JPS61105406A - Length detecting device - Google Patents
Length detecting deviceInfo
- Publication number
- JPS61105406A JPS61105406A JP22833784A JP22833784A JPS61105406A JP S61105406 A JPS61105406 A JP S61105406A JP 22833784 A JP22833784 A JP 22833784A JP 22833784 A JP22833784 A JP 22833784A JP S61105406 A JPS61105406 A JP S61105406A
- Authority
- JP
- Japan
- Prior art keywords
- output
- length
- detected
- comparator
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
[産業上の利用分野]
この発明はフライングスポット方式を用いて物体の外観
と物体の大!さとを同時的に検出する検査装置に関する
。
[従米扶術1
第5.6図は、従来のレーザ一式外観検査機のシステム
構成図である。HeN’eレーザー管1を出たレーザー
光は、振動ミラー2で反射され、レンズ5により平行走
査ビームに変換され、被検物(例えば、円輪ころ)6に
照射される1反射光は、集光レンズ7にて集光され、充
電変換素子8に入射され、光電変換が行なわれる。増幅
器9は、そのミス信号を増幅する為のものであり、その
典型的な信号液形は、第7図のようなものになる。暗部
は、レーザースポットが被検物6から、はずれた場合反
射光が無くなる事により作られる。又、明部の凹凸は、
被検物6の表面の加工状態によりて、様々の波形を示す
が、検査面中に欠陥があれば、その部分の反射光量が減
り、パルス状の欠陥波形が得られる1以上が、外観検査
の場合に用いられる測定システムである。なお振動ミラ
ー2の振動端は電磁誘導コイル2゛で検出されパルス発
生器3は振動ミラー2の振動周期に比例した周期のパル
スを出力する。
しかるに従来のこの測定システムは単に被検物の外観検
査しかすることができなかった。
そのため、被検物の長さなどの寸法を測定するには別の
工程において、別の測長装置を用いなければならず、そ
の測長作業が煩雑であり、かつ非能率であった。
E発明の目的l
この発明は上述の問題を解決するためになされたちので
あって、被検物の外観検査と測長とを同一装置で行える
amを提供することをg的とする。[Industrial Application Field] This invention uses the flying spot method to determine the appearance and size of objects! The present invention relates to an inspection device that simultaneously detects oxidation. [Juniorai Fujutsu 1 Figure 5.6 is a system configuration diagram of a conventional laser complete visual inspection machine. The laser beam exiting the HeN'e laser tube 1 is reflected by the vibrating mirror 2, converted into a parallel scanning beam by the lens 5, and the reflected light irradiated onto the test object (for example, a circular roller) 6 is as follows: The light is condensed by the condenser lens 7, and is incident on the charge conversion element 8, where photoelectric conversion is performed. The amplifier 9 is for amplifying the miss signal, and its typical signal shape is as shown in FIG. The dark area is created when the laser spot deviates from the object 6 and the reflected light disappears. In addition, the unevenness of the bright area is
Various waveforms are shown depending on the processing condition of the surface of the object 6 to be inspected, but if there is a defect on the inspection surface, the amount of reflected light at that part will be reduced, and one or more cases in which a pulse-like defect waveform is obtained are suitable for visual inspection. This is a measurement system used in the following cases. The vibration end of the vibrating mirror 2 is detected by the electromagnetic induction coil 2', and the pulse generator 3 outputs a pulse having a period proportional to the vibration period of the vibrating mirror 2. However, this conventional measurement system was only able to perform a visual inspection of the object to be inspected. Therefore, in order to measure dimensions such as the length of the object, a separate length measuring device must be used in a separate process, making the length measuring work complicated and inefficient. EObjective of the Invention The present invention has been made to solve the above-mentioned problems, and its object is to provide an apparatus that can perform visual inspection and length measurement of an object to be inspected using the same device.
この発明の長さ検出装置はフライングスポット方式で被
検物のiさ方向に光を走査する手段と、被検物からの光
を受光する光電変換手段と、光電変換手段の出力を一定
レベルと比較して、概略矩形波状のパルスを出力するパ
ルス発生手段と、パルス発生手段の出力を積分する手段
と、積分手段の出力から被検物の長さを表す信号を得る
手段とを備えたことを特徴とする。
【実施例1
以下にこの発明を一尖施例について説明する。
フライングスポット方式の光学系は第5図に示したちの
と同一である。
第5図に示したシステムの増幅器≦3の出力は比較器1
1に印加されここにおいて、適宜な承準電圧V、と比較
され、増幅器9の出力電圧が基準電圧■1よりも低いと
き、比較器11は第2図にv・。
で示す矩形波のパルスを出力する。
比較器11の出力信号は次段の積分器12にて、積分さ
れる。積分器12は、第2図(11)の波形が、+v0
のときには、積分され、()ボルトの時には、リセット
される。積分器12の出力はサンプル・ホールド回路1
3に印加される。サンプル・ホールド回路13は、比較
器11の出力波形が()になう −た瞬間の積分1
112の値をホールドし、この値は次に+v0になる虚
で、□ホールドされる。 ff12図<c>は、サンプ
ル・ホールド回路13の出力波形である。ホールド時の
値は、第2図(b)のパルスの時開的長さに比例する。
一方、レーザー光の走査は、厳密に一定周波数、一定振
幅で行なわれているので、積分器12の出力Vは
となる。ここで被検物6の長さをし、振動ミラー2の周
波数をr、走査中をYとすると
L=2TYr
が處り文つ、従って、
となり、比較器1(の出力がvoから0に立ち下る時点
の積分11113の出力電圧Vは、長さLに比例する。
(但し、ここでは、走査は完全に線型に行なわれている
ものとした。)それ故サンプル・ホールド回路13の出
力電圧は被検物6の長さに比例する。
サンプル・ホールド回路13の出力は比較回路14.1
5に印加され、被検物6が良品であると判定できる範囲
の上、下限の電圧■2とV、と比較される。
7ンドゲー)16.17は被検物6の長さがどの1lI
l因にあるかを示す信号を出力するもので各アンドグー
)16.17の一方の入力端子は各比較器14.15の
出力端子と接続される。
18は比較器11の出力の立九下りを検出する立ち下り
検出器でその出力はフンショット回路19に印加され、
ワンショット回路19からは一本の被検物6の走査を終
わった時点で所定時間長のパルスを生じる。このワンシ
ョット回路19の出力はアンドデート16,17に印加
さ八ろ。
それ故7ンドデート16.17からは光ビームが二本の
被検物6の走査を終わった時点で出力信号を生じる。
被検物6の長さが設定値の範囲内にあるときは、7ンド
デート16の出力が’0”、17の出力が11111と
なる。被検物6の長さが所定範囲より短いときはアント
ゲ−) 16.17の出力はともに1″、艮いと外は7
ンドデー)16.17の出力はともに“O″となる。
以上のようにして、被検物6の長さが判定される。−力
増幅器9の出力信号は比較器20に印加され、キズ検査
用の設定レベルと比較され、外観検査が行なわれる。
第3図はこの発明の池の実施例を示しており、第1図と
同等の比較器11の出力は7ンドデート22の一方の入
力端子に接続される。
23はP L L (phase 1ockecl
1oop)を用いたクロックパルス発生器であり、振
動ミラー2の振動と同期したパルスを適宜倍周して、t
jSA図(c)に示すようなりロックパルスを発生させ
る。このりロックパルスは7ンドデート22の他方の入
力端子に印加される。
アンドデート22は比較器11から、第4図(b)に示
すような、被検物6の長さに比例するパルスを出力する
ので、アンドデート22は第4図(c)に示すような被
検物6の長さに比例した数のパルスを出力する。アンド
デート22の出力パルスは力9ンタ24でJ計数される
。
カウンタ24での計数結果は比較i!!25で所定値と
比較され、被検物の長短を表す信号が比較器25から出
力されろ。
二の実施例においてら、増幅器9の出力は比較器20に
印加されて、被検物の外観検査が行なわれろ。
[発明の効果]
以上詳述したように、この発明はフライングスポット方
式で被検物を照射し、その被検物から反射光または透過
光を受光素子で受光し、その受光出力を積分することに
よって、被検物の長さに比例する信号を得るようにした
から、被検物の外観検査と、長さ検査とを同一装置によ
り行うことが出来るようになり、外観検査作業と長さ検
査作業とを能率的に行うことができる。The length detecting device of the present invention includes means for scanning light in the i-th direction of the object using a flying spot method, a photoelectric conversion means for receiving light from the object, and an output of the photoelectric conversion means at a constant level. In comparison, the present invention includes a pulse generating means for outputting a roughly rectangular pulse, a means for integrating the output of the pulse generating means, and a means for obtaining a signal representing the length of the object from the output of the integrating means. It is characterized by [Embodiment 1] The present invention will be described below with reference to a one-cusp embodiment. The optical system of the flying spot method is the same as that shown in FIG. The output of the amplifier ≦3 in the system shown in Figure 5 is the comparator 1
1, where it is compared with a suitable reference voltage V, and when the output voltage of amplifier 9 is lower than the reference voltage 1, comparator 11 outputs v. Outputs a square wave pulse shown by . The output signal of the comparator 11 is integrated by an integrator 12 at the next stage. The integrator 12 has a waveform of (11) in FIG.
It is integrated when , and reset when () volts. The output of the integrator 12 is sent to the sample and hold circuit 1.
3 is applied. The sample-and-hold circuit 13 integrates 1 at the moment when the output waveform of the comparator 11 becomes ().
The value of 112 is held, and this value is then imaginary to +v0, and □ is held. ff12 diagram <c> is the output waveform of the sample-and-hold circuit 13. The hold value is proportional to the temporal length of the pulse in FIG. 2(b). On the other hand, since laser beam scanning is performed strictly at a constant frequency and constant amplitude, the output V of the integrator 12 is as follows. Here, if the length of the object 6 is the length of the vibrating mirror 2, r is the frequency of the vibrating mirror 2, and Y is the scanning period, then L=2TYr. Therefore, the output of the comparator 1 changes from vo to 0. The output voltage V of the integral 11113 at the time of falling is proportional to the length L. (However, here, it is assumed that scanning is performed completely linearly.) Therefore, the output voltage of the sample-and-hold circuit 13 is proportional to the length of the test object 6. The output of the sample-and-hold circuit 13 is connected to the comparison circuit 14.1.
5 and is compared with the voltage (2) at the upper and lower limits of the range in which it can be determined that the test object 6 is a good product. 7 game) 16.17 is what is the length of the test object 6?
One input terminal of each AND/GO (16.17) is connected to the output terminal of each comparator (14.15). 18 is a falling detector for detecting the falling edge of the output of the comparator 11, and its output is applied to the output shot circuit 19;
The one-shot circuit 19 generates a pulse of a predetermined length of time when scanning one object 6 to be inspected is completed. The output of this one-shot circuit 19 is applied to AND dates 16 and 17. Therefore, from the seventh index 16.17, an output signal is generated when the light beam has finished scanning the two test objects 6. When the length of the test object 6 is within the set value range, the output of the 7th date 16 is '0' and the output of the 17 is 11111. When the length of the test object 6 is shorter than the predetermined range, Antogame) 16.17 outputs are both 1″, and outside is 7
The outputs of 16 and 17 are both "O". In the manner described above, the length of the test object 6 is determined. - The output signal of the force amplifier 9 is applied to a comparator 20 and compared with a set level for flaw inspection to perform a visual inspection. FIG. 3 shows an embodiment of the pond according to the invention, in which the output of a comparator 11 equivalent to that in FIG. 1 is connected to one input terminal of a 7-nd date 22. 23 is PLL (phase 1ockecl
This is a clock pulse generator using a clock pulse generator (1 oop), which doubles the frequency of the pulse synchronized with the vibration of the vibrating mirror 2 as appropriate to generate t.
A lock pulse is generated as shown in jSA diagram (c). This lock pulse is applied to the other input terminal of the seventh date 22. Since the ANDATE 22 outputs a pulse proportional to the length of the object 6 as shown in FIG. 4(b) from the comparator 11, the ANDATE 22 outputs a pulse as shown in FIG. 4(c). A number of pulses proportional to the length of the test object 6 are output. The output pulses of the AND date 22 are counted by a force counter 24. The counting results at the counter 24 are compared with i! ! 25, the test object is compared with a predetermined value, and a signal representing the length of the test object is outputted from the comparator 25. In the second embodiment, the output of the amplifier 9 is applied to a comparator 20 to perform a visual inspection of the object. [Effects of the Invention] As detailed above, the present invention irradiates a test object using a flying spot method, receives reflected light or transmitted light from the test object with a light receiving element, and integrates the received light output. Since a signal proportional to the length of the object to be inspected can be obtained using the same method, it is now possible to perform both the appearance inspection and the length inspection of the object using the same device. Work can be done efficiently.
第1図はこの発明の一実施例を示すブロック図、fJS
2図は11図の実施例の要部の出力波形図、第3図はこ
の発明の他の実施例を示すブロック図、第4図は第3図
の実施例の要部の波形図、第5図はフライングスポット
方式の検査装置の光学系を示す図、第6図は第5図の装
置の要部の平面図、第7図は第5図の装置の要部の波形
図である。FIG. 1 is a block diagram showing an embodiment of the present invention, fJS
2 is an output waveform diagram of the main part of the embodiment of FIG. 11, FIG. 3 is a block diagram showing another embodiment of the invention, FIG. 4 is a waveform diagram of the main part of the embodiment of FIG. 5 is a diagram showing an optical system of a flying spot type inspection device, FIG. 6 is a plan view of a main part of the device shown in FIG. 5, and FIG. 7 is a waveform diagram of a main part of the device shown in FIG.
Claims (1)
を走査する手段と、被検物からの光を受光する光電変換
手段と、光電変換手段の出力を一定レベルと比較して、
概略矩形波状のパルスを出力するパルス発生手段と、パ
ルス発生手段の出力を積分する手段と、積分手段の出力
から被検物の長さを表す信号を得る手段とを備えたこと
を特徴とする長さ検出装置。(1) A means for scanning light in the length direction of the object using a flying spot method, a photoelectric conversion means for receiving light from the object, and a comparison of the outputs of the photoelectric conversion means with a certain level,
It is characterized by comprising a pulse generating means for outputting a pulse having a substantially rectangular waveform, a means for integrating the output of the pulse generating means, and a means for obtaining a signal representing the length of the object from the output of the integrating means. Length detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22833784A JPS61105406A (en) | 1984-10-29 | 1984-10-29 | Length detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22833784A JPS61105406A (en) | 1984-10-29 | 1984-10-29 | Length detecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61105406A true JPS61105406A (en) | 1986-05-23 |
Family
ID=16874874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22833784A Pending JPS61105406A (en) | 1984-10-29 | 1984-10-29 | Length detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61105406A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56168107A (en) * | 1980-05-29 | 1981-12-24 | Mitsubishi Electric Corp | Surface inspecting device |
-
1984
- 1984-10-29 JP JP22833784A patent/JPS61105406A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56168107A (en) * | 1980-05-29 | 1981-12-24 | Mitsubishi Electric Corp | Surface inspecting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0428005Y2 (en) | ||
US4129384A (en) | Optical extensometer | |
US2437323A (en) | Apparatus for instantaneously indicating on an oscilloscope screen the absorption spectrum of a substance | |
JPS6465460A (en) | Space filter type speed measuring instrument | |
JP3110755B2 (en) | Multi-channel analog detection method and device | |
JPS61105406A (en) | Length detecting device | |
Robinson et al. | The measurement of the frequency response of a photodiode and amplifier using an opto-mechanical frequency response calibrator | |
US4199259A (en) | Detector pulse enhancement circuit | |
JPH03175324A (en) | Method and apparatus for reproducing and measuring seismic field by laser sonde | |
SU883822A1 (en) | Magnetic optical hysteriograph | |
JPS61105407A (en) | Length detecting device | |
JPS6345504A (en) | Range finder | |
JP3510418B2 (en) | Vibration pickup calibration device | |
SU1427246A1 (en) | Device for measuring indicatrix of light diffusion | |
JPS62298705A (en) | Linear sensor light source controlling system | |
JPH0718814B2 (en) | Surface inspection device | |
RU2208803C1 (en) | Radio signal frequency meter | |
SU1024714A1 (en) | Optical electronic system for measuring planar wave-guide film parameters | |
JPS61225604A (en) | Dimension measurement apparatus | |
SU1404823A1 (en) | Digital meter of vibration parameters | |
KR840001118B1 (en) | Scanning electronic microscope | |
SU1314282A1 (en) | Meter of extraneous amplitude modulation in magnetic tape recording equipment | |
JPH01121740A (en) | Optical surface inspecting device | |
JP3190061B2 (en) | Method and apparatus for processing electrical output of a photoelectric conversion device having pixels | |
JPS62245907A (en) | Optical measuring instrument |