JPS6345504A - Range finder - Google Patents
Range finderInfo
- Publication number
- JPS6345504A JPS6345504A JP18995686A JP18995686A JPS6345504A JP S6345504 A JPS6345504 A JP S6345504A JP 18995686 A JP18995686 A JP 18995686A JP 18995686 A JP18995686 A JP 18995686A JP S6345504 A JPS6345504 A JP S6345504A
- Authority
- JP
- Japan
- Prior art keywords
- image
- light
- distance
- target object
- projection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 9
- 230000003287 optical effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】 [技術分野] 本発明は、光学式の測距5IC置に関するものである。[Detailed description of the invention] [Technical field] The present invention relates to an optical distance measuring 5 IC arrangement.
[背景技術]
従来、この種の光学式の測距装置は、予め既知のパター
ンを目標物体に付与し、そのパターンをテレビカメラな
どの画像入力手段にて画像処理手段に取り込み、画像処
理を行うことによりパターン状況を判定し、パターン像
の大きさに基いて目標物体までの距離を判定するように
なっていた。[Background Art] Conventionally, this type of optical distance measuring device applies a known pattern to a target object in advance, and imports the pattern into an image processing means using an image input means such as a television camera to perform image processing. By this, the pattern situation is determined, and the distance to the target object is determined based on the size of the pattern image.
しかしながら、このような従来例にあっては、テレビカ
メラのような画像入力手段を必要とする上、目標物体上
のパターンの位置の判定を行うための画像処理が複雑に
なるので、装置が大形化してコストが高くなるとともに
、処理時間がかかるという問題があった。However, in such a conventional example, an image input means such as a television camera is required, and the image processing for determining the position of the pattern on the target object is complicated, so the device is large. There are problems in that the cost increases due to formalization and processing time is required.
[発明の目的]
本発明は上記の点に鑑みて為されたものであり、その目
的とするところは、構成が簡単でコストを安くすること
ができ、しかも信号処理時間が短くなって迅速に測距が
行える小形の測距装置を提供することにある。[Object of the Invention] The present invention has been made in view of the above-mentioned points, and its purpose is to simplify the configuration and reduce costs, and to shorten the signal processing time so that it can be quickly processed. An object of the present invention is to provide a compact distance measuring device capable of measuring distance.
[発明の開示]
(実施例)
第1]は本発明一実施例を示すもので、a傑物体Xまで
の距離Rが変化しても同一の投光パターンYを目標物体
Xの適所に付与する投光部1と、投光方向からの光を受
光し目標物体X上の投光パターンYを結像する受光部2
と、結像状況を検出する受光索子アレイよりなる結像検
知部3と、結像検知部3出力により結像Y゛の大きさを
il定する信号処理部4と、信号処理部4出力に基いて
目標物体Xまでの距離Rを判断する距離判断部5とで構
成されている。ここに、実施例では、投光部1は、近赤
外発光ダイオードよりなる発光素子10と、投光用の凸
レンズ11とで形成され、凸レンズ11の焦、α位置に
発光素子10を配置することにより平行ビームを目標物
体Xに対して投光するようになっており、投光パターン
Yは凸レンズ11の形状(本実施例では円形)と一致し
ている。[Disclosure of the Invention] (Example) The first example shows an example of the present invention, in which the same light projection pattern Y is applied to the appropriate position of the target object X even if the distance R to the target object X changes. a light projecting section 1 that receives light from the projecting direction, and a light receiving section 2 that forms an image of a projected light pattern Y on a target object X.
, an image formation detection section 3 consisting of a light-receiving probe array that detects the image formation situation, a signal processing section 4 that determines the size of the image Y' based on the output of the image formation detection section 3, and an output of the signal processing section 4. and a distance determining section 5 that determines the distance R to the target object X based on. Here, in the embodiment, the light emitting unit 1 is formed of a light emitting element 10 made of a near-infrared light emitting diode and a convex lens 11 for light emitting, and the light emitting element 10 is arranged at the focal point and α position of the convex lens 11. As a result, a parallel beam is projected onto the target object X, and the projection pattern Y matches the shape of the convex lens 11 (circular in this embodiment).
また、発光素子10は、外乱による誤動作を防止するた
めに適当な変調周波数の信号にて駆動され、一定の周期
で発光させるようになっている。一方、受光部2は、投
光部1の光軸に対して45°の角度をもって配置された
ハーフミラ−20と、投光用凸レンズ10に対して直方
に配置された受t Jll凸レンズ21とで形成されて
おり、その光軸を投光部1の光軸と一致させて投光方向
からの光を受光するようになっている。受光部3の結像
面に配置される結像検知部3は、多数の受光素子30が
列設された受光素子アレイと、受光索子30出力を順次
出力させるためのアナログスイッチ31とで形成されて
いる。この結像検知部3出力が入力される信号処理部4
は、アナログスイッチ31出力を増幅する増幅器40、
変調周波数を抽出する帯域フィルタ41およびアナログ
スイッチ31の作動に応じて各受光素子30出力を検出
して比較する信号処理回路42にて形成されている。Further, the light emitting element 10 is driven by a signal with an appropriate modulation frequency to emit light at a constant cycle in order to prevent malfunctions due to disturbances. On the other hand, the light receiving section 2 includes a half mirror 20 arranged at an angle of 45° to the optical axis of the light projecting section 1 and a receiving convex lens 21 arranged perpendicularly to the projecting convex lens 10. The optical axis thereof is aligned with the optical axis of the light projecting section 1 to receive light from the projecting direction. The image detection unit 3 disposed on the image forming surface of the light receiving unit 3 is formed by a light receiving element array in which a large number of light receiving elements 30 are arranged in a row, and an analog switch 31 for sequentially outputting the outputs of the light receiving elements 30. has been done. A signal processing unit 4 to which the output of this image detection unit 3 is input.
is an amplifier 40 that amplifies the analog switch 31 output;
It is formed of a bandpass filter 41 that extracts the modulation frequency and a signal processing circuit 42 that detects and compares the outputs of each light receiving element 30 in accordance with the operation of the analog switch 31.
以下、実施例の動作について説明する。@3図は本発明
の測距原理を示す図であり、いま、凸レンズ21から投
光パターンYまでの距離をR1凸レンズ21から結像面
上の結像Y゛までの距離を2、投光パターンYの長さを
L1結像Y°の氏さをLoとすると、次式が成立する。The operation of the embodiment will be described below. Figure @3 is a diagram showing the distance measurement principle of the present invention. Now, the distance from the convex lens 21 to the light projection pattern Y is R1, the distance from the convex lens 21 to the image Y on the imaging plane is 2, and the distance from the projection pattern Y is 2, and the distance from the convex lens 21 to the image formation Y on the image plane is 2. If the length of the pattern Y is L1 and the height of the imaging Y° is Lo, then the following equation holds true.
L゛=(α/R)XL・・・・・・・・・・・・・・・
(1)(1)式より、
R=(L/L’)Xα・・・・・・・・・・・・・・・
(2)となり、投光パターンYの長さL1凸レンズ21
から結像面までの距離aが既知であれば、結像Y°の長
さを知ることにより凸レンズ21から投光パターンYま
での距離すなわち目標物体Xまでの距離Rが求まること
になる。L゛=(α/R)XL・・・・・・・・・・・・・・・
(1) From formula (1), R=(L/L')Xα・・・・・・・・・・・・・・・
(2), the length of the light projection pattern Y is L1, the convex lens 21
If the distance a from to the image plane is known, then the distance from the convex lens 21 to the projection pattern Y, that is, the distance R to the target object X, can be determined by knowing the length of the image Y°.
次に、具体的な測距動作について説明する。いま、目標
物体Xまでの距離Rが変化しても同一の投光パターンY
を目標物体Xの適所に付与する平行ビームが投光部1か
ら凸レンズ11によって投光されており、受光!ls2
では、この投光方向からの光をハーフミラ−20および
凸レンズ21を介して受光して結像面に投光パターン像
を結像させる。次に、結像Y°の大きさは結像検知部3
出力により判定されるようになっており、本実施例では
、第4図(a)に示すように列設された受光素子30出
力をアナログスイッチ31によって順次取り出し、増幅
器40に一〇増幅し、帯域フィルタ41にて変調周波数
成分を抽出して得られる検知出力Voは第・を図(b)
に示すようになっている7ここに、この検知出力Voが
基準電圧VLb以上になっている期間(すなわち所定レ
ベル以上の光を受光している受光素子30の数に対応す
つる時間)を計測することにより結像Y゛の大きさLo
を判定(基準電圧Vtl+以上の期間に基いてLoを演
算)するようになっている。なお、上記基準電圧vth
は各受光素子30出力の平均値に基いて設定され、距B
R1目標物体Xの反射率などによる影響を防止するよう
になっている。また、正確なLoを判定する場合には、
各受光素子30出力を適当な補完法によって補完処理し
て近似曲線を決定し、この近似曲線と基準電圧とを比較
してLoを判定すれば良い8次に、このようにして判定
された結像Y゛の大ささLoは距gtq断flfi5に
入力され、(2)式に基いて目標物体Xまでの距離Rが
判定される。この場合、投光パターンYの形状は円形で
あるので、受光素子アレイよりなる結像検知部3および
信号路J!!!部4によって結像Y゛の直径をLoとし
て検出し、投光パターンYの直径(すなわち凸レンズの
径)をLとして[sRを演算するようになっている。Next, a specific distance measuring operation will be explained. Now, even if the distance R to the target object X changes, the light projection pattern Y remains the same.
A parallel beam that gives the target object ls2
Then, the light from this projection direction is received through the half mirror 20 and the convex lens 21 to form a projection pattern image on the imaging plane. Next, the size of the image formation Y° is determined by the image formation detection unit 3
Judgment is made based on the output, and in this embodiment, the outputs of the light-receiving elements 30 arranged in a row as shown in FIG. The detection output Vo obtained by extracting the modulated frequency component with the bandpass filter 41 is shown in Figure (b).
7 Here, the period during which this detection output Vo is equal to or higher than the reference voltage VLb (that is, the period corresponding to the number of light receiving elements 30 receiving light of a predetermined level or higher) is measured. By doing this, the size of the image Y゛ is Lo
is determined (Lo is calculated based on the period when the voltage is equal to or higher than the reference voltage Vtl+). Note that the reference voltage vth
is set based on the average value of the output of each light receiving element 30, and the distance B
R1 This is to prevent the influence of the reflectance of the target object X, etc. In addition, when determining accurate Lo,
The output of each light-receiving element 30 is interpolated using an appropriate interpolation method to determine an approximate curve, and this approximate curve is compared with the reference voltage to determine Lo. The size Lo of the image Y' is input to the distance gtq section flfi5, and the distance R to the target object X is determined based on equation (2). In this case, since the shape of the light projection pattern Y is circular, the image forming detection section 3 consisting of a light receiving element array and the signal path J! ! ! The diameter of the image Y' is detected as Lo by the unit 4, and sR is calculated by setting the diameter of the light projection pattern Y (that is, the diameter of the convex lens) as L.
[発明の効果1
本発明は上述のように、目標物体までの距離が変化して
も同一の投光パターンを目標物体の適所に付与する投光
部と、投光方向からの光を受光し目標物体上の投光パタ
ーンを結像する受光部と、結像状況を検出する受光素子
7レイよりなる結像検知部と、結像検知部出力により結
像の大きさを判定する信号処理部と、信号処理部出力に
基いて目標物体までの距離を判断する距a 4’JI
a部とで構成されており、目標物体に投光パターンを付
与する投光部と、投光パターンを結像させる受光部との
相対位置を適当に設定しておくことに上り、受光素子ア
レイよりなる結像検知部によって投光パターンの結像の
大きさを検出する゛ことができるので、テレビカメラの
ような画像入力手段を使用する必要がなく、構成が簡単
になってコストを安くすることがでさるという効果があ
り、しかも、受光素子アレイよりなる結像検知部出力に
基いて結像の大きさを容易に判定することができるので
、信号処理時間が短くなって迅速に測距が行えるという
効果がある。[Effects of the Invention 1] As described above, the present invention includes a light projecting section that applies the same light projection pattern to a suitable location on the target object even if the distance to the target object changes, and a light projecting section that receives light from the direction of the light projection. A light-receiving section that forms an image of the light projection pattern on the target object, an image-forming detecting section consisting of seven light-receiving elements that detects the image-forming situation, and a signal processing section that determines the size of the image based on the output of the image-forming detecting section. and distance a 4'JI for determining the distance to the target object based on the signal processing unit output.
The light-receiving element array consists of a part a and a light-receiving element array. Since it is possible to detect the size of the image of the projected light pattern using the image forming detection section, there is no need to use an image input means such as a television camera, which simplifies the configuration and reduces costs. In addition, the size of the image can be easily determined based on the output of the image detection section consisting of the photodetector array, which reduces signal processing time and enables rapid distance measurement. This has the effect of allowing you to do this.
第1図は本発明一実施例の要部概略構成図、第2図は同
上の要部回路図、Pt53図および第4図は同上の動作
説明図である。
XはI″I標物体、Yは投光パターン、Y゛は結像、1
は投光部、2は受光部、3は結像検*I¥lS、4は信
号箔F[!部、5は距離判Wr部である。FIG. 1 is a schematic diagram of the main part of an embodiment of the present invention, FIG. 2 is a circuit diagram of the main part of the same, and Pt53 and FIG. 4 are explanatory diagrams of the operation of the same. X is I''I target object, Y is the light projection pattern, Y is the image formation, 1
is the light emitting part, 2 is the light receiving part, 3 is the imaging detection*I\lS, and 4 is the signal foil F[! Section 5 is a distance scale Wr section.
Claims (1)
ーンを目標物体の適所に付与する投光部と、投光方向か
らの光を受光し目標物体上の投光パターンを結像する受
光部と、結像状況を検出する受光素子アレイよりなる結
像検知部と、結像検知部出力により結像の大きさを判定
する信号処理部と、信号処理部出力に基いて目標物体ま
での距離を判断する距離判断部とより成る測距装置。(1) A light projection unit that applies the same light projection pattern to the appropriate location on the target object even if the distance to the target object changes, and a light projection unit that receives light from the direction of the light projection and forms an image of the light projection pattern on the target object. an image detection section consisting of a light receiving element array that detects the image formation situation, a signal processing section that determines the size of the image based on the output of the image detection section, and a target object based on the output of the signal processing section. A distance measuring device comprising a distance determining unit that determines the distance to.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18995686A JPS6345504A (en) | 1986-08-13 | 1986-08-13 | Range finder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18995686A JPS6345504A (en) | 1986-08-13 | 1986-08-13 | Range finder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6345504A true JPS6345504A (en) | 1988-02-26 |
Family
ID=16250004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18995686A Pending JPS6345504A (en) | 1986-08-13 | 1986-08-13 | Range finder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6345504A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03158715A (en) * | 1989-11-15 | 1991-07-08 | Matsushita Electric Works Ltd | Position detecting method for loaded article |
JP2014510909A (en) * | 2011-02-15 | 2014-05-01 | ビーエーエスエフ ソシエタス・ヨーロピア | Detector for optically detecting at least one object |
JP2016516526A (en) * | 2013-04-30 | 2016-06-09 | コー・ヤング・テクノロジー・インコーポレーテッド | Optical tracking system and tracking method using the same |
-
1986
- 1986-08-13 JP JP18995686A patent/JPS6345504A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03158715A (en) * | 1989-11-15 | 1991-07-08 | Matsushita Electric Works Ltd | Position detecting method for loaded article |
JP2014510909A (en) * | 2011-02-15 | 2014-05-01 | ビーエーエスエフ ソシエタス・ヨーロピア | Detector for optically detecting at least one object |
JP2016516526A (en) * | 2013-04-30 | 2016-06-09 | コー・ヤング・テクノロジー・インコーポレーテッド | Optical tracking system and tracking method using the same |
US10307210B2 (en) | 2013-04-30 | 2019-06-04 | Koh Young Technology Inc. | Optical tracking system and tracking method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0997748B1 (en) | Chromatic optical ranging sensor | |
JPH04115108A (en) | Three-dimensional scanner | |
JPH10253351A (en) | Range finder | |
US6388754B1 (en) | Shape measuring system and method | |
JPS6465460A (en) | Space filter type speed measuring instrument | |
US4277176A (en) | Method and apparatus for checking the width and parallelism of margins following the centering of a print with respect to a support | |
US4993830A (en) | Depth and distance measuring system | |
JPS6345504A (en) | Range finder | |
JP3175317B2 (en) | Distance measuring device | |
CN102346384B (en) | Method for regulating optimum focal plane for silicon chip and exposure device thereof | |
JPS61104202A (en) | Optical displacement meter | |
JPS6057047B2 (en) | focus detection device | |
JP3054011B2 (en) | Camera ranging device | |
JP3001013B2 (en) | Distance measuring device | |
JPH0558313B2 (en) | ||
JPH0792377A (en) | Range finder | |
JPH04158211A (en) | Active range finder | |
JPS61246613A (en) | Measuring device of distance of camera | |
JPS6110711A (en) | Optical type distance measuring apparatus | |
JPH07168090A (en) | Range finder of camera | |
JPS6132324Y2 (en) | ||
JP3394090B2 (en) | Displacement gauge | |
SU1711001A1 (en) | Surface finish measuring instrument | |
CN104516208A (en) | Workpiece height measurement method based on phase detection | |
JPS623609A (en) | Range finder |