthermore, the inventors have discovered that the 800'C of slab or steel ingot! '1
Ti, which was not precipitated during cooling after solidification by increasing the cooling rate as much as possible, was
It has been found that extremely fine precipitates can be obtained by re-heating to a temperature below :C. Using this steel plate, welded joints were exploded and the dust injection was investigated, and it was found that it was excellent at low temperatures.

この発明は、上記知見に由来するものである。This invention is derived from the above knowledge.

jなわちこの発明は、G 0.01〜0.+1.5%・
、Ti 0.005〜o、Qll 5°%、およびNQ
、(1+06%以下、を含有し、T1とNとの比Tj、
/Nが1.0以上3.5以下の溶鋼を、注入時の溶鋼温
度からSOO℃までの最終凝固部における平均冷却速度
を10”ヅmin以上で冷却して鋳片または鋼塊と踵得
られた鋳片または…塊を900’O以上1000℃以下
に再加熱後、熱間圧砥することを特徴とする大入熱浴接
用高張力鋼の製造方法である。
j That is, this invention is suitable for G 0.01 to 0. +1.5%・
, Ti 0.005~o, Qll 5°%, and NQ
, (1+06% or less), the ratio Tj of T1 and N,
Molten steel with /N of 1.0 or more and 3.5 or less is cooled at an average cooling rate of 10" or more in the final solidification zone from the molten steel temperature at the time of injection to SOO℃ to obtain slabs or steel ingots. This is a method for producing high-strength steel for large heat input bath welding, which comprises reheating the cast slab or ingot to a temperature of 900° C. or more and 1000° C. or less, and then hot-sharpening it.

なお注入時の溶鋼温肛から5oo−cまでの平均冷却速
度を最終凝固部で10℃/min以上とするには、従来
゛の冷却法では不十分であり、例えば連続鋳造の場合に
は冷却帯を従来のものより長くして最終凝固部が800
″C以下になるまで水冷すればよい。また鋼塊の場合は
、表面が凝固したら直ちにインゴットケースより引き出
し、中心が未凝固の鋼塊をこのまま水冷するか、または
分塊圧延後sou ’OC以下で水冷する。水冷の方法
は、ノズルで水をかけ冷却するかまたは水中に投入する
かによる。
It should be noted that conventional cooling methods are insufficient to achieve an average cooling rate of 10°C/min or more from the molten steel core temperature during injection to 5oo-c in the final solidification zone.For example, in the case of continuous casting, cooling The final solidification part is 800mm by making the band longer than the conventional one.
In the case of a steel ingot, as soon as the surface solidifies, it can be pulled out from the ingot case, and the steel ingot with an unsolidified center can be water-cooled as it is, or after blooming and rolling, it can be water-cooled until it reaches sou' OC or less. The method of water cooling depends on whether you spray water with a nozzle to cool it or put it in water.

(作用] 1ずこの発明方法における鋼の成分限定について説明す
る。
(Function) First, the limitation of the composition of steel in the method of this invention will be explained.

0 : 0.014未満では溶接構造用鋼として必要な
強度を得ることができず、ま次小人熱溶接時の割れ感受
性および溶接部のしん注の点から上限を0.15%とし
、0.01−0.15%の範囲に限定した。
0: If it is less than 0.014, it is not possible to obtain the necessary strength as a welded structural steel, and the upper limit is set at 0.15% from the viewpoint of crack susceptibility during heat welding and injection of welded parts. It was limited to a range of .01-0.15%.

T1:鋼中に微細に分散したTiNによって溶接部ボン
ド付近のしん注を向上させるばかりでなく、スラブ加熱
時においてオーステナイト粒の粗大化  ・を阻止して
母材のじん注を向上させるのに効果を発揮するため、最
低0.005%は必要でらり、0.015チを超えると
逆に母材のじん注を劣化させるたべ0.005〜0.0
15%とし次。
T1: Finely dispersed TiN in the steel not only improves dust injection near the weld bond, but also prevents coarsening of austenite grains during slab heating and improves dust injection into the base metal. In order to achieve this, a minimum of 0.005% is required, and if it exceeds 0.015%, it will deteriorate the base material.
Next is 15%.

N:通常の製鋼工程で含有されるが、0.006%を超
えると固溶Nとなって母材および大入熱溶接部のしん注
を損うため、0.006%以下に限定する。
N: Contained in normal steelmaking processes, but if it exceeds 0.006%, it becomes solid solution and impairs injection of base metal and high heat input welding parts, so it is limited to 0.006% or less.

Ti/N:大人熱溶接されると、継手のポンド付近の温
度は1400″C前後になってオーステナイト粒径が成
長する。低C鋼の場合、オーステナイト粒径がボンド付
近のしん註ヲ決定する主要因となるが、TiNはオース
テナイト粒の成長を抑制する作用を持ち、その抑制能力
はTiNの粒径rとその体積率fの比r/f  に依存
し、さらにこのr/fはT1とNとの比Ti/N に依
存している。
Ti/N: When hot welding is performed, the temperature near the bond of the joint becomes around 1400"C and the austenite grain size grows. In the case of low C steel, the austenite grain size determines the grain size near the bond. The main factor is that TiN has the effect of suppressing the growth of austenite grains, and its suppressing ability depends on the ratio r/f of the grain size r of TiN and its volume fraction f, and furthermore, this r/f is equal to T1. It depends on the ratio Ti/N.

第1図に、0.06%O−0,26%Si −1,50
1Kn−0,004%P −0,0007%SでT1を
0.005〜0.015%、Nを0.0020〜0.0
058%の範囲で変化。
In Figure 1, 0.06%O-0,26%Si-1,50
1Kn-0,004%P-0,0007%S, T1 0.005-0.015%, N 0.0020-0.0
Changes within a range of 0.058%.

させて比Ti/Nを0.86〜7,50とした溶鋼を、
注入時の溶鋼温度から800℃までの平均冷却速度を最
終凝固部で14.5℃/minとして冷却して鋳片とし
、次いで960℃K 7J[I熱後、熱間圧延して鋼板
を製造し、この鋼板のフイニツシングサイドの入熱で1
19 KJ 7cmの両面一層サブマージドアー”  
、gや一、、□8oえやや。5,1.。、4□□、。
Molten steel with a Ti/N ratio of 0.86 to 7,50,
The average cooling rate from the molten steel temperature at the time of pouring to 800°C was set at 14.5°C/min in the final solidification section to form a slab, which was then heated to 960°C K7J [I] and then hot rolled to produce a steel plate. However, the heat input on the finishing side of this steel plate is 1
19 KJ 7cm double-sided single layer submerged door”
,gyaichi,,□8oeyeya. 5,1. . , 4□□,.

なお図中の数値は、r/fの値である。−60℃でのボ
ンドのしん注は、T−+−’Nが1.0以上3.5以下
で優れているため、Ti/Nを1.0以上3.5以下に
限定した。
Note that the numerical values in the figure are the values of r/f. Bond injection at -60°C is excellent when T-+-'N is 1.0 or more and 3.5 or less, so Ti/N was limited to 1.0 or more and 3.5 or less.

また注入時の溶鋼温度から800 ’0までの平均冷却
速度を最終凝固部でio℃/min以上とし、次いでこ
の鋳片または鋼塊を900″C以上1000℃以下に再
加熱後、熱間圧延するようにしたのは、次の理由による
In addition, the average cooling rate from the molten steel temperature at the time of injection to 800'C is set to io℃/min or more in the final solidification section, and then this slab or steel ingot is reheated to 900''C or more and 1000℃ or less, and then hot rolled. The reason for doing this is as follows.

第2図は、第1表の調香1〜4の成分を有する鋼を注入
時の溶鋼温度から800″Cまでの平均冷却速度(以下
平均冷却速度と示す)を異ならせて得られた鋳片および
鋼塊を、加熱温度880℃から1250’Oの範囲で変
化させて加熱した後、熱間圧延によって32朋厚の鋼板
とし、この鋼板を両面一層サブマージアーク溶接(入熱
1x9xJ/m)した継手における板厚中心のボンドか
ら切出した2 tnm ”Jノツチフルサ゛イズの試験
片によりシャルピー試験を行ったときの一60℃での吸
収エネルギー(以下単に吸収エネルギーと示す)を示す
0第2図から明らかなように、平均冷却速度がlO℃/
mj−n以上で加熱温度が1000℃以下の場合は吸収
エネルギーが優れているが、これ以外の条件での吸収エ
ネルギー扛劣っている。これは、平均冷却速度がlθ℃
/ min以上のスラブでは固1容で1が多く、このT
iが1000−0以下のスラブ力ロ熱温度で微細なTi
Nとして析出するためである。
Figure 2 shows the castings obtained by varying the average cooling rate (hereinafter referred to as average cooling rate) from the molten steel temperature at the time of pouring to 800''C of steel having the components of fragrances 1 to 4 in Table 1. After heating the piece and the steel ingot at varying heating temperatures in the range of 880°C to 1250'O, hot rolling was performed to form a 32mm thick steel plate, and this steel plate was single-layer submerged arc welding on both sides (heat input 1x9xJ/m). It is clear from Figure 2, which shows the absorbed energy (hereinafter simply referred to as absorbed energy) at 160°C when a Charpy test was performed using a 2 tnm J notch full-size test piece cut from the bond at the center of the plate thickness in a joint with The average cooling rate is lO℃/
Absorbed energy is excellent when mj-n or more and heating temperature is 1000° C. or less, but absorbed energy is poor under other conditions. This means that the average cooling rate is lθ℃
/min or more, there is a lot of 1 per solid volume, and this T
Fine Ti is produced at a slab force temperature of less than 1000-0.
This is because it precipitates as N.

但し900℃未膚の加熱温度では、継手の靭性は向上す
るが母材のじん注が劣化するので、加熱温度の下限u9
00℃に限定する。
However, if the heating temperature is below 900°C, the toughness of the joint will improve, but the base material will deteriorate, so the lower limit of the heating temperature is u9.
Limited to 00℃.

また第8図に、第1表の鋼番1−4の組成になる鋼の平
均冷却速度を夫々16.3℃/min、  12.5”
Q /min 、 7 、8℃/In1n 、  1.
3 ’O/minとし、鋳造した際の固溶Ti1iと、
鋳造後の鋳片または鋼塊を960℃で再加熱後圧延して
鋼板とし第2図の場合と同様の条件で溶接およびその後
のシャルピー、) ?1   試験を行った際の吸収エネルギーと、を示す
In addition, Fig. 8 shows the average cooling rates of the steels having the compositions of steel numbers 1-4 in Table 1, 16.3°C/min and 12.5°C/min, respectively.
Q/min, 7, 8°C/In1n, 1.
3'O/min, solid solution Ti1i when casting,
The cast slab or steel ingot is reheated at 960°C and then rolled into a steel plate, welded under the same conditions as in Fig. 2, and then Charpy processed. 1 Indicates the absorbed energy when conducting the test.

第3図に示すように、平均冷却速度が10−Q/min
以上の場合にボンドのしん注は優れ、このときの鋳片お
よび鋼塊の最終凝固部での固溶T1は0.005チ以上
となっている。
As shown in Figure 3, the average cooling rate is 10-Q/min.
In the above case, the bond injection is excellent, and the solid solution T1 in the final solidified part of the slab and steel ingot is 0.005 inch or more.

さらに第2表は、第1表の調香1−4の鋼の溶鋼温度か
ら1100°Cまでの前段平均冷却速度と、1100℃
から800°0″&での後段平均冷却速度とを変化させ
、次いで960°Oに再加熱後熱間圧延によって32朋
厚の鋼板とし、第2図の場合と同様の条件で溶接および
その後のシャルピー試験を行った際の吸収エネルギーを
示しである〇第2表から、前段平均冷却速度が10°C
/ min以上で、かつ平均冷却速度が10−o/mi
n以下である試料A%0.Eは、後段平均冷却速度が遅
いので最終凝固部の固溶T1量が少ないために、960
℃に再加熱後圧延した鋼板中元含まれる粒径0.04μ
m以下のTiN量が少なくなり、−60℃でのボンド周
辺のしん注が劣ることがわかる。したがって、注入時の
溶鋼温度から800℃までの全ての段階での平均冷却速
度t−10℃/ min以上にする必要がある。
Furthermore, Table 2 shows the average cooling rate of the first stage from the molten steel temperature to 1100°C for perfume 1-4 in Table 1, and the average cooling rate at 1100°C.
Then, after reheating to 960°O, a steel plate with a thickness of 32 mm was obtained by welding and subsequent cooling under the same conditions as in the case of Fig. 2. From Table 2, which shows the absorbed energy when performing the Charpy test, the average cooling rate of the first stage is 10°C
/min or more, and the average cooling rate is 10-o/min.
Sample A% 0. E is 960 because the average cooling rate in the latter stage is slow and the amount of solid solution T1 in the final solidification part is small.
Grain size included in the core of the steel plate rolled after reheating to ℃ 0.04μ
It can be seen that the amount of TiN below m is small, and the injection around the bond at -60°C is poor. Therefore, the average cooling rate at all stages from the molten steel temperature at the time of injection to 800°C must be t-10°C/min or more.

以上のように、浴接後のボンド付近のしん注が優れた鋼
を製造するには、鋳片または鋼塊の最終凝固部で0.0
05%以上の固溶T1が存在する必要があり、そのため
には平均冷却速度を10″c/minとする必要があり
、粒径0.04μm以下のTiMiを多くするにはさら
に加熱温度を1000℃以下に)、、・1 ′″ti“
3・′″080ゝ271“021度をl O”0/mi
n以上とし、鋳片または鋼塊を900℃以上10θ0℃
以下で再加熱することとした〇(実施例) 第1表の調香1〜Bまでの成分を含む溶鋼を、第8表に
示す各条件で製造した。82闘厚の鋼板の成績を第3表
に示した。
As described above, in order to manufacture steel with excellent injection in the vicinity of the bond after bath welding, it is necessary to
0.05% or more of solid solution T1 must exist, and for this purpose, the average cooling rate must be 10"c/min, and in order to increase the amount of TiMi with a particle size of 0.04μm or less, the heating temperature must be further increased to 1000"c/min. ℃ or less),,・1 ′″ti“
3・'"080ゝ271"021 degrees l O"0/mi
n or more, and the slab or steel ingot is heated to 900°C or more and 10θ0°C.
(Example) Molten steel containing the components of fragrances 1 to B in Table 1 was manufactured under the conditions shown in Table 8. Table 3 shows the results of the 82-thickness steel plate.

表中板番3.6はこの発明方法による鋼であり、板番1
.2および4.5は板番3および6と同一の鋳片または
鋼塊を用いているが、加熱温度がこの発明の範囲外のも
のであって吸収エネルギーが劣る。
Plate number 3.6 in the table is steel produced by this invention method, and plate number 1
.. No. 2 and No. 4.5 use the same slab or steel ingot as No. 3 and No. 6, but the heating temperature is outside the range of this invention and the absorbed energy is inferior.

また板番9.12では、加熱温度はこの発明の範囲にあ
るが、平均冷却速度がこの発明の範囲外にあるため、最
終凝固部の固溶T1が0.005%以下と低くボンドの
しん注が劣る。従来の方法により製造された板番7.8
および10.11も、板番8.6と比較するとボンドの
しん性が著しく劣る。
In addition, for plate number 9.12, although the heating temperature is within the range of the present invention, the average cooling rate is outside the range of the present invention. The notes are inferior. Plate number 7.8 manufactured by conventional method
and No. 10.11 also have significantly inferior bond strength compared to board number 8.6.

さらに板番13〜16は、第1表の調香5〜8の成分を
含有した溶w4をこの発明方法により製造したものであ
シ、どの鋼板もボンドのしん注が10、’ctj f 
−m以上と優れている。
Furthermore, plate numbers 13 to 16 were produced by the method of this invention containing melted w4 containing the components of fragrances 5 to 8 in Table 1.
-m or more, which is excellent.

なお、強度を上昇させるV、  Nl)、 B、  O
uおよ′□゛°1  び硫化物の形態を制御して板厚方
向のじん注を改善するREMを添加しても、この発明の
特徴が損われることはない。
In addition, V, Nl), B, O that increase the strength
The features of the present invention are not impaired by the addition of REM, which controls the morphology of u, '□゛°1 and sulfides to improve dust injection in the thickness direction.

(発明の効果) 以上のようにこの発明によれば、大入熱溶接した継手に
おいても低温じん注に優れた鋼を提供することができる
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a steel that is excellent in low-temperature dust injection even in joints welded with high heat input.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTi/Nと吸収エネルギーとの関係を示すグラ
フ、 第2図はスラブ加熱温度、鋳造の平均冷却速度、および
じん注の関係を示すグラフ、 第3図は平均冷却速度、固溶T1量、およびじん性の関
係を示すグラフである。
Figure 1 is a graph showing the relationship between Ti/N and absorbed energy. Figure 2 is a graph showing the relationship between slab heating temperature, average cooling rate of casting, and dust injection. Figure 3 is a graph showing the relationship between average cooling rate and solid solution. It is a graph showing the relationship between T1 amount and toughness.

Claims (1)

【特許請求の範囲】 1、C 0.01〜0.15wt%、 Ti 0.005〜0.015wt%、およびN 0.
006wt%以下、 を含有し、TiとNとの比Ti/Nが1.0以上3.5
以下の溶鋼を、 注入時の溶鋼温度から800℃までの最終凝固部におけ
る平均冷却速度を10℃/min以上で冷却して鋳片ま
たは鋼塊とし、 得られた鋳片または鋼塊を900℃以上1000℃以下
に再加熱後、熱間圧延することを特徴とする大入熱溶接
用高張力鋼の製造方法。
[Claims] 1. C 0.01 to 0.15 wt%, Ti 0.005 to 0.015 wt%, and N 0.
006wt% or less, and the ratio Ti/N of Ti and N is 1.0 or more and 3.5
The following molten steel is cooled at an average cooling rate of 10°C/min or more in the final solidification zone from the molten steel temperature at the time of injection to 800°C to form a slab or steel ingot, and the obtained slab or steel ingot is heated to 900°C. A method for producing high-strength steel for high heat input welding, which comprises reheating to 1000° C. or less and then hot rolling.
JP22678984A 1984-10-30 1984-10-30 Production of high tensile steel for large heat input welding Pending JPS61106722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22678984A JPS61106722A (en) 1984-10-30 1984-10-30 Production of high tensile steel for large heat input welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22678984A JPS61106722A (en) 1984-10-30 1984-10-30 Production of high tensile steel for large heat input welding

Publications (1)

Publication Number Publication Date
JPS61106722A true JPS61106722A (en) 1986-05-24

Family

ID=16850638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22678984A Pending JPS61106722A (en) 1984-10-30 1984-10-30 Production of high tensile steel for large heat input welding

Country Status (1)

Country Link
JP (1) JPS61106722A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347918A (en) * 1989-04-08 1991-02-28 Kobe Steel Ltd Production of b-containing steel
JP2009046750A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2009046751A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
US7857917B2 (en) * 2004-07-21 2010-12-28 Nippon Steel Corporation Method of production of steel for welded structures excellent in low temperature toughness of weld heat affected zone
JP2012140710A (en) * 2012-02-22 2012-07-26 Jfe Steel Corp Corrosion-resistant steel material for ship, and method of manufacturing the same
JP2012167371A (en) * 2012-02-22 2012-09-06 Jfe Steel Corp Corrosion resistant steel product for ship and method for producing the same
JP2016003385A (en) * 2014-06-19 2016-01-12 新日鐵住金株式会社 CONTINUOUS CASTING SLAB OF Ni-CONTAINING STEEL

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347918A (en) * 1989-04-08 1991-02-28 Kobe Steel Ltd Production of b-containing steel
US7857917B2 (en) * 2004-07-21 2010-12-28 Nippon Steel Corporation Method of production of steel for welded structures excellent in low temperature toughness of weld heat affected zone
JP2009046750A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2009046751A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2012140710A (en) * 2012-02-22 2012-07-26 Jfe Steel Corp Corrosion-resistant steel material for ship, and method of manufacturing the same
JP2012167371A (en) * 2012-02-22 2012-09-06 Jfe Steel Corp Corrosion resistant steel product for ship and method for producing the same
JP2016003385A (en) * 2014-06-19 2016-01-12 新日鐵住金株式会社 CONTINUOUS CASTING SLAB OF Ni-CONTAINING STEEL

Similar Documents

Publication Publication Date Title
JPS6179745A (en) Manufacture of steel material superior in welded joint heat affected zone toughness
US2562467A (en) Armor plate and method for making same
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH03202422A (en) Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
CN1084580A (en) Oxidiferous fire safe type steel and make the method for rolled section steel with this material
JPS61106722A (en) Production of high tensile steel for large heat input welding
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JPS5831062A (en) Continuous cast steel strand
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH05171341A (en) Production of thick steel plate excellent in toughness in welding heat-affected zone
JPS61136622A (en) Manufacture of high strength low alloy ultrathick steel material
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
CN100482839C (en) Manufacture method for obtaining superfine crystal grain steel
JPS593537B2 (en) welded structural steel
JPH03207812A (en) Manufacture of steel excellent in toughness of base metal and toughness of joint
JP2662198B2 (en) Manufacturing method of cast steel with excellent fire resistance, strength and toughness
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JPH0569902B2 (en)
JPH01228643A (en) Method for uniformly and finely dispersing-precipitating mns in steel
JPS6120397B2 (en)
JPS61113715A (en) Manufacture of steel for large heat input welding
JPH03215625A (en) Production of superplastic duplex stainless steel and hot working method therefor
JPS58144418A (en) Manufacture of high-mn steel
JPH0430461B2 (en)