JPS61225604A - Dimension measurement apparatus - Google Patents

Dimension measurement apparatus

Info

Publication number
JPS61225604A
JPS61225604A JP6606985A JP6606985A JPS61225604A JP S61225604 A JPS61225604 A JP S61225604A JP 6606985 A JP6606985 A JP 6606985A JP 6606985 A JP6606985 A JP 6606985A JP S61225604 A JPS61225604 A JP S61225604A
Authority
JP
Japan
Prior art keywords
dimension
measured
light
specimen
video signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6606985A
Other languages
Japanese (ja)
Inventor
Hiroo Fujita
宏夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP6606985A priority Critical patent/JPS61225604A/en
Publication of JPS61225604A publication Critical patent/JPS61225604A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/024Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable dimension measurement without depending on a value of the threshold level, by arranging a dimension comparing master in the vicinity of a specimen and obtaining a bit number of the difference between them. CONSTITUTION:A dimensionally known dimension compomporing master 21 and a dimensionally unknown specimen 22 are positioned with a distance S apart. And, a beam of light from a source 20 is irradiated to the master 21 and the specimen 22 simultaneously. Next, optical noise included in transmitted beams 201 from the specimen 22 and the master 21 are silenced in an image convertor 23 for conversion of a magnifying ratio of the image. Then, a solid image sensor 24 which received beams of light 202 from the convertor 23 generates a video signal 203 by converting a light quantity value per each bit into an electric intensity value for calculation of the dimension of the specimen 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微小な部材の寸法を計測するときの測定方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a measuring method for measuring the dimensions of minute members.

〔従来技術と問題点〕[Prior art and problems]

近年、精密加工技術、自動組立技術が進歩し。 In recent years, precision processing technology and automatic assembly technology have advanced.

微小な部材の寸法を高精度に、オンライン的に計測する
要求が強まっている。
There is a growing demand for online measurement of the dimensions of minute members with high precision.

一方、最近では電子技術の進歩に伴い、固体イメージセ
ンサ−が光計測の各分野で多く用いられている。特に寸
法計測においても、被測定物に元ビームを照射し、その
像をレンズ系にて拡大し、固体イメージセンサ−上に結
像させ、センサー上の各電子(ビット)の光量を測定し
て、明暗の2値化を行なって寸法を求める方法が一般的
である。
On the other hand, with recent advances in electronic technology, solid-state image sensors are increasingly being used in various fields of optical measurement. Particularly in dimensional measurement, the object to be measured is irradiated with an original beam, the image is magnified by a lens system, the image is formed on a solid-state image sensor, and the light intensity of each electron (bit) on the sensor is measured. A common method is to obtain the dimensions by performing binarization of brightness and darkness.

ここで固体イメージセンサ−で得られたアナログ的なビ
デオ信号をディジタル的な21I化信号に変換するとき
の方式が寸法の測定精度に大きな影響を及ぼす。IE2
図(1)〜(3)に従来の寸法測定の方法を示す。
Here, the method used to convert an analog video signal obtained by a solid-state image sensor into a digital 21I signal has a great influence on the measurement accuracy of dimensions. IE2
Figures (1) to (3) show conventional dimension measurement methods.

第2図(1)は寸法測定の従来の原理を示す元略図で、
10は光源、11は例えば直径等の寸法を測定する被測
定物、12はレンズ系、13は固体イメージセンサ−で
ある。
Figure 2 (1) is an original schematic diagram showing the conventional principle of dimension measurement.
10 is a light source, 11 is an object to be measured whose dimensions such as diameter are measured, 12 is a lens system, and 13 is a solid-state image sensor.

光源10からの光な被測定物11に照射し、その儂をレ
ンズ系12により拡大してイメージセンサ−13に結像
させる。第2図(2)にイメージセンサ−13により光
電変換されたビデオ信号、第2図(3)に2値化信号の
各波形図を示す。100はビデオ信号、103は2値化
信号である。被測定物11により光がさえぎられる部分
は暗、光が透過される部分は明となる。この明暗の変化
する場所101及び102は一般にはある傾きを持りて
変化する。このビデオ信号100はスレッショールドレ
ベルを決定してから第2図(3)に示すような0、1の
2@化信号103に変換して、2値化信号103の立ち
下がりから次の立ち上がりまでの暗部にふくまれるビッ
ト数18を演算して寸法情報に変換する。
Light from a light source 10 is irradiated onto an object 11 to be measured, the light is magnified by a lens system 12, and an image is formed on an image sensor 13. FIG. 2(2) shows a video signal photoelectrically converted by the image sensor 13, and FIG. 2(3) shows a waveform diagram of a binary signal. 100 is a video signal, and 103 is a binary signal. A portion where light is blocked by the object to be measured 11 is dark, and a portion through which light is transmitted is bright. The places 101 and 102 where the brightness changes generally change with a certain slope. After determining the threshold level of this video signal 100, it is converted into a 2@ signal 103 of 0 and 1 as shown in FIG. 2 (3). The number of bits included in the dark area up to 18 is calculated and converted into size information.

このとき第2図(2)に示した如く、ビデオ信号100
の明暗の変化はある傾きを持っているために、スレッシ
9−ルドレベルが14及び15の場合に、暗部に含まれ
るビット数が16及び17とナリ、スレッショールドレ
ベルの値によって寸法が変化してしまうという欠点を有
している。
At this time, as shown in FIG. 2 (2), the video signal 100
Since the change in brightness has a certain slope, when the threshold level is 14 and 15, the number of bits included in the dark area is 16 and 17, and the dimensions change depending on the value of the threshold level. It has the disadvantage of being

〔発明の目的〕[Purpose of the invention]

本発明はこの様な欠点を解消させて、スレッショールド
レベルの値に依存しないで寸法を測定することができる
精密測定方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to overcome these drawbacks and provide a precision measurement method that can measure dimensions without depending on the threshold level value.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は寸法を測定する被測定物の近くに、寸法が既知
の別の寸法比較物を配置し、前記被測定物と前記寸法比
較物の両方に同時に元を照射し、その光学的な儂をイメ
ージセンサ−で受光し、イメージセンサ−の出力のビデ
オ信号をある任意のスレッショールドレベルで2値化し
、前記被測定物による2値化信号の立ち下がりから次の
立ち上がりまでの第1の期間内にふくまれるビット数と
、前記寸法比較物による2値化信号の立ち下がりから次
の立ち上がりまでの第2の期間内にふくまれるビット数
の差のビット数を求めて寸法比較物の寸法と前述の差の
ビット数を演算するものである。
The present invention places another dimension comparison object whose dimensions are known near the object to be measured, and simultaneously irradiates both the object to be measured and the dimension comparison object with an original light. is received by an image sensor, the video signal output from the image sensor is binarized at a certain arbitrary threshold level, and the first signal from the falling edge of the binary signal generated by the object under test to the next rising edge is detected. The size of the dimension comparison object is determined by calculating the difference between the number of bits included in the period and the number of bits included in the second period from the falling edge to the next rising edge of the binarized signal by the dimension comparison object. and the number of bits of the above-mentioned difference.

〔発明の実施例〕[Embodiments of the invention]

以下に図を用いて本発明の詳細な説明する。 The present invention will be explained in detail below using figures.

第1図は本発明による寸法測定の原理を示すブロック図
である。
FIG. 1 is a block diagram showing the principle of dimension measurement according to the present invention.

第1図20は送光部で、光源及び光源からの元ビームの
形状等を変換させる。21は寸法が既知である寸法比較
物、22は寸法が未知である被測定物で、寸法比較物2
1と被測定物22をある距離Sだけ離して配置する。送
光部20から発せられた光ビーム200を前記寸法比較
物21と被測定物22に同時に照射する。23は像変換
部で、被測定物22と寸法比較物21からの透過光20
1忙ふくまれている光学的なノイズを低減化したり、像
の倍率の変換を行なうものである。像変換部26からの
元ビーム202を固体イメージセンサ−24で受光する
。固体イメージセンサ−24は例えばCCD素子から構
成される4096ビツト(画素)の1次元リニアアレイ
構造のものである。固体イメージセンサ−24の各ビッ
ト毎の光量値を電圧値に変換してビデオ信号203を作
成し、データ処理部25にて各種演算を行ない寸法を算
出する。
20 in FIG. 1 is a light transmitting unit that converts the shape of the light source and the original beam from the light source. 21 is a dimension comparison object whose dimensions are known; 22 is a measured object whose dimensions are unknown; dimension comparison object 2;
1 and the object to be measured 22 are placed a certain distance S apart. A light beam 200 emitted from a light transmitting section 20 is irradiated onto the size comparison object 21 and the object to be measured 22 at the same time. Reference numeral 23 denotes an image conversion unit, which converts transmitted light 20 from the object to be measured 22 and the dimension comparison object 21.
1. It reduces the optical noise involved in the image processing and converts the magnification of the image. The original beam 202 from the image converter 26 is received by the solid-state image sensor 24. The solid-state image sensor 24 has a one-dimensional linear array structure of 4096 bits (pixels) composed of, for example, CCD elements. A video signal 203 is created by converting the light amount value for each bit of the solid-state image sensor 24 into a voltage value, and a data processing section 25 performs various calculations to calculate dimensions.

次にデータ処理部25の動作を詳述する。Next, the operation of the data processing section 25 will be explained in detail.

第3図(1)は第1図に示した測定方式により得られる
ビデオ信号の一例を示す波形図である。
FIG. 3(1) is a waveform diagram showing an example of a video signal obtained by the measurement method shown in FIG.

300はビデオ信号で、暗部30は寸法比較物21によ
る影・暗部62は被測定物22による影・明部61は寸
法比較物21.と被測定物22とのすきまSK′よる光
透過部である。このビデオ信号300のスレッショール
ドレベル33を設定して2値化処理するが、第1図の例
で説明した如く、ビデオ信号の明→暗への変化曲線30
1% 302及ぶ暗→明への変化曲線303,304は
ある傾きを持って変化するため、スレッショールドレベ
ル33とビデオ信号の交点A−B−C−Dはスレッシ諺
−ルドレベルの値によりて異なることになる。
300 is a video signal, where the dark area 30 is a shadow caused by the size comparison object 21, the dark area 62 is a shadow caused by the object to be measured 22, and the bright area 61 is a shadow caused by the size comparison object 21. This is a light transmitting portion due to the gap SK' between the object 22 and the object 22 to be measured. This video signal 300 is binarized by setting a threshold level 33, but as explained in the example of FIG.
Since the dark to bright change curves 303 and 304 of 1% 302 change with a certain slope, the intersection point A-B-C-D of the threshold level 33 and the video signal depends on the value of the threshold level. It will be different.

ここで明暗の変化がある傾きをもつのは、元の回折、レ
ンズ系の収差、被測定物の位置変動等によるものと考え
られる。
The reason why there is a slope with a change in brightness and darkness is thought to be due to the original diffraction, aberration of the lens system, positional fluctuation of the object to be measured, etc.

第3図+21は2値化信号を示す波形図である。FIG. 3+21 is a waveform diagram showing a binary signal.

被測定物22による暗部32のCD間にふくまれるビッ
ト数Xを単独に求めても正確な寸法が得られないのは明
らかである。
It is clear that an accurate dimension cannot be obtained even if the number of bits X included between the CDs of the dark area 32 due to the object to be measured 22 is determined independently.

実験結果によるとスレッシ3−ルドレベルが10%〜3
0%程度までの領域では、明暗の変化する傾きは各々の
場所で等しいことが確認されている。従って明→暗へと
変化するAと0間のピッチP1はスレッショールドレベ
ルの値によらス一定で、又暗→明へと変化するBと0間
のピッチP2もスレッショールドレベルによう−j”一
定テする。
According to the experimental results, the threshold level is 10% to 3.
It has been confirmed that in the region down to approximately 0%, the slope of the change in brightness and darkness is the same at each location. Therefore, the pitch P1 between A and 0 that changes from bright to dark is constant depending on the value of the threshold level, and the pitch P2 between B and 0 that changes from dark to bright is also at the threshold level. −j” Constant Tee.

ここで被測定物22による2値化信号305の立ち下が
りから次の立ち上がりまでの第1の期間にふくまれるビ
ット数をX1寸法比較物21による2値化信号の立ち下
がりから次の立ち上がりまでの第2の期間にふくまれる
ビット数をY、寸法比較物21と被測定物22との間の
すき間による2値化信号の立ち上がりから次の立ち下が
りまでの期間にふくまれるビット数゛をZとすると、P
I=Y+Z、P2=Z+XであるからP2−P1=X−
Yとなり、前記第1の期間と第2の期間にふくまれるビ
ット数の差はスレッショールドレベルの値に依存しない
Here, the number of bits included in the first period from the falling edge of the binary signal 305 produced by the object under test 22 to the next rising edge is calculated from the falling edge of the binary signal 305 produced by the X1 size comparison object 21 to the next rising edge. Let Y be the number of bits included in the second period, and let Z be the number of bits included in the period from the rising edge of the binary signal to the next falling edge due to the gap between the dimension comparison object 21 and the measured object 22. Then, P
Since I=Y+Z and P2=Z+X, P2-P1=X-
Y, and the difference in the number of bits included in the first period and the second period does not depend on the value of the threshold level.

被測定物220寸法なLx、寸法比較物21の寸法をL
yとし、光学系の定数等で決まるビット数→寸法への変
換係数なKとした場合に、L x −L y = K 
(X −Y )であるから、前述の差のビット数とt、
yとを変換係数Kを用いて加算すれば、スレシ頂−ルド
レペルに依存しないテLxを求めることができる。
The dimension of the object to be measured 220 is Lx, and the dimension of the dimension comparison object 21 is L
When y is the conversion coefficient from the number of bits to the dimension determined by the constants of the optical system, etc., L x −L y = K
(X − Y), so the number of bits of the difference mentioned above and t,
By adding the values y and y using the conversion coefficient K, it is possible to obtain the value Lx that does not depend on the threshold level.

ここで、被測定物22と寸法比較物21との間の距離は
計算には無関係の量である。さらにはビデオ信号300
のスレッシ曹−ルドレペル近(ニ若干のノイズがある場
合は、ノイズ除去と共に最小二乗法等を用いて測定デー
タを関数近似し、解析的に前述の差のビット数を算出す
ることもできる。
Here, the distance between the object to be measured 22 and the size comparison object 21 is an amount irrelevant to the calculation. Furthermore, the video signal 300
If there is some noise, the number of bits of the above-mentioned difference can be calculated analytically by removing the noise and approximating the measured data using the least squares method or the like.

以上の説明において安定した測定を行なうには。How to perform stable measurements in the above explanation.

安定したビデオ信号を得ることが必要である。It is necessary to obtain a stable video signal.

第4図は第2図に示した送光部20及び像変換部23の
一実施例を示す光路図である。
FIG. 4 is an optical path diagram showing an embodiment of the light transmitting section 20 and the image converting section 23 shown in FIG.

40はHe −N eレーザ、41はシリンドリカルレ
ンズ、42は平凸レンズで、送光部20を構成する。
40 is a He-N e laser, 41 is a cylindrical lens, and 42 is a plano-convex lens, which constitute the light transmitting section 20.

平凸レンズ42からほぼ1次元的な広がりを持つ細長い
楕円ビームが形成され、被測定物22及び寸法比較物2
1の両方に同時に照射される。
An elongated elliptical beam with a nearly one-dimensional spread is formed from the plano-convex lens 42, and is directed to the object to be measured 22 and the object to be compared in size 2.
1 is irradiated at the same time.

次に43及び45は平凸レンズ、44は空間フィルター
で、これらによって像変換部23を構成する。
Next, 43 and 45 are plano-convex lenses, and 44 is a spatial filter, which constitute the image conversion section 23.

ビデオ信号の明暗のダイナミックレンヂを広くとれば2
値化のレベルが安定するために前述の楕円ビームに変換
すると共に、回折等による光の高調波ノイズをカットす
る空間フィルター44を設置する。さらに寸法測定の精
度を高めるために、平凸レンズ43と45の焦点距離の
比で決まる倍率だけ像を拡大する。
If the dynamic range of brightness and darkness of the video signal is widened, 2
In order to stabilize the value conversion level, a spatial filter 44 is installed to convert the beam into the elliptical beam described above and to cut harmonic noise of the light due to diffraction or the like. Furthermore, in order to improve the precision of dimension measurement, the image is magnified by a magnification determined by the ratio of the focal lengths of the plano-convex lenses 43 and 45.

また送光部20から発せられる元ビームは平行光線であ
るため、被測定物の位置が変動しても、光学系の倍率に
はほとんど影響を及ぼさないため、測定誤差とならない
Furthermore, since the original beam emitted from the light transmitting section 20 is a parallel light beam, even if the position of the object to be measured changes, it hardly affects the magnification of the optical system, and therefore does not cause measurement errors.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかな如く5本発明によれば被測定
物に接近させて寸法比較物を配置し、両者の差のビット
数を求めることにより、スレッシ1−ルドレペルに依存
しないで高精度に被測定物の寸法が算出できる。
As is clear from the above embodiments, according to the present invention, by placing a dimension comparison object close to the object to be measured and determining the number of bits of the difference between the two, high accuracy can be achieved without depending on the threshold level. The dimensions of the object to be measured can be calculated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による寸法測定のブロック図、第2図は
従来の寸法測定の原理を示す光路図及びビデオ信号の二
側を示す波形図、第3図は本発明によるビデオ信号及び
2値化信号を示す波形図、第4図は光学系の実施例を示
す光路図である。 20・・・・・・送光部、21・・・・・・寸法比較物
、22・・・・・・被測定物、23・・・・・・像変換
部、24・・・・・・イメージセンサ−1 181図
Fig. 1 is a block diagram of dimension measurement according to the present invention, Fig. 2 is an optical path diagram showing the principle of conventional dimension measurement and a waveform diagram showing two sides of a video signal, and Fig. 3 is a video signal and binary value diagram according to the present invention. FIG. 4 is an optical path diagram showing an embodiment of the optical system. 20...Light sending unit, 21...Dimension comparison object, 22...Measurement object, 23...Image conversion unit, 24...・Image sensor-1 Figure 181

Claims (1)

【特許請求の範囲】[Claims] 寸法を測定する被測定物に光を照射し、該被測定物から
の光学的な像をイメージセンサーで受光し、該イメージ
センサーの出力のビデオ信号のスレッショールドレベル
を決めて、前記ビデオ信号を2値化し、寸法を測定する
寸法測定方法において、前記寸法を測定する被測定物の
近くに、寸法が既知の寸法比較物を配置し、前記被測定
物と、前記寸法比較物の両方に同時に光を照射し、前記
被測定物による2値化信号の立ち下がりから次の立ち上
がりまでの第1の期間内にふくまれるビット数と前記寸
法比較物による2値化信号の立ち下がりから次の立ち上
がりまでの第2の期間内にふくまれるビット数との差の
ビット数と、前記寸法比較物の寸法を演算して被測定物
の寸法を求めることを特徴とする寸法測定方法。
The object to be measured whose dimensions are to be measured is irradiated with light, an optical image from the object to be measured is received by an image sensor, a threshold level of a video signal output from the image sensor is determined, and the threshold level of the video signal output from the image sensor is determined. In the dimension measurement method of binarizing and measuring the dimensions, a dimension comparison object whose dimensions are known is placed near the object to be measured, and both the measurement object and the dimension comparison object are At the same time, light is irradiated, and the number of bits included in the first period from the falling edge of the binary signal from the object to be measured to the next rising edge, and the number of bits included in the first period from the falling edge of the binary signal from the dimension comparison object to the next rising edge. A dimension measuring method characterized in that the dimension of the object to be measured is determined by calculating the difference between the number of bits and the number of bits included in the second period up to the rise and the dimension of the dimension comparison object.
JP6606985A 1985-03-29 1985-03-29 Dimension measurement apparatus Pending JPS61225604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6606985A JPS61225604A (en) 1985-03-29 1985-03-29 Dimension measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6606985A JPS61225604A (en) 1985-03-29 1985-03-29 Dimension measurement apparatus

Publications (1)

Publication Number Publication Date
JPS61225604A true JPS61225604A (en) 1986-10-07

Family

ID=13305190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6606985A Pending JPS61225604A (en) 1985-03-29 1985-03-29 Dimension measurement apparatus

Country Status (1)

Country Link
JP (1) JPS61225604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38025E1 (en) * 1991-02-22 2003-03-11 Cyberoptics Corporation High precision component alignment sensor system
US7746481B2 (en) 2007-03-20 2010-06-29 Cyberoptics Corporation Method for measuring center of rotation of a nozzle of a pick and place machine using a collimated laser beam
US8068664B2 (en) 2007-06-05 2011-11-29 Cyberoptics Corporation Component sensor for pick and place machine using improved shadow imaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38025E1 (en) * 1991-02-22 2003-03-11 Cyberoptics Corporation High precision component alignment sensor system
US7746481B2 (en) 2007-03-20 2010-06-29 Cyberoptics Corporation Method for measuring center of rotation of a nozzle of a pick and place machine using a collimated laser beam
US8068664B2 (en) 2007-06-05 2011-11-29 Cyberoptics Corporation Component sensor for pick and place machine using improved shadow imaging

Similar Documents

Publication Publication Date Title
JPS5963725A (en) Pattern inspector
JPH11295229A (en) Surface inspection apparatus
JP4215220B2 (en) Surface inspection method and surface inspection apparatus
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
JPS61225604A (en) Dimension measurement apparatus
KR920002920B1 (en) Method and apparatus for measuring the size of wire rod with laser beam
JP2004294439A (en) Noncontact measuring system and method
JPS5876710A (en) Surface roughness measuring device
JP2000146529A (en) Non-contact measuring apparatus for quantity of abrasion of blade
JP3262924B2 (en) Binarization method
JPH03235007A (en) Speckle length measuring instrument
JP2787928B2 (en) Image signal processing method
US20220412731A1 (en) Apparatus and method for quantifying the surface flatness of three-dimensional point cloud data
US4077723A (en) Method of measuring thickness
JPS61218905A (en) Gap measuring instrument
JPS62298705A (en) Linear sensor light source controlling system
JP2000000047U (en) Inspection equipment for cutting tools.
JPH07229715A (en) Edge position detector
JPH0611313A (en) Thickness measuring instrument
JPS623609A (en) Range finder
JPS62174606A (en) Dimension measuring instrument
JPS6117904A (en) Pattern detector
JPH06117825A (en) Apparatus of measuring diameter or width of thin wire
JPH0724256B2 (en) Size measuring device
JPS59187207A (en) Length measuring device