JPS61105407A - Length detecting device - Google Patents

Length detecting device

Info

Publication number
JPS61105407A
JPS61105407A JP22833884A JP22833884A JPS61105407A JP S61105407 A JPS61105407 A JP S61105407A JP 22833884 A JP22833884 A JP 22833884A JP 22833884 A JP22833884 A JP 22833884A JP S61105407 A JPS61105407 A JP S61105407A
Authority
JP
Japan
Prior art keywords
detected
output
light
length
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22833884A
Other languages
Japanese (ja)
Inventor
Yasukazu Fujimoto
靖一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP22833884A priority Critical patent/JPS61105407A/en
Publication of JPS61105407A publication Critical patent/JPS61105407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/024Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the length and external appearance of an object to be detected at the same time by projecting light on the object to be detected and detecting the position of a light spot by a one-dimensional optical sensor and scanning an end of the object to be detected in a flying spot system. CONSTITUTION:The light of a laser pipe 1 is reflected on a vibrating mirror 2 and made incident on a beam splitter 10. The light irradiating the object 6 to be detected and the light directed to the one-dimensional semiconductor position sensor 12 are splitted by the splitter 10. Further, the arrangement is made so that the longitudinal direction of the sensor 12 coincides with the scanning direction of an optical beam from the beam splitter 10 and output voltages X1, X2 are generated in proportion to the position projected on the sensor 12 of the optical beam. The voltages X1, X2 are inputted to an arithmetic circuit 19 via arithmetic circuits 17, 18 respectively. On the other hand, the transmitted light of the object 6 to be detected is photoelectrically converted 15 and compared with the reference voltage by a comparator 21 and a 0.1 signal is inputted to a computing element 26. Then, the length of the object to be detected is detected by the output of the circuit 19. Further, the external appearance is detected from the output from a photoelectric element 15 by a comparator 27. Accordingly, since the length is detected by the output of the one-dimensional optical sensor, the length and external appearance can be detected at the same time.

Description

【発明の詳細な説明】 [産業上の利用分野l この発明はフライングスポット方式を用いて物体の外観
と物体の大!さとを同時的に検出する検査装置に関する
[Detailed Description of the Invention] [Industrial Application Fields] This invention uses a flying spot method to determine the appearance of an object and the size of the object. The present invention relates to an inspection device that simultaneously detects oxidation.

[従束拮術] 第3図、第4図、第5図は、従来のレーザ一式外観検査
はのシステムNIJ成図である。HeNeレーザー管1
を出たレーザー光は、振動ミラー2で反射され、レンX
”5により平行走査ビームに変換され、被検物(例えば
、円筒ころ)6に照射される1反射光は、集光レンズ7
にて集光され、光電変換素子8に入射され、光電変換が
行なわれる。増幅器9は、その電気信号を増幅する為の
ものであり、その典型的な信号波形は、第5図のような
ものになる。暗部は、レーザースポットが被検物6から
、はずれた場合反射光が無くなろ事により作られる。
[Following Comparison Technique] FIGS. 3, 4, and 5 are system NIJ diagrams of a conventional laser complete visual inspection system. HeNe laser tube 1
The laser beam that exits is reflected by the vibrating mirror 2, and the laser beam
1 reflected light is converted into a parallel scanning beam by 5 and irradiated onto the object to be inspected (for example, a cylindrical roller) 6.
The light is collected by the photoelectric conversion element 8, and photoelectric conversion is performed. The amplifier 9 is for amplifying the electrical signal, and its typical signal waveform is as shown in FIG. The dark area is created by the fact that when the laser spot deviates from the object 6, there is no reflected light.

又、明部の門凸は、被検物6の表面の加工状態によって
、様々の波形を示すが、検査面中に欠陥があれば、その
部分の反射光量が減り、パルス状の欠陥波形が得られろ
6以上が、外観検査の場合に用いられろ測定システムで
ある。なお振動ミラー2の振lPJ+端は電磁誘導コイ
ル2゛で検出されパルス発生器3は振動ミラー2の振動
周期に比例した周期のパルスを出力する。
In addition, the gate convexity in the bright area shows various waveforms depending on the processing condition of the surface of the test object 6, but if there is a defect on the inspection surface, the amount of reflected light at that part will decrease and a pulse-like defect waveform will occur. The above-mentioned measurement system is used for visual inspection. The vibration lPJ+ end of the vibrating mirror 2 is detected by the electromagnetic induction coil 2', and the pulse generator 3 outputs a pulse having a period proportional to the vibration period of the vibrating mirror 2.

しかるに従来のこの測定システムは単に被検物の外観検
査しかすることができなかった。
However, this conventional measurement system was only able to perform a visual inspection of the object to be inspected.

そのため、被検物の長さなどの寸法を測定するには別の
工程において、別の測長装置を用いなければならず、そ
の測長作業が煩雑であり、かつ非能率であった。
Therefore, in order to measure dimensions such as the length of the object, a separate length measuring device must be used in a separate process, making the length measuring work complicated and inefficient.

[発明の目的] この発明は上述の問題を解決するためになされたもので
為って、被検物の外観検査と測長とを同一装置で行える
装置を提供することを目的とする。
[Object of the Invention] This invention was made to solve the above-mentioned problems, and an object thereof is to provide an apparatus that can perform an external appearance inspection and a length measurement of an object to be inspected using the same apparatus.

[発明のipI處] この発明の長さ検出装置はフライングスポット方式で被
検物に光を投射するとともに、一次元光センサによって
、光ス°ボットの位置を検出し、光スポットが被検物の
端を走査したときの一次元光センサ出力から被検物の長
さを演算するようにしたことを特徴とする。
[IPI part of the invention] The length detection device of the present invention uses a flying spot method to project light onto an object to be inspected, and uses a one-dimensional optical sensor to detect the position of the optical stub, so that the light spot is aligned with the object to be inspected. The length of the object to be inspected is calculated from the one-dimensional optical sensor output when scanning the edge of the object.

〔実施例J 以下にこの発明を一実施例について説明する。[Example J This invention will be described below with reference to one embodiment.

なお1図と第2図において、第3図と同等のらのには同
一の符号を付した。
Note that in FIGS. 1 and 2, the same numbers as in FIG. 3 are given the same numbers.

第1図と第2図において、振動ミラー2と被検物6との
間にはビームスプリッタ10が設けられ、振動ミラー2
からの光は1つは被検物6に向けられ、いま1つは結像
レンズ11を通して、−次元半導体装置センサ12に向
けられる6 −次元゛1′導体位置センサ12は該セン
サの長手方向がビームスプリッタ10から投影される尤
ビームの走査方向と一致するように配設されている。そ
して、該センサ12の出力端子12mと12bには尤ビ
ームが該センサ12に投射されている位置に比例した出
力電圧X1とX2とを生じる。
1 and 2, a beam splitter 10 is provided between the vibrating mirror 2 and the object 6, and the vibrating mirror 2
The light from the 6-dimensional 1' conductor position sensor 12 is directed to the test object 6 and the other through the imaging lens 11 to the -dimensional semiconductor device sensor 12. is arranged so as to coincide with the scanning direction of the potential beam projected from the beam splitter 10. Output voltages X1 and X2 are generated at the output terminals 12m and 12b of the sensor 12, which are proportional to the position where the beam is projected onto the sensor 12.

センサ12の出力端子12a、12bはそれぞれ増幅器
13.13’に接続され、増幅器1:’(,13’の出
力端子は演算回路17.18にしI示のごとく接続され
ている。演算回路17はXl−X2を演算し、演算回路
18はX1+X2を演算する0両演算回路19に接続さ
れる。演算回路19の出力端子はアナログディジタル変
換器(A / D変換器という、)20に接続されてい
る。
The output terminals 12a, 12b of the sensor 12 are connected to amplifiers 13, 13', respectively, and the output terminals of the amplifiers 1:'(, 13' are connected to arithmetic circuits 17, 18 as shown in I. The arithmetic circuit 18 is connected to a zero arithmetic circuit 19 that calculates X1+X2.The output terminal of the arithmetic circuit 19 is connected to an analog-to-digital converter (referred to as an A/D converter) 20. There is.

一方被検物6の透過光を集光レンズ14を介して、受光
するように充電変換器15が設けられ、この充電変換器
15の出力は増幅器1Gに印加されるようになっている
On the other hand, a charging converter 15 is provided to receive transmitted light from the object 6 through a condensing lens 14, and the output of this charging converter 15 is applied to an amplifier 1G.

増幅器16の出力は比較器21に印加され、増幅器16
の出力が基準電圧■を越えたとき出力が1となるように
構成され、その結果比較器21からは、光ビームが被検
物6の一方端から被検物側に入ったとき“0”からa1
″へ、被検物6の他方の端から外側へ出たときとに1″
から“0”に変、化する出力が生じる。
The output of the amplifier 16 is applied to the comparator 21, and the output of the amplifier 16
The comparator 21 is configured so that the output becomes 1 when the output exceeds the reference voltage ■, and as a result, the comparator 21 outputs "0" when the light beam enters the test object side from one end of the test object 6. from a1
1'' when exiting from the other end of the test object 6 to the outside.
An output that changes from "0" to "0" is generated.

比較器21の出力は、1つは微分回路22に印加され、
ここで比較器21の出力の立ち上りが検出され、いま1
つは反転回路23を介して微分回路24に印加され、こ
こで比較器21の出力の立ち下りが検出される。
One output of the comparator 21 is applied to the differentiating circuit 22,
Here, the rising edge of the output of the comparator 21 is detected, and now 1
One is applied to the differentiating circuit 24 via the inverting circuit 23, where the fall of the output of the comparator 21 is detected.

各微分回路22.24の出力はそれぞれオアデート25
を介してA/D変換器20のスタート信号として印加さ
れる。
The output of each differentiating circuit 22 and 24 is an ordate 25, respectively.
It is applied as a start signal to the A/D converter 20 via the A/D converter 20.

26はA/D変換器20の出力電圧から後述の式により
で、被検物の長さを演算するコンビエータであ、る。
26 is a combinator which calculates the length of the object to be inspected from the output voltage of the A/D converter 20 using a formula described later.

上記の構成において、ビームスプリッタ10によって、
分離された走査レーザー光は、結像レンズで、位置セン
サ12上に焦点を結ぶ0位置センサ12の出力は、増幅
器13.13’で増幅され、出力Xi、X’lとなる。
In the above configuration, the beam splitter 10
The separated scanning laser beam is focused on the position sensor 12 by an imaging lens.The output of the 0 position sensor 12 is amplified by an amplifier 13.13', and becomes outputs Xi and X'l.

被検物6に照射され、被検物6によって遮ぎられずに透
過したレーザー光は、レンズ14にて集光され、光電変
換器15に導かれ、光電変換される。その出力信号は増
幅器16で反転増幅され比較器21でVと比較され、被
検物の長さに対応した長さのパルスを出力する。
The laser light that is irradiated onto the object 6 and transmitted without being blocked by the object 6 is focused by the lens 14, guided to the photoelectric converter 15, and subjected to photoelectric conversion. The output signal is inverted and amplified by an amplifier 16 and compared with V by a comparator 21, and a pulse having a length corresponding to the length of the object to be inspected is output.

−次元位置センサ12上りの、2つの出力XiとX2は
光の強度に無関係に、尤スポットの位置だけを得る為の
演算回路17.I F3..3 Xlを通過し入力され
る。演算回路19の出力は、レーザー尤スポットの被検
物6上の位置を表している。従って、適宜な時に、A/
D変換をすれば、変換ディジタル出力は、その時点での
レーザー尤スポットの位置を表す、比較器21の出力パ
ルスは、微分器22により、パルスの立ち上り時間を検
出し、又、反転増幅器23を通過の後、微分器24によ
り、パルスの立ち下り時間を検出し、八/D変換器20
のスタートタイミングを与え、その変換結果をマイクロ
・コンビエータ26に入力し、次式の減灯により、長さ
しを求める。
- The two outputs Xi and X2 on the dimensional position sensor 12 are an arithmetic circuit 17 for obtaining only the likely spot position, regardless of the light intensity. IF3. .. 3 Passes through Xl and is input. The output of the arithmetic circuit 19 represents the position of the laser spot on the object 6 to be inspected. Therefore, at the appropriate time, A/
When D-converted, the converted digital output represents the position of the laser likely spot at that point in time. After passing, the differentiator 24 detects the fall time of the pulse, and the 8/D converter 20
The start timing is given, the conversion result is input to the micro combinator 26, and the length is determined by the following equation.

例えば、パルスの立へ上り時のA/D変換器20の変換
出力をDl、パルスの立ち下り時の変換出力をD2とす
れば、 L=K(D2−r)1) なる演ヰをマイクロ・コンビエータ261こさせる。
For example, if the conversion output of the A/D converter 20 at the rising edge of the pulse is Dl, and the conversion output at the falling edge of the pulse is D2, then the following expression can be written as micro・Turn on the combiator 261.

ここでKは、レンズ11の結像倍率、増幅器13゜13
゛の増幅率、その池演ヰ回路17.18.19の増幅率
によって、決定される値であり、予めコンビ1−夕内に
データーを与えておけばよい。
Here, K is the imaging magnification of the lens 11 and the amplifier 13°13
This value is determined by the amplification factor of the input circuit 17, 18, and 19 of the circuit 17, 18, and 19, and the data can be given to the combination 1-1 in advance.

なお被検物6の外観検査は充電変換素子8の出力を増幅
器9で増幅し、比較器27で比較することにより得られ
る。
Note that the visual inspection of the test object 6 can be obtained by amplifying the output of the charging conversion element 8 with an amplifier 9 and comparing it with a comparator 27.

[発明の効果1 以上詳述したように、この発明はフライングスポット方
式で被検物に光を投射するとともに、一次元光センサに
よって、光スポットの位置を検出し、光スポットが被検
物の端を走査したときの一次元光センサ出力から被検物
の長さを演算するようにしたものであるから、被検物の
長さを外観検査とともに同一装置で行うことができ、寸
法検査と外観検査の作業を高能率で行うことができる。
[Effects of the Invention 1] As detailed above, the present invention projects light onto a test object using a flying spot method, detects the position of the light spot using a one-dimensional optical sensor, and detects the position of the light spot on the test object. Since the length of the object to be inspected is calculated from the one-dimensional optical sensor output when the edge is scanned, the length of the object to be inspected can be performed with the same equipment as well as the visual inspection. Appearance inspection work can be performed with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1団はこの発明の一実施例の光学系を示す図、第2図
はこの発明の一実施例を示すブロック図、第3図は従来
装置の光学系の一例を示す図、第4図は第1図の要部の
平面図、ff15図はlI’3図の装置の要部の出力波
形図である。 1・・・レーザ管、   6・・・被検物、12・・・
−次元センサ、1)、18.19・・・減灯回路、20
・・・A/D変喚器、21・・・比較器、22.24・
・・微分回路、 26・・・マイクロコンピユータ。
The first group is a diagram showing an optical system of an embodiment of this invention, FIG. 2 is a block diagram of an embodiment of this invention, FIG. 3 is a diagram showing an example of an optical system of a conventional device, and FIG. 4 is a plan view of the main part of FIG. 1, and FIG. ff15 is an output waveform diagram of the main part of the device shown in FIG. 1I'3. 1... Laser tube, 6... Test object, 12...
-Dimension sensor, 1), 18.19...Light reduction circuit, 20
... A/D converter, 21... Comparator, 22.24.
...Differential circuit, 26...Microcomputer.

Claims (1)

【特許請求の範囲】[Claims] (1)フライングスポット方式で被検物に光を投射する
とともに、一次元光センサによって、光スポットの位置
を検出し、光スポットが被検物の端を走査したときの一
次元光センサ出力から被検物の長さを演算するようにし
たことを特徴とする長さ検出装置。
(1) In addition to projecting light onto the test object using the flying spot method, the position of the light spot is detected using a one-dimensional optical sensor, and the one-dimensional optical sensor output is obtained when the light spot scans the edge of the test object. A length detection device characterized in that it calculates the length of an object to be inspected.
JP22833884A 1984-10-29 1984-10-29 Length detecting device Pending JPS61105407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22833884A JPS61105407A (en) 1984-10-29 1984-10-29 Length detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22833884A JPS61105407A (en) 1984-10-29 1984-10-29 Length detecting device

Publications (1)

Publication Number Publication Date
JPS61105407A true JPS61105407A (en) 1986-05-23

Family

ID=16874891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22833884A Pending JPS61105407A (en) 1984-10-29 1984-10-29 Length detecting device

Country Status (1)

Country Link
JP (1) JPS61105407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191908A (en) * 1987-02-05 1988-08-09 Mitsutoyo Corp Optical scanning type measuring instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168107A (en) * 1980-05-29 1981-12-24 Mitsubishi Electric Corp Surface inspecting device
JPS57161608A (en) * 1981-03-31 1982-10-05 Anritsu Corp Measuring device for object size

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168107A (en) * 1980-05-29 1981-12-24 Mitsubishi Electric Corp Surface inspecting device
JPS57161608A (en) * 1981-03-31 1982-10-05 Anritsu Corp Measuring device for object size

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191908A (en) * 1987-02-05 1988-08-09 Mitsutoyo Corp Optical scanning type measuring instrument

Similar Documents

Publication Publication Date Title
JPH0428005Y2 (en)
JPH0315124B2 (en)
JPS61105407A (en) Length detecting device
JP3019552B2 (en) Surface inspection equipment
US3518443A (en) System for detecting small light sources in presence of large ones using plurality of detectors
JPS61105406A (en) Length detecting device
JPS6126624B2 (en)
JPS5858404A (en) Floating binary system for signal
JPS62235511A (en) Surface condition inspecting apparatus
JPS61105415A (en) Distance measuring instrument
JPS58191938A (en) Optical measuring apparatus
SU966490A1 (en) Method of evaluating roughness of contact surfaces
SU1415066A1 (en) Method and apparatus for checking section profile
JPS62223654A (en) Surface defect detector
JPS6117904A (en) Pattern detector
JPS63106510A (en) Optical flaw and displacement measuring apparatus
JPS6333094B2 (en)
JPS5830521B2 (en) dimension measuring instrument
JPS61243347A (en) Surface inspecting device
JPH01313712A (en) Optical displacement measuring instrument
JPH0361551B2 (en)
JPS62212502A (en) Edge detector in optical measuring machinery
JPH0198952A (en) Defect detecting device for electric welded tube
JPH06100459B2 (en) Distance measuring device
JPS6196402A (en) Signal detecting device